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Abstract: The recent trend in the Internet of Things (IoT) is bringing innovations in almost every field
of science. IoT is mainly focused on the connectivity of things via the Internet. IoT’s integration tools
are developed based on the Do It Yourself (DIY) approach, as the general public lacks technical
skills. This paper presents a thermal comfort system based on tasks allocation mechanism in
smart homes. This paper designs and implements the tasks allocation mechanism based on virtual
objects composition for IoT applications. We provide user-friendly drag and drops panels for
the new IoT users to visualize both task composition and device virtualization. This paper also
designs tasks generation from microservices, tasks mapping, task scheduling, and tasks allocation
for thermal comfort applications in smart home. Microservices are functional units of services in
an IoT environment. Physical devices are registered, and their corresponding virtual objects are
initialized. Tasks are generated from the microservices and connected with the relevant virtual objects.
Afterward, they are scheduled and finally allocated on the physical IoT device. The task composition
toolbox is deployed on the cloud for users to access the application remotely. The performance of
the proposed architecture is evaluated using both real-time and simulated scenarios. Round trip
time (RTT), response time, task dropping and latency are used as the performance metrics. Results
indicate that even for worst-case scenarios, values of these metrics are negligible, which makes our
architecture significant, better and ideal for task allocation in IoT network.

Keywords: Internet of Things; Do-It-Yourself; IoT Applications; Task Level Management;
Microservices; Task allocation

1. Introduction

Services provided through the world wide web (WWW) serve as a medium for people to create,
innovate and share their work with others. The Internet enables the reuse of other’s work as a
cornerstone for smart and useful things creation. The Internet medium plays a vital role in the
realization of IoT [1]. The recent trend in the IoT is bringing innovations in almost every field of life [2].
Hardware boards are electronic modules; IoT users can combine these modules to develop their custom
IoT applications based on smarter things. Some of the most popular boards are Adafruit Flora [3],
Arduino [4], Intel Edison [5], and Raspberry Pi [6]. Most of the manufacturers of these boards provide
API and coding documentation for the programming languages supported by its environment; many
of these boards support programming languages such as Python and Java. Users with the necessary
skills of its supported languages can start creating IoT applications by customizing the existing code
for these boards.

In the IoT network sensors, actuators are the most used vital nodes; other important key nodes
are smart objects, RFID tags, and servers. These nodes can perform a minimal amount of tasks as they
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are different from each other in capabilities such as power consumption, residual energy, available
memory, and processing capacity [7]. In order to perform some given IoT application tasks, these
nodes must have capability of reconfiguring themselves and interoperate autonomously. Powerful
IoT applications require different IoT nodes to collaborate for performing a specific task; all of these
tasks performed by a node or more than one nodes brings to the most diverse applications. Examples
include IoT applications in smart house, Agriculture and Healthcare. Furthermore, technologies trends
showings that in future, more complex applications will be developed by integrating IoT and Artificial
intelligence, and other fields’ knowledge together. e.g., Machine to Machine (M2M) communication,
i.e., smart cars and smart vehicles sharing critical information such as traffic congestion and accident
locations to ambulances.

Human psychology has various drivers toward the DIY approach. Usability and Innovations
of today’s DIY architectures enable new users to do creative things in a simple, easy way. In the IoT
field, one of the motivations for applying DIY approaches is the advancement in development Kits
such as Arduino, Grove* and Raspberry Pi. Today’s IoT research is mainly focused on technologies
and research methodologies for enabling the connectivity of things to the Internet intelligently and
efficiently. These innovations and research in IoT, particularly in DIY architectures making the general
public involved in the extension of these technologies to other fields of science. Therefore, DIY
architecture and toolkits are essential for future IoT advancements. New users cannot understand
many important contents easily if architecture is not following usability and other ease of use matrices.
Hence, one of the goals of this research is to provide a solution to the task allocation problem using a
DIY approach focused on user usability and reliability factors.

