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Abstract: Human activities have significantly affected the natural eco-environment, which could
lead to land cover changes. The human activity intensity of land surface (HAILS) represent human
activity at the regional scale and can be monitored efficiently over a long term based on land cover
data collected by remote sensing techniques. In this study, we quantify the HAILS index for 2000,
2010, and 2015 based on land cover, and analyze its temporal and spatial variation to illustrate the
potential influence of human activities on the water quality in the water source area of the Middle
Route of the South-to-North Water Diversion Project (MR-SNWDP). The results show that from 2000
to 2015, the HAILS decreased in general but increased with the highest increment of 78.4% around
water resources. The area showing high values of HAILS increased at a rate of 30.8% from 2000 to
2015. In the riparian zone around the water body, the HAILS rose at an increment of 0.68% in 2010 to
0.05% in 2015. On the basis of the variation of the HAILS, it has been revealed that human activities,
increased mainly around water bodies, may increase the risk of water pollution.

Keywords: human activity intensity; HAILS; remote sensing; the Middle Route of the South-to-North
Water Diversion Project

1. Introduction

Since the beginning of human civilization, people have proactively modified and transformed
natural ecosystems to acquire valuable natural resources, such as food, fibre, fresh water, etc. [1–7].
As the human population has grown and technology has improved, the scope and nature of human
activities has changed drastically worldwide [8–11]. China has a high population density, and the
main driver of land cover changes is human activities [12–15]. Changes in land cover can also reveal
information on human activities in different ecosystems [16,17]. Therefore, research on human activities
is quite important for illustrating ecosystem risks, and monitoring land cover changes can provide a
method of illustrating the intensity and type of large-scale human activities, as well as the associated
spatial patterns and their temporal and spatial variation.

Nevertheless, due to the comprehensiveness of human activities, quantitative spatial and temporal
assessments cannot be performed directly and generally [18,19]. Studies have performed initial
estimates of human activities based on comprehensive statistical data [20,21], however, this method
cannot assess spatial differences and requires a large amount of socioeconomic statistical data, which is
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difficult to obtain during long-term monitoring [22,23]. Currently, indexes of human activity that use
quantitative data have been widely used for estimating human activity, and they include the landscape
development intensity (LDI) index [24]. In addition, statistical methods that combine geographic
and remote sensing data to measure human action types and intensities have also been studied [25],
however, the above methods are dependent on ground statistical data, and the study unit is limited
to an individual ecological community, which is difficult to apply in large-scale monitoring. The
human activity intensity of land surface (HAILS) index was built based on land cover data obtained by
remote sensing techniques in 2015, and it reflects human-induced alterations of the natural terrestrial
surface, such as water, air, nutrient, and energy exchanges [26]. Compared to the LDI and the above
methods, the HAILS shows the direct land cover changes resulting from human activities, reveals
changes in human activities explicitly at large or regional scales when adequate socioeconomic data
are not available, and takes into account the surface processes of natural environments, such as energy
and nutrient exchanges [26].

The construction of infrastructure influences human activities in surrounding areas. China’s
South-to-North Water Diversion Project (SNWDP) is the largest water diversion project worldwide,
and the Middle Route of the SNWDP (MR-SNWDP) diverts drinking water from the Danjiangkou
reservoir to northern China [27,28]. In the water source area of the MR-SNWDP, industrial pollution,
agricultural fertilizer, urban sewage, and garbage caused by certain human activities have threatened
the water quality [29–31]. Although various works have been performed in this study area to monitor
ecosystem changes [32–34], studies have not focused on the spatial distribution and variation of human
activities as the main factors underlying these ecosystem changes. The objective of this study is to
indicate the effect of human activities using the HAILS index and to analyze the spatial patterns and
variations of the HAILS to discuss the potential influence of human activities on the water quality in
the water source area of the MR-SNWDP.

