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Abstract: Total organic carbon (TOC) is an essential parameter used in unconventional shale resources
evaluation. Current methods that are used for TOC estimation are based, either on conducting
time-consuming laboratory experiments, or on using empirical correlations developed for specific
formations. In this study, four artificial intelligence (AI) models were developed to estimate the TOC
using conventional well logs of deep resistivity, gamma-ray, sonic transit time, and bulk density.
These models were developed based on the Takagi-Sugeno-Kang fuzzy interference system (TSK-FIS),
Mamdani fuzzy interference system (M-FIS), functional neural network (FNN), and support vector
machine (SVM). Over 800 data points of the conventional well logs and core data collected from
Barnett shale were used to train and test the AI models. The optimized AI models were validated
using unseen data from Devonian shale. The developed AI models showed accurate predictability of
TOC in both Barnett and Devonian shale. FNN model overperformed others in estimating TOC for
the validation data with average absolute percentage error (AAPE) and correlation coefficient (R)
of 12.02%, and 0.879, respectively, followed by M-FIS and SVM, while TSK-FIS model showed the
lowest predictability of TOC, with AAPE of 15.62% and R of 0.832. All AI models overperformed
Wang models, which have recently developed to evaluate the TOC for Devonian formation.

Keywords: total organic carbon; artificial intelligence; barnett shale; devonian shale

1. Introduction

Recently, due to the advances in horizontal drilling and multi-stage fracturing, the possibility of
producing hydrocarbon from unconventional hydrocarbon resources, such as shale oil and shale gas is
significantly increased. The total organic carbon (TOC) is an essential parameter for unconventional
shale resource characterization and evaluation. It expresses the amount of organic carbon present in
the formation, thus, indicates the hydrocarbon reserve in these unconventional resources [1,2].

TOC is dependent on many factors, such as gas adsorption, maturity, and carbon content because
these factors affect the reservoir organic porosity [2–4]. TOC is also significantly affected by the pore
structure and wettability of the shale [2,5,6]. Thus, reserve prediction of unconventional reservoirs
needs an accurate method to predict the TOC [5,6].

Currently, several empirical correlations, which were developed based on different assumptions,
are used to evaluate the TOC for specific formation types, based on the available well logs. Schmoker [7]
developed the first correlation for TOC prediction based on the formation bulk density (RHOB).
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His correlation in Equation (1) is developed initially for Devonian shale, this correlation estimates
the TOC as volume percentage, which could then be converted to weight percentage as explained in
Schmoker [7],

TOC(vol.%) =
(ρB − ρ)

1.378
(1)

where ρB and ρ denote the organic matter free rock density and the rock bulk density both in g/cm3.
Schmoker [8] revised his first model to be applicable for Bakken shale formation and he came up

with the revised model in Equation (2),

TOC(wt.%) =
[(100ρo) − (ρ− 0.9922ρmi − 0.039)]

[(Rρ)(ρo − 1.135ρmi − 0.675)]
(2)

where ρo denotes the density of the organic matter in g/cm3, R is the ratio of the organic matter to
organic carbon as the weight percentage, ρmi denotes the grain and pore fluid average density in g/cm3.

Passey et al. [9] developed a simple model for TOC prediction, based on the deep resistivity
(DR) and sonic transit time (DT) logs, this model is named ∆logR model, which is summarized
in Equations (3) and (4). ∆logR model is currently widely used for evaluating the unconventional
resources reserve,

∆logR = log10

(
R

Rbaseline

)
+ 0.02× (∆t− ∆tbaseline) (3)

∆logR = log10

(
R

Rbaseline

)
+ 0.02× (∆t− ∆tbaseline) (4)

where ∆logR is the logs separation, R and Rbaseline denote the evaluated formation and the base
formation resistivity in ohm.m, ∆t and ∆tbaseline represent the evaluated formation and base formation
sonic transit times both in µs/ft, and LOM is the level of maturity.

The Schmoker and ∆logR models were evaluated by Charsky and Herron [10] into various
formations in four different wells. The authors found that these models are not accurate, where TOC is
predicted with an average absolute difference (ADD) of 1.6 wt%, forming the core derived TOC for
Schmoker model and 1.7 wt% for ∆logR method.