In this paper, we propose a tasks allocation mechanism for thermal comfort in smart homes. The
process is based on task-based managemnt that includes from microservice analysis to task allocation
on physical devices. Microservices are used for the generation of Tasks in the IoT environment. These
generated tasks are directly associated with IoT resources such as sensors or actuators. A task is
associated with a device commonly known as task mapping [8]. Task scheduling is changing the
order of these pairs such that tasks that need to be executed first are executed first and vice versa.
Task allocation is the process of assigning a task to a physical device and allocating a time slot to the
task. Task deployment is the execution of tasks on the physical device at the allocated time. The IoT
orchestration architecture we propose provides effective task allocation on physical IoT devices full
filing basic requirements of the user and avoid the excess use of constrained resources.

The rest of the paper is structured as follows. Section 2 presents the related work, highlighting
the contribution to IoT integration architectures. In Section 3, the proposed methods for Task and
Virtual Objects Composition are discussed; Section 4 explains the design of the proposed architecture;
Implementation and results are discussed in Section 5. Performance analysis and significance of the
proposed architecture is discussed in Section 6; Section 7 concludes the research study and discusses
future work direction.

2. Related Work

The IoT vision is the connectivity of smart objects that can be deployed in any space to provide
services to people. In order for good user experience, users difficulties in the use of IoT tools must be
addressed.Some of the research focuses on the DIY approach for the development of user-friendly IoT
platforms; users learn visual programming-based techniques to develop their custom IoT applications.

Philips company is a brand of electronics, famous in the market for electronics products primarily
known for manufacturing appliances of daily use in the home. Philips Hue is an IoT management
platform For the connectivity of user’s home appliances to their IoT smart space [9]. The dashboard
considers usability and best user experience factors allowing connectivity of home appliances to
smart home IoT network in a natural way; users can also monitor the appliances remotely from
the IoT management platform. This platform only focuses on the realization of IoT; scalability, and
management issues are also not considered by this platform [10].
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The OPEL software is an IoT platform that supports simple and easy programming. The design
of this platform considers features of programming language which can enlarge the IoT ecosystem;
features examples are portability, extendibility, and high productivity. The platform should provide a
mechanism for secure application development by the use of high-level APIs provided by the platform.
Some of the functions provided by these APIs are device management and communication between
these devices. This platform also supports multiple IoT applications which means that users can install
multiple applications with diverse functions. The platform also supports the concurrent execution
of these applications, enabling a user to take advantage of using multiple services on a single device.
This software platform also enables the communication of IoT devices with host IoT devices; also the
host device will able to control the companion IoT device [11].

Glue.things a project developed on the core concept of device integration and real-time
communication utilizing some of the well-established open source technologies. This real-time
communication is made possible by using the web sockets’ most recent technologies, i.e., CoAP and
MQTT. The protocols are utilized on real-time mashups of the network data streams, which is finally
deployed in a distributed environment. The proposed system is a mechanism for the composition of
data streams from web services [12]. Glue.things provides a collaboration platform with JSON data
models, REST APIs and web sockets. Node-RED inspires the mashup interface.

Node-RED from IBM’s is a DIY approach based flow programming platform recently developed
and got popularity due to its browser-based powerful editor [13]. The goal of the developed was to
provide a programming tool for wiring hardware devices by reducing the coding effort and technicality
for developers. The node-red tool enables users to wire together hardware devices visualized in
graphical nodes form. The graphical nodes represent physical devices, web service, and software
platforms. The hardware devices wiring approach used by Node-RED is flow programming which will
even enable a new IoT user to participate in the awareness of IoT in other fields. Chris Simpkin et al. [14]
proposed mechanism to run workflows like Node-Red on Edge networks, for this purpose they
investigated to find out means of migration of Node-RED into a distributed execution environment.
The demonstration in this work shows the feasibility of such approaches, traffic congestion detection
workflow based on Node-RED is migrated into a decentralized execution environment.