2. Materials and Methods

2.1. Study Area

The water source area of the MR-SNWDP is located between the latitudes of 31◦20′∼34◦10′ N
and the longitudes of 106◦∼112◦ E. This area is a regional watershed as calculated by a watershed
algorithm, and it includes the Danjiangkou reservoir and upper reaches of the Hanjiang River, which
is a branch of the Yangtze River, and ranges over the Shaanxi, Henan, Gansu, Sichuan, Hubei, and
Chongqing provincial districts (Figure 1). The study area covers 94,500 km2 and includes 4 main cities
and 47 main counties, which feature a northern subtropical monsoon climate. According to historical
records, the mean annual precipitation and temperature are 873.3 mm and 13.71 ◦C, respectively, and
the flood season is from July to September [35]. The geomorphology consists of mountains, hills,
mounds, and plains. The area is mainly occupied by natural subtropical evergreen broadleaved forest,
deciduous broadleaved forest, and coniferous forest, as well as mixtures of these forests [36].

According to the statistical data for this study area in 2010, the population of the 40 counties
amounts to 13.38 million people, and the rural population is approximately 10.65 million, which
accounts for 79.65% of the total. The population is mainly distributed around the Danjiangkou reservoir
area and along the Han River and the Dan River.

In the water source area of the MR-SNWDP, many governmental policies have been enacted,
including the Grain for Green Project in 2001 [37,38], Natural Forest Protection in 2000 [39,40], and
the “Danjiangkou reservoir and upstream water pollution control and soil and water conservation
planning” launched by the State Council in 2006. With the construction of the MR-SNWDP in 2003, the
Danjiangkou reservoir dam height increased from the original 162 m to 176.6 m in 2010 [41]. Ecological
migration started with the Grain for Green Project, and policy migration has occurred since 2009 and
was completed in 2015, which involved approximately 345,000 people in 6 counties, 40 towns, and 441
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villages. Among these people, nearly two-thirds of the immigrants needed to be relocated to 16 new
towns [42].
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Project (MR-SNWDP) and field sample sites, in 2015.

2.2. Land Cover Classification

We selected HJ-1A/B (HJ) images from May to October in 2000, Landsat TM (TM) images from June
to August in 2010 and 2015, as well as a digital elevation model (DEM) from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) with a resolution of 30 m. Geometric corrections
were conducted in ERDAS IMAGINE 2010 with a root mean square of <1 pixel in the flat areas and <2
pixels in the mountain areas [43]. The classification system, which included forest, shrub, grassland,
wetlands, cropland, settlements, and other land types was based on the Land Cover Classification
System (LCCS) of the Food and Agriculture Organization of the United Nations (FAO) and considered
the characteristics of the study area [44]. An object-based approach was implemented in eCognition 8.0
software and, then, a hierarchical classification was built based on the geometric and texture features
of the segmentation objects and several indexes, such as the normalized difference vegetation index,
the normalized difference water index, the difference vegetation index, and the ratio vegetation index.
In addition, the features of the field samples and empirical classification knowledge were also used as
the classification rule set. All of the above methods referred to the ChinaCover classification [45].

Field samples were collected for validation. In 2015, 186 field samples were collected by stratified
random sampling (Figure 1). The samples from 2010 and 2000 were selected from Worldview-2 and
Google Earth, respectively. The overall accuracy and kappa statistics were adopted for accuracy
assessment [46].

2.3. Quantification of Human Activity Intensity

On the basis of the definitions expressed in the HAILS index, different land cover types reflect
the various extent of human activities regarding the use, modification, and exploitation of the natural
terrestrial surface. Settlement is used as the basic unit, and it is considered the land cover type with
the greatest degree of exploitation. The construction land equivalent (CLE) is defined as a basic unit
of the equivalent areas of different land cover types. In addition, the conversion index (CI) is the
transfer coefficient between the land cover area and its CLE. Table 1 shows the CI value for 7 land
cover classes [26]. The HAILS index is defined as follows:

HAILS =
SCLE

S
× 100%, (1)

SCLE =
n∑

i=1

(SLi ×CIi), (2)
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where SCLE is the area of CLE, S is the total area, SLi is the land cover area, CIi is the transfer coefficient,
and n is the class number of the land cover. The units of SCLE, S, and SLi only need to be unified with
no limit, and the HAILS index is a ratio.

Table 1. Conversion index of the construction land equivalent of different land cover types.