The most recent and current studies focus on estimating the TOC by improving the accuracy of
∆logR model [11–13] or by applying machine learning techniques [14–16].

Wang et al. [12] revised the ∆logR models and developed new empirical correlations for TOC
estimation in Devonian shale formation as a function of the DR, DT, RHOB, and gamma-ray (GR).
In their models, Wang et al. [12] suggested to include GR log to enhance TOC estimation, and they
used more common thermal indicators such as vitrinite reflectance (Ro) or Tmax instead of LOM,
which simplify the use of Wang et al. [12] models, since the conversion between (Tmax or Ro) and LOM
is not required. Therefore, it reduces the practical problems [17]. Equations (5) and (6) are the revised
∆logR models based on sonic and density logs, respectively. Equation (7) could be used to estimate the
TOC using ∆logR and gamma-ray log:

∆logR = log10

(
R

Rbaseline

)
+

1
ln10

m
(∆t− ∆tm)

× (∆t− ∆tbaseline) (5)

∆logR = log10

(
R

Rbaseline

)
+

1
ln10

m
(ρm − ρ)

× (ρ− ρbaseline) (6)

TOC = [α∆logR + β(GR−GRbaseline)] × 10(δ−ηTmax). (7)

where ∆tm denotes the matrix sonic transit time (µs/ft), m represents the cementation exponent, ρm and
ρbaseline are the matrix and baseline densities (g/cm3), where the baseline density corresponds to Rbaseline
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value, α, β, δ and η are the matrix constants, which are different for different formations and must be
determined, Tmax is the maturity indicator (◦C), GRbaseline is the baseline value of shale (API).

Applying the revised ∆logR models into the Devonian shale formation showed an improvement
in TOC evaluation with a coefficient of determination (R2) of more than 0.92 compared with R2 of 0.82
when the original ∆logR model is used.

Applying any of the previously discussed correlations to evaluate TOC in formations different
than the one developed leads to inaccurate predictions. Recently, Mahmoud et al. [18,19] suggested
an artificial neural network (ANN)-based correlation for TOC estimation in Barnett formation using
conventional well logs. Later on, Elkatatny [20] applied the self-adaptive differential evolution algorithm
to optimize Mahmoud et al.’s [18,19] ANN model and he was able to improve the model predictability.

In this study, four artificial intelligence (AI) models were developed to estimate TOC based
on the application of the Takagi-Sugeno-Kang fuzzy interference system (TSK-FIS), Mamdani fuzzy
interference system (M-FIS), functional neural network (FNN), and support vector machine (SVM).
These models use conventional well logs of DR, GR, DT, and RHOB, collected from the Barnett
shale formation.

Different Applications of Artificial Intelligence Techniques

Since the early 1990s, AI techniques had been extensively applied in many scientific and engineering
fields, including in the petroleum industry. Nowadays, AI has been used by petroleum engineers
and geologists to solve problems related to unconventional hydrocarbon resources evaluation [18–20],
reservoir characterization [21,22], bubble point pressure evaluation [23], prediction of real-time change
in the rheological parameters of the drilling fluids [24,25], optimization of rate of penetration [26],
estimation of rock mechanical parameters [27,28], prediction of pore pressure and fracture
pressure [29,30], evaluation of the wellbore casing integrity [31,32], hydrocarbon recovery factor
estimation [33,34] optimization of the drilling hydraulics [35], and others. AI techniques have also
been applied successfully in other fields like social media [36,37].