Among the notable contribution in open-source toolkits for creating mainboard is Microsoft .NET
Gadgeteer [15], which use the combination of small electronic block approach for mainboard creation.
This open-source toolkit enables users to create electronic devices based on their own customization
needs; all they need is to combine small electronic blocks on circuitry for the creation of the mainboard.
A processor has embedded into the mainboard of Microsoft .NET Gadgeteer. Lucio Tommaso De Paolis
et al. used an open-source platform called Thingsboard for sensors data collection and analytics[16].
Thingboard provides mechanisms for data collection, processing the data, providing analytics based on
rule engine. The visualization module is embedded with more than 30 widgets to visualize a complete
IoT smart space.

Among the notable projects from Kickstarter [17] is SAM [18]. SAM does not need any expertise
in the field and can be exploited equally by new users as well as expert developers. The approach
used is combining electronics modules blocks, all these modules are wireless, which is a cornerstone
for innovation, creation, and designs. The mechanism followed by SAM is using the internet with a
combination of hardware and software to a project. The programming language used for SAM toolkit
is the python.

Mazzei et al.[19] further investigate how customizability will enable general mass involvement in
the creation of such products that can contribute to the IoT ecosystem. In literature, some other studies
used the same idea; In the case of Feki et al. research study [20], DIY approach is considered among
the most trending approach in the future for the development in the IoT field. Low-cost Systems on
Chip (SoC) based IoT development following the DIY approach is proposed by the research study of
Scott and Chin [21].
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Kefalakis et al. [22] presented an OpenIoT project based on the visual development paradigm.
These tools are visual development based Integrated Development Environment (IDE) for the
development of IoT application and manage its life cycle. A minimal programming approach is
used in the development of IoT applications based on semantic IoT architecture. Users model services
into graphs in a node-based user interface, which are then converted into SPARQL queries.

IoT applications development in the form of real-time data streams is provided by an IoT platform
called Super Stream Collider (SSC) [23]. This platform will enable everyone from new IoT users to
an expert to develop custom IoT applications. SSC web-based interface enables users to develop
applications for various IoT scenarios by combining linked streams and data sources to IoT resources.
For SSC support editor based SPARQL/CQELS query languages; the approach used is simple drag
and drop. The platform exploits cloud infrastructure for massive data acquisition, processing, and
spreading of the data.

IoT is now applicable in agriculture, how to bring innovations in agriculture using IoT is studied
in a field called digital agriculture. Recently DIY approach based IoT application was developed for
digital agriculture. Jayaraman et al. [24] discuss such digital agriculture applications which will make
naive users monitor the growth of the crop in a form, suggests and support the user with irrigation
decisions. They discuss a user interface called Phenonet, which is a zero-programming based novel
DIY architecture. The efficiency of this Open IoT platform is evaluated through Phenonet and other
several use cases.

In the examples of services for data feeds collection, Pachube [25] is a notable web-centric service.
Pachube store information related to various sensors devices and the data feeds provided by these
devices over some time. Pachube work on the idea of "triggers, it is capable of data integration,
processing, and visualization. The data arrival from hardware or software resources can be defined
as a trigger. The response to such trigger is forwarding of the data to particular URL based on rules
defined by Pachube, triggering some other relevant triggers. Pachube increases the creativity and
development by provides a medium for sharing the feeds triggered or integrated by one user can be
used by another user.

M. S. Khan et al. [26] presents a novel CoAP protocol based on DIY architecture. This toolkit
design services based on CoAP proxy. The CoAP proxy Communication with the server device is
done through CoAP proxy using socket connection. All the details are handled by improved service
composition toolkit. The toolkit visual interface enables a beginner user to compose IoT services. User
registers and combines virtual objects for physical devices through the drag and drops approach.