Level I Class Criteria CI

Forest natural/semi natural vegetation and artificial vegetation, H1 = 3–30 m, C1 > 20% 0
Shrub natural/semi natural vegetation and artificial vegetation, H = 0.3–5 m, C > 20% 0

Grassland natural/semi natural vegetation and artificial vegetation, H = 0.03–3 m, C > 4%, water
saturation in soil, K1 > 0.9 0.067

Wetland natural/artificial water, stationary/flowing 0.6
Cropland artificial vegetation, soil disturbance, crop, harvested 0.2
Settlement artificial bare surface, settlement, production and services, linear feature, Mining field 1
Other land Non vegetation, bare rock and soil, C <4% 0

1 C is the fractional vegetation cover (%); H is the vegetation height (m); K is the moisture index for grass: K =
r/(0.1Ta), where r is the annual rainfall; and Ta is the accumulated daily surface temperature > 0.

2.4. Spatial and Statistical Analysis Methods

In this study, we calculated the HAILS values in 1.5 km by 1.5 km grids based on the land cover
data and divided the data into four levels (<2%, 2%–10%, 10%–20%, and >20%). The scale is relatively
coarse to match the resolution of the land cover data (30 m), thus making the unit spatial area more
homogeneous; however, the scale is finer than that of the population estimates, which may reduce the
accuracy of the HAILS index estimation. To balance these issues, 1.5 km by 1.5 km grids might be
appropriate, although this size was not rigorously tested in the present study. To analyze the risk of
human activities along the flow length distance to the water body, we also divided the study area into
200 buffer belts and classified it into four zones (the riparian zone, valley slope zone, back slope zone,
and ridge zone) according to the hydrological path model [47].

We collected data on the agricultural and urban population, population density, gross domestic
product (GDP), and production of primary, secondary, and tertiary industry from the yearbooks in the
National Library of China, and 47 counties were included in the water source area of the MR-SNWDP
in 2010. To assess the relationship between the HAILS index and the above statistical data, Pearson
correlations and a multiple regression model were applied [48,49]. In addition, we also calculated the
HAILS index in county units to match the statistical data of 47 counties.

The Shiyan District, where the Danjiangkou reservoir is located, was chosen as an example for
analyzing the relationship between the HAILS and chemical fertilizer. The amount of utilized chemical
fertilizers, including phosphate and nitrogen fertilizer, was collected from the yearbooks from 1998 to
2007. Based on the fertilizer data, we used the linear regressive equation to predict the fertilizer usage
trend [41,50,51].

3. Results

3.1. Land Cover

The land cover changes can be summarized as a continuous decrease in cropland, shrub, grassland,
and other land and a significant increase in forest, wetland, and settlement, from 2000 to 2015 (Figure 2).
Forest is the main land cover type in the study area. From 2000 to 2010, the area increased by 12,853.2
km2, whereas from 2010 to 2015, it showed a slight decrease of approximately 129.9 km2. Cropland
showed a considerable reduction of 3966.2 km2 from 14,529.2 km2 in 2000 to 10,563.0 km2 in 2010 and
then decreased slowly to 10,196.7 km2 in 2015. Settlement increased continuously from 608.8 km2 in
2000 to 1077.5 km2 in 2015. Wetland approximately doubled from 1092.9 km2 in 2000 to 2118.9 km2

in 2015. Other land, shrub, and grassland all showed significant reductions from 2000 to 2010 and
changed slightly from 2010 to 2015. The area of other land types decreased obviously from 293.3 km2

in 2000 to 74.4 km2 in 2010 and then increased to 74.6 km2 in 2015. Shrub reduced considerably by 6503



Sustainability 2019, 11, 5670 5 of 13

km2 from 2000 to 2010 and increased slightly by 51.5 km2 from 2010 to 2015. Grassland decreased from
8884.9 km2 in 2000 to 5707.1 km2 in 2010, continually decreased to 5668.8 km2 in 2015 and showed a
slight reduction of 38.3 km2 from 2010 to 2015. The overall accuracies are 89.6% in 2000, 87.2% in 2010,
and 84.4% in 2015, whereas the kappa statistics (K) are 87.5% in 2000, 83.8% in 2010, and 80.7% in 2015
(Table 2).
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Figure 2. Land cover in 2000, 2010, and 2015.

Table 2. Accuracy of land cover in 2000, 2010, and 2015.