2. Methodology

2.1. Experimental Testing Using Rock-Eval 6

The core samples collected from Barnett shale (Fort Worth Basin (FWB), North Texas, USA)
and Devonian Duvernay shale (Western Canada Sedimentary Basin (WCSB)) were analyzed for
TOC estimation. The collected samples were crushed to less than 63 µm, the weight percentage of
the pyrolyzable carbon and pyrolyzable mineral-carbon in every sample were first determined by
thermally decomposing the sample using the pyrolysis oven. During pyrolysis, the temperature
was kept constant at 300◦C for three minutes then increased by 25 ◦C/min to reach 650 ◦C, the flame
ionization detector and infrared cells are used to simultaneously detect the hydrocarbons, CO2, and CO.
After that, the weight percentages of the residual carbon and oxidized mineral-carbon in every sample
were determined by burning them in the oxidation oven at 300 ◦C for 30 seconds, then increasing the
temperature up to 850 ◦C at a rate of 25 ◦C/min, and finally keeping the temperature at 850 ◦C for five
minutes. More details about sample preparation procedures and considerations for TOC measurement
by Rock-Eval 6 were reported by different authors [38–40].

2.2. Proposed Methodology

In this study, conventional well logs of DR, GR, DT, and RHOB, collected from Barnett
shale, are used to train TSK-FIS, M-FIS, FNN, and SVM models to predict the corresponding
laboratory-measured TOC. These AI models were used in this study to estimate the TOC because of
their already proven high accuracy in evaluating petroleum- and geology-related parameters. A total
of 838 data points of core and log data were collected from Barnett shale. Figure 1 shows the log data
collected from Barnett shale which is used to develop the models. Different combinations of the design
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parameters of the AI models were optimized using inserted for loops built-in Matlab. The optimization
process of the AI models was continued until the minimum average absolute percentage error (AAPE),
and the highest coefficient of determination (R2) and correlation coefficient (R) between the predicted
and the core measured TOC are obtained. The trained and optimized AI models were then tested using
another set of data from the same well, and validated using data points collected from the Devonian
shale formation. TOC predictability of the developed AI models for the validation data collected from
Devonian formation was then compared with that of Wang et al. [12] sonic- and density-based models
summarized in Equations (5)–(7).
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Figure 1. Well log data collected from Barnett shale formation to develop the AI models.

2.3. Data Description and Preprocessing

Conventional log data of DR, GR, DT, and RHOB and the corresponding actual
(laboratory-measured) TOC values collected from Barnett shale formation were used to train the
four AI models considered in this study. Before training, all the data was pre-processed to remove
unrealistic values and outliers. After data pre-processing, 838 data points of the different well logs and
their corresponding actual TOC values were found to be valid for model buildup. The use of 545, 545,
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587, and 671 of the data to train TSK-FIS, M-FIS, FNN, and SVM models, respectively, were found to
optimize the performance of the AI models in predicting the TOC. The number of training data was
selected based on the optimization process, as discussed later in this paper.

Table 1 compares the different statistical features of the training data that are used to learn the four
AI models developed in this study. These statistical parameters are very important for consideration
when the AI models are applied to estimate the TOC using new data. In this study, before testing
and validating the developed AI models, the statistical parameters of the testing and validation data
were determined to ensure that these data (i.e., testing and validation data) are within the range of the
training data used to develop the AI models which are summarized in Table 1.

Table 1. Statistical features of the data used to train the Takagi-Sugeno-Kang fuzzy interference system
(TSK-FIS), Mamdani fuzzy interference system (M-FIS), functional neural network (FNN), and support
vector machine (SVM) models.