Shabir et al. [27] present a DIY based service designer with a zero-programming experience.
Node-RED inspires the concept of the research study, the functionalities provided by remote and CoAP
devices can be easily customized. Internet Engineering Task Force (IETF) [28] has standardized CoAP
is communication protocols for devices having scarce resources. The CoAP server is implemented
using the Intel Edison board. The platform was chosen due to growth in its acceptance day by day
in the DIY community all over the world. Visual service designers access the CoAP resources via
CoAP proxy shared by the CoAP server. The proxy implementation is based on the Californium [29]
framework in a programming language called a Java. For storing the configuration, they use a novel
approach based on the repository at the cloud. This cloud-based platform ensures the availability of
these configurations everywhere. The HTTP protocol is used to handle communication between real
devices and the DIY toolbox, whereas CoAP protocol is used to handle communication between the
DIY toolbox and cloud.

In literature, we found some AI-based Intelligent solutions for service composition in the IoT
environment. Some AI algorithms are used for virtual object management and naming these objects
and automatic service composition. An example of this is A framework for IoT objects based on IoT-IMS
platform where the naming and management of objects are done intelligently [30]. An intelligent
IoT-based project called IoT.est is an effort to support the exchange of information among distributed
and different IoT nodes, by the use of semantic technologies. IoT service is created using a testbed,
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and several use cases are used for validation purposes. IoT.est also not consider management and
scalability issues and only focus on the realization of IoT [31].

Tools which are Platform-As-A-Service (PAAS), and it does not provide ease of use to new users
are also discussed in the literature. Some of the platforms discussed by Vestergaard, L.S et al. [32] are
Dweet.IO [33], ThingWorx [34] and Particle.IO [35]. Closed source is one of the disadvantages of such
platforms. Other well known closed source IoT platforms are Google Cloud IoT [36] and AWS IoT
platform [37]. To the best of our knowledge, the paradigm of these tools is either desktop-based or
web-based. They say that if we can combine these paradigms and integrate it into IoT applications,
then more ideal IoT applications can be developed. We now present a summary of the well-known
architectures in Table 1. IoT platforms are summarized based on features, i.e., devices management,
integration API’s, open-source, support for Edge computing, data analytics and visualization.

Table 1. Summary of the existing work.

IoT Software
Platforms

Device Managements Integration Edge Computing Open Source Types of analytics Support for
Visualization

AWS IoT
platform [37] Yes REST API Yes No

Real-time analytics (Rules
Engine, Amazon Kinesis,

AWS Lambda)

Yes (AWS IoT
Dashboard)

IBM IoT Foundation
Device Cloud [13]

Yes REST API Yes No
Real-time analytics (IBM
IoT Real-Time Insights)

Yes (data
analysis and

edge data
analysis)

ThingWorx - MDM
IoT Platform [34]

Yes REST API Yes No

Predictive analytics
(ThingWorx Machine
Learning), Real-time

analytics (ParStream DB)

Yes (ThingWorx
SQUEAL)

Particle.IO [35] Yes REST API Yes No Yes (Rules Engine) Yes (Particle
Dashboard)

ThingsBoard [16] Yes
MQTT API
CoAP API
HTTP API

No (planning in future) Yes Yes (Rules Engine) Yes (30+
Widgets)

Google Cloud IoT [36] Yes Cloud IoT API Yes No Yes(BigQuery) Yes (Google
Data Studio)

Microsoft .NET Gadgeteer [15] Yes Gadgeteer SDK No Yes No Yes

3. Methods

In this section, we discuss the proposed methodology of Task allocation for thermal comfort in
smart homes. The proposed methodology consists of several steps. Users use the DIY application to
add the services they need. For instance, we add thermal comfort service name and its requirements
in detail as a case study for this work. The description is analyzed by the IoT server through natural
language processing libraries to split it into microservices. Microservices description is analyzed by
the microservice analyzer component for generating input tasks. Physical things are virtualized into
virtual objects through virtualization mechanism provided by Virtual Device Manager(VDM), VO-Task