Types 2000 2010 2015

Samples UA (%) PA (%) Samples UA (%) PA (%) Samples UA (%) PA (%)

Forest 367 94.6 92.0 168 90.5 91.0 36 88.9 88.9
Shrub 211 83.4 85.4 94 83.0 83.0 15 73.3 73.3

Grassland 169 87.6 85.5 53 81.1 78.2 14 71.4 76.9
Wetlands 244 94.3 89.8 113 90.3 93.6 9 88.9 88.9
Cropland 277 89.9 92.6 27 88.9 80.0 11 81.8 81.8

Settlements 588 90.1 93.3 41 85.4 87.5 30 93.3 90.3
Other land 254 82.7 80.5 12 75.0 69.2 7 71.4 71.4

K 87.5 83.8 80.7

Overall accuracy (%) 89.6 87.2 84.4

UA, user accuracy and PA, producer accuracy.

3.2. Spatial Pattern of HAILS

In general, the spatial pattern of the HAILS featured high values along the river valley, plains,
and hilly areas with gentle landforms in the east and south but low values in the steep mountainous
areas. From 2000 to 2015, the HAILS decreased within an area of 60,230.25 km2, which accounted for
63.7% of the whole study area, however, the index dramatically increased with the highest increment
of 78.4% in the river valley along the tributary of the Han River, as well as in the neighbouring zone of
the Danjiangkou reservoir, where the water transfer channel begins (Figure 3).
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Figure 3. Spatial pattern and changes of the human activity intensity of land surface (HAILS) from
2000 to 2015.

We classified the HAILS into four levels (Table 3). When the HAILS is below 2%, the human
activity can be ignored, and the area in this level expanded from 45,291.6 km2 to 50,599.0 km2. For
the level when the HAILS is between 2% and 10%, the area decreased by 2928.1 km2, and the mean
HAILS also decreased from 4.9% to 4.7%. For the level when the HAILS is from 10% to 20%, the area
decreased significantly from 10,875.6 km2 in 2000 to 6988.9 km2 in 2010 but increased by 121.6 km2

from 2010 to 2015. For the level when HAILS is above 20%, the area showed an increasing trend from
2000 to 2015 at a rate of 30.8%, and the mean of the HAILS reached 36.1% in 2015.

Table 3. Grading analysis of HAILS values from 2000 to 2015.

HAILS
<2% 2%–10% 10%–20% >20%

Mean
(%)

Area
(km2)

Mean
(%)

Area
(km2)

Mean
(%)

Area
(km2)

Mean
(%)

Area
(km2)

2000 0.6 45,291.6 4.9 34,000.0 14.4 10,875.6 29.1 4353.5
2010 0.5 50,362.6 4.7 32,233.3 13.9 6988.9 34.4 4928.8
2015 0.5 50,599.0 4.7 31,071.9 13.9 7110.5 36.1 5696.3

3.3. HAILS Variation among Flow-Length Belts

On the basis of the flow-length distance, the following four regions were identified according to
the changes of HAILS: The riparian zone (0 to 20 km), valley slope zone (20 to 40 km), back slope zone
(40 to 70 km), and ridge zone (70 to 80 km) (Figure 4).
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Figure 4. HAILS values in 200 belts divided by the flow-length distance in 2000, 2010, and 2015.

Variations in the HAILS in the four regions indicate different human activity levels from 2000 to
2015. In the riparian zone, the HAILS is between 11% and 2.5% and shows a decreasing trend with
distance in 2000, 2010, and 2015. From 2000 to 2010, the HAILS decreased obviously, with the largest
decrement of 0.96%, however, from 2010 to 2015, the HAILS increased particularly before 7 km, with
an increment from 0.68% to 0.05%. In the valley slope zone, the HAILS showed a slight fluctuation
between 1.5% and 2.8%. From 2000 to 2010, the HAILS decreased slightly, with the largest decrement
of 0.35%. There seems to be no change from 2010 to 2015, and the largest variation of the HAILS is only
0.08%. The HAILS had apparent fluctuations and decreased slowly, in the back slope zone. An obvious
decreasing gap of 1.37% is observed at 51 km from 2000 to 2010, and no changes are observed from
2010 to 2015, except within 48 km to 50 km. In the ridge zone, the HAILS fluctuated heavily. From 2000
to 2010, the HAILS decreased within 70 to 76 km but increased unusually at approximately 0.6% within
76 to 78 km. From 2010 to 2015, the HAILS values all increased, with the lowest increment of 0.02%.