Takagi-Sugeno-Kang Fuzzy Inference System

Data points = 545 DR, Ωm DT, µs/ft GR, API RHOB, g/cm3 TOC, wt%

Minimum 4.97 50.95 23.73 2.39 0.75
Maximum 163.3 97.1 146.9 2.7 5.1

Range 158.3 46.1 123.2 0.3 4.4
Standard Deviation 40.86 9.27 24.91 0.07 1.03

Sample Variance 1670 86 621 0.0055 1.061

Mamdani Fuzzy Inference System

Data points = 545 DR, Ωm DT, µs/ft GR, API RHOB, g/cm3 TOC, wt%

Minimum 4.97 53.78 28.07 2.39 0.76
Maximum 163.3 95.0 146.9 2.7 5.0

Range 158.3 41.2 118.9 0.3 4.2
Standard Deviation 38.95 8.24 22.31 0.07 0.98

Sample Variance 1517 68 498 0.0053 0.953

Functional Neural Network

Data points = 587 DR, Ωm DT, µs/ft GR, API RHOB, g/cm3 TOC, wt%

Minimum 4.97 52.00 26.16 2.40 0.84
Maximum 163.6 97.1 146.9 2.7 5.1

Range 158.6 45.1 120.8 0.3 4.3
Standard Deviation 42.12 7.52 20.73 0.06 0.85

Sample Variance 1774 57 430 0.0040 0.731

Support Vector Machine

Data points = 671 DR, Ωm DT, µs/ft GR, API RHOB, g/cm3 TOC, wt%

Minimum 4.97 50.95 27.37 2.39 0.76
Maximum 163.6 97.1 146.9 2.7 5.1

Range 158.6 46.1 119.6 0.3 4.4
Standard Deviation 39.81 8.20 21.63 0.07 0.96

Sample Variance 1585 67 468 0.0044 0.916

The relative importance of the selected training well log data on the predictability of the TOC
values was then studied. Figure 2 compares the relative importance between the different conventional
well logs used to train the four AI models and the laboratory-measured TOC values. As indicated in
Figure 2 and for the data used to train all AI models, TOC is strongly dependent on the RHOB, while it
is moderately related to DR, DT, and GR.
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2.4. AI Model’s Development

Four AI models namely: TSK-FIS, M-FIS, FNN, and SVM models were developed in this study to
estimate the TOC using conventional well logs of DR, DT, GR, and RHOB. The four conventional well
logs, used to train the AI models, were selected based on their relative importance to the core measured
TOC, as discussed earlier and shown in Figure 2. However, the selection conforms to their published
reported relationship with TOC. For example, DR is believed to be affected by the presence of kerogen
in the source rock [41]; DT decreases with the increase in the TOC [42]; several studies have confirmed
that GR could significantly enhance TOC prediction [41,43], but the relationship is controversial to
others [44,45]; and RHOB decreases with the increase in the kerogen content, and hence, organic matter
in the formation increases [7]. Because of the above-listed reasons, the four conventional well logs of
DR, DT, GR, and RHOB are considered to develop the TOC models in this study.

All AI models were optimized for their design parameters and the training-to-testing data ratio.
Table 2 summarizes the optimized design parameters of the AI models.
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Table 2. The optimum design parameters for TSK-FIS, M-FIS, FNN, and SVM models to estimate
the TOC.

Takagi-Sugeno-Kang Fuzzy Inference System

Training/Testing Data Ratio 65/35
Number of Membership Functions 2

Input Membership Function Gaussian Membership Function
Output Membership Function Linear Function

Mamdani Fuzzy Inference System

Training/Testing Data Ratio 65/35
Cluster Radius 0.35

Number of Iterations 300

Functional Neural Network

Training/Testing Data Ratio 70/30
Training Method Backward-Forward Selection Method

Function Type Non-linear Function with Iteration Terms

Support Vector Machine

Training/Testing Data Ratio 80/20
Kernel gaussian

Kerneloption 9
Lambda 1 × 10−7

Epsilon 0.5
Verbose 0.7

C 3000

2.5. Evaluation Criterion

The predictability of the developed AI models, used to estimate the TOC for the training, testing,
and validation data sets, was evaluated based on the absolute average percentage error “Equation (8)”,
correlation coefficient “Equation (9)”, coefficient of determination “Equation (10)”, and the visual check
of the actual and predicted TOC.

AAPE =
1
N

N∑
i=1

(∣∣∣∣∣∣ (RFa)i − (RFm)i

(RFa)i

∣∣∣∣∣∣× 100
)

(8)

R =

∑N
i=1

[(
(RFa)i −RFa

)
×

(
(RFm)i −RFm

)]
√∑N

i=1

[
(RFa)i −RFa

]2 ∑N
i=1

[
(RFm)i −RFm

]2
(9)

R2 =


∑N

i=1

[(
(RFa)i −RFa

)
×

(
(RFm)i −RFm

)]
√∑N

i=1

[
(RFa)i −RFa

]2 ∑N
i=1

[
(RFm)i −RFm

]2


2

(10)

where in all previous equations a and m denote the actual and estimated RF, respectively.