3.4. Relationship between the HAILS and Human Activity

The results of the Pearson correlations show that the seven statistical parameters all had significant
correlations with the HAILS (Table 4). The correlation coefficient is the highest between the HAILS
and the population density (0.937), which suggests that the HAILS index can generally describe the
spatial distribution of the population, production ability, and economic effectiveness. The correlation
coefficient of the agricultural population is much higher than that of the urban population, indicating
that the HAILS could reflect more details about agricultural activities. Among the three types of
industries, primary industry showed the highest correlation coefficient, followed by secondary and
tertiary industries.



Sustainability 2019, 11, 5670 8 of 13

Table 4. Relationship between the HAILS index and statistical data.

HAILS Population
Density

Agricultural
Population

Urban
Population GDP Primary

Industry
Secondary
Industry

Tertiary
Industry

Pearson correlation coefficients 0.937 *** 0.850 *** 0.584 *** 0.765 *** 0.820 *** 0.761 *** 0.619 ***
Multiple regression model

coefficients 0.673 *** 0.061 ** 0.024 * −0.348 * 0.188 * 0.363 *** 0.126

VIF 4.801 7.436 4.671 18.411 8.023 6.078 3.130

* p is significant at 10% significance level, ** p is significant at 5% significance level, and *** p is significant at 1%
significance level.

Considering the potential multicollinearity problems, we estimated the variance inflation factor
(VIF) using a multiple regression model (R2 = 0.924) (Table 4). The results show that the VIF of the GDP
is larger than 10, indicating that the GDP has a strong correlation among the six examined statistical
parameters [52].

The results of the statistical analysis of phosphate and nitrogen fertilizer are shown in Figure 5.
The linear regressive equation showed a positive tendency rate of both phosphate (297.1) and nitrogen
(1169.8), which indicated an increasing upward trend. The HAILS values for the Shiyan District are
shown in Table 5. From 2000 to 2010, HAILS values below 20% showed a decreasing trend, while high
values (>20%) showed an obvious increase, which is associated with the use of chemical fertilizer.
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Table 5. Grading analysis of the HAILS in the Shiyan District.

Mean HAILS (%) <2% 2%–10% 10%–20% >20%

2000 0.8 5.1 14.4 29.1
2010 0.5 4.9 13.8 36.5

4. Discussion

4.1. Effectiveness of HAILS

Primary industry refers to agriculture and animal husbandry [53]; secondary industry includes
mining, manufacturing, energy supply, as well as construction [54]; and tertiary industry involves
transportation, warehousing, postal services, information transmission, and other service aspects [55].
According to the definition in the HAILS index, construction and agricultural land accounted for the
greatest proportion in the calculations. Primary and secondary industry can significantly affect natural
properties via reclaiming, cultivating, fertilizing, and building on artificial surfaces. These actions
modify and even exploit the original natural environment, whereas vegetation land surfaces are only
utilized without changes to their natural properties, as is the case with grassland and forest. Thus, the
HAILS index better describes human activities associated with agricultural and construction land.

Previous studies have found that human activity is a key factor affecting water quality [56–58].
The main human activities that impact the water quality include agricultural and urban activities,
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which consider the sewage generated in urban areas and the use of fertilizers, especially on cultivated
land along rivers [59]. In the study area, agricultural nonpoint pollution was an important factor
that affected the water quality [60]. From 2001 to 2005, agricultural activities caused significant water
pollution around the Danjiangkou reservoir [61], and the water quality was still poor from 2011 to
2015, which was affected by both agricultural and urban activities [62]. In the Shiyan District, as the
cropland area was decreased by construction activities [63], the increased use of chemical fertilizer
resulted in an increase of pollutants per arable land unit, and these pollutants might be transported
in the surface runoff and cause subsequent water pollution [64]. The HAILS index showed the same
increasing trend from 2000 to 2010, as well. Therefore, the HAILS index can reflect the influence on the
water quality indirectly.

The four levels of HAILS statistical data and four zones classified by the flow-length distance are
suitable for human activity analyses in this study area, which has a northern subtropical monsoon
climate, however, in regions with a single land cover type and different climate environments, the
use of the HAILS index for human activity assessments would probably be restricted. A quantitative
estimation of human activity still needs to combine more statistics on the ground conditions obtained
via remote sensing data to clearly illustrate the relationship between the output of human production
and the pollution input from human activities.

4.2. Impacts of Human Activity

This study reveals multiple changes of human activities in the water source area of the MR-SNWDP.
These changes are mainly caused by policy implementation, economic development, and topography.
The government started the Grain for Green Project in 1999 (GGP) and Natural Forest Protection
(NFP) in 2000 to relieve soil erosion and land desertification, limit the felling of trees, and rehabilitate
vegetation growing in the main natural forest areas [4,65,66]. After the construction of the MR-SNWDP
in 2003, local conservation policies, such as the Water Pollution Control, Soil, and Water Conservation
Plan, were implemented and focused on water conservation in the back slope zone, which is the most
suitable zone for cropping. In addition, the immigration plan started in 2010, with nearly 236 thousand
immigrants relocated to 16 new towns, which were almost all located in mountainous areas [67,68],
and therefore variations in the HAILS in the back slope zone show that human activity obviously
decreased due to cutting back the poverty introduced by emigrating people, in the steep mountainous
regions [69].

The Western Development Plan implemented in 2000 and the Rise of Central China Plan
implemented in 2004 improved the regional economy and employed an incentive-based approach with
payments. The economic improvements and increased population promoted the demand for food,
housing, working, industrial buildings, and transportation facilities [70], which resulted in the increase
of the HAILS index in the riparian zones and neighbouring reservoir areas. In addition, these changes
resulted in the immigration of a high percentage of the agricultural population in mountain regions to
cities and counties. In the back slope zone, movement of the agricultural population, subsequently,
influenced the populations’ livelihoods and attitudes towards the environment, which promoted
ecosystem recovery and resulted in a decrease of the HAILS [37].

Due to topographic limitations, the valley slope zone is unsuitable for cultivation and is on a
restoration track, which has resulted in continuous decreases of human activity over the past 15 years.
The ridge zone is heavily influenced by the tourism industry. In Zhashui County of the Shangluo
District, new roads, resorts, pagodas, and other buildings were constructed over a period of five
years [71]. However, the ridge zone accounts for a small area and is far away from water resources,
and the sensitive and fragile nature of the ecological system makes it difficult for the area to recover
once damaged.
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5. Conclusions

Within 15 years, significant changes have occurred according to variations in the HAILS index.
The results indicate high values for the HAILS along river valleys, plains, and hilly areas that present
gentle landforms in the east and south but low values in the steep mountainous areas. From 2000 to
2015, the HAILS decreased across 63.7% of the study area but increased with the highest increment of
78.4% in the river valley along the tributary of the Han River and around the Danjiangkou reservoir.
When the HAILS was classified as above 20%, the area showed an increasing rate of 30.8%, and the
mean HAILS value reached 36.1% in 2015.

The variations of the HAILS in the four zones indicate that different management and development
practices are needed. On the basis of the flow length distance, the HAILS index in the valley slope
zone and back slope zone both decreased from 2000 to 2015. The valley slope zone is unsuitable
for cultivation due to topographic limitations and the back slope zone is usually well protected by
governmental policies, however, in the riparian zone, which is located close to water, the HAILS was
between 11% and 2.5%, and from 2010 to 2015, the HAILS values increased, particularly within 7 km,
and the increment was from 0.68% to 0.05%. Thus, the riparian zone can be considered a sensitive
region for water resource protection.

This study focused on the water source area of the MR-SNWDP, where water quality is the focus
of significant attention because the water from this area is delivered to North China. Variations in
the human activity intensity may affect the hydrological environment and diminish the water quality,
which is an effect that can be observed based on changes in the HAILS, especially in the riparian zone.
To further detect the relationship between human activity and hydrological environments, we plan to
try to collect water quality data from relevant departments. In addition, remote sensing techniques can
be broadly applied in ecological research. Therefore, methods of combining ecology parameters and
remote sensing techniques must be developed to improve assessments of variations in human activity
intensity and protect ecosystems.
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