2.6. Application Examples to Barnett and Devonian Shale

The predictability of the four AI models considered in this study was evaluated using data of two
different depositional environments. The first formation is the Mississippian Barnett shale, which was
considered earlier by the United States Energy Information Administration as the main source rock of
hydrocarbon in FWB [3,46]. In 2011, the proven reserve of this formation was more than 31 trillion cubic
feet (TCF) with a cumulative gas production rate of 8.0 TCF. Several studies, such as Pollastro et al. [46],
Romero-Sarmiento et al. [47], and Thomas [48] reported the general geologic information about Barnett
shale. The second formation is the Devonian shale in WCSB, which is an organic-rich source rock in
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the Devonian conventional hydrocarbon system [49]. The oil and gas in place in this formation are
61.7 Billion barrels, and 443 Tcf, respectively. According to recent production data, this shale is rich in
liquid [50].

3. Results and Discussion

3.1. Training the AI Models

The AI models considered in this work (TSK-FIS, M-FIS, FNN, and SVM) were trained to optimize
their design parameters, the optimum design parameters of the AI models are summarized earlier
in Table 2. Figure 3 compares the predictability of the four optimized AI models for the training
data sets, as shown in Figure 3. The number of data used to train every AI model are different.
As explained earlier, the training to testing data ratio is considered during the models optimization
process, and based on this optimization, the number of training data that maximize predictability of
every model is selected.
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Figure 3 shows that the TSK-FIS model predicted the TOC for the training data set with the highest
accuracy compared to other models, with AAPE of 7.12% and R of 0.968. M-FIS comes second with
AAPE and R of 7.48% and 0.962, followed by the FNN model with AAPE of 8.05% and R of 0.936,
and finally the SVM model with AAPE and R of 9.75%, and 0.933, respectively. The visual check of the
plots confirms a high accuracy of the four AI models in estimating the TOC for the training data set.

Cross-plot of Figure 4 compares the measured and estimated TOC for the training data set.
The narrow scattering of the points indicates the predictability of the models; TSK-FIS model is the
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highest with R2 = 0.937, then M-FIS model with R2 = 0.926, followed by FNN model with R2 = 0.876,
and finally SVM with the lowest R2 of 0.871.Sustainability 2019, 12, x FOR PEER REVIEW 9 of 15 
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3.2. Testing the AI Models

The predictability of the four AI models, developed in this study, is then tested using data collected
from the Barnett shale formation. The number of the testing data points is selected based on the
optimization process as mentioned earlier.

Figure 5 compares the predictability of the AI models to evaluate the TOC for the testing data
sets. Visually, the four plots indicate similar predictability for the four models, with minor differences.
Considering the AAPE and R M-FIS model is the highest with 11.10% and 0.933, followed by TSK-FIS
model with 11.20% and 0.918, then FNN model with 11.29% and 0.905, and finally SVM model with
11.45%, and 0.931 respectively.

The cross-plot in Figure 6 presents the correlation between measured and estimated TOC for the
testing data set. The plots indicate high correlation with R2 equal 0.870, 0.867, 0.842, and 0.818 for
M-FIS, SVM, TSK-FIS, and FNN models, respectively.



Sustainability 2019, 11, 5643 10 of 15
Sustainability 2019, 12, x FOR PEER REVIEW 10 of 15 

 
Figure 5. Comparison of measured and estimated TOC using (a) TSK-FIS, (b) M-FIS, (c) FNN, and (d) 
SVM for the testing data sets. 

 
Figure 6. Cross-plot of the measured and estimated TOC using (a) TSK-FIS, (b) M-FIS, (c) FNN, and 
(d) SVM for the testing data sets. 

3.3. Validating the AI Models  

The AI model's validation was completed using unseen data collected from the Devonian shale 
formation. The total number of core derived TOC data collected from Devonian shale are 22 data 
points, out of these data,  only 20, 19, 19, and 15 were found to fit within the range of the training 
data that is used to develop TSK-FIS, M-FIS, FNN, and SVM models, respectively. The range for the 

Figure 5. Comparison of measured and estimated TOC using (a) TSK-FIS, (b) M-FIS, (c) FNN,
and (d) SVM for the testing data sets.

Sustainability 2019, 12, x FOR PEER REVIEW 10 of 15 

 
Figure 5. Comparison of measured and estimated TOC using (a) TSK-FIS, (b) M-FIS, (c) FNN, and (d) 
SVM for the testing data sets. 

 
Figure 6. Cross-plot of the measured and estimated TOC using (a) TSK-FIS, (b) M-FIS, (c) FNN, and 
(d) SVM for the testing data sets. 

3.3. Validating the AI Models  

The AI model's validation was completed using unseen data collected from the Devonian shale 
formation. The total number of core derived TOC data collected from Devonian shale are 22 data 
points, out of these data,  only 20, 19, 19, and 15 were found to fit within the range of the training 
data that is used to develop TSK-FIS, M-FIS, FNN, and SVM models, respectively. The range for the 

Figure 6. Cross-plot of the measured and estimated TOC using (a) TSK-FIS, (b) M-FIS, (c) FNN,
and (d) SVM for the testing data sets.

3.3. Validating the AI Models

The AI model’s validation was completed using unseen data collected from the Devonian shale
formation. The total number of core derived TOC data collected from Devonian shale are 22 data
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points, out of these data, only 20, 19, 19, and 15 were found to fit within the range of the training data
that is used to develop TSK-FIS, M-FIS, FNN, and SVM models, respectively. The range for the training
data are summarized in Table 1. Based on the AAPE and R results as indicated in Figure 7, FNN model
was the best model with AAPE of 12.02% and R of 0.879, followed by M-FIS model with AAPE and R
of 13.18 and 0.875, then SVM with AAPE and R of 14.52% and 0.860, and finally TSK-FIS model with
AAPE of 15.62% and R of 0.832 respectively. As shown in Figure 7, all AI models are highly accurate
compared to Wang et al. [12] sonic- and density-based models, Wang sonic-based model (WSBM)
predicted the TOC with AAPE of 34.58% and R of 0.806, while Wang density-based model (WDBM)
predicted TOC with AAPE, and R of 49.04% and 0.469, respectively.
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From the the results of training, testing, and validation data, considering the similarity of the
results of the evaluation parameters (AAPE and R), and taking into consideration that adding or
omitting a few points may change the highest-to-lowest order of the parameters, we conclude that the
four models are equally adequate to estimate the TOC using only the conventional well log used in
this study. Nevertheless, we recommend using the FNN model as it is the best-performed model on
the validation data.

4. Conclusions

In this study, four artificial intelligence (AI) models based on Takagi-Sugeno-Kang fuzzy
interference system, Mamdani fuzzy interference system, functional neural network, and support
vector machine are developed to estimate the total organic carbon (TOC) using conventional well logs of
deep resistivity, gamma-ray, sonic transit time, and bulk density. The models are developed and tested
using data collected from Barnett shale and then validated using unseen data from Devonian shale.
The optimized AI models showed a high predictability of TOC for both formations evaluated in this
study. The four models are equally adequate to estimate the TOC using the well log used in this study.
Nevertheless, for the validation (unseen) data considered in this study, the FNN model overperformed
other models in predicting the TOC, with the lowest AAPE and the highest R, compared with other
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techniques. All AI models over-performed Wang models, which are recently developed to evaluate the
TOC for Devonian formation.
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Nomenclature

AI Artificial Intelligence
AAPE Average Absolute Percentage Error
DR Deep Resistivity
DT Sonic Transit Time
FNN Functional Neural Network
FWB Fort Worth Basin
GR Gamma Ray
M-FIS Mamdani Fuzzy Inference System
RHOB Formation Bulk Density
SVM Support Vector Machine
TCF Trillion Cubic Feet
TSK-FIS Takagi-Sugeno-Kang Fuzzy Inference System
WCSB Western Canada Sedimentary Basin
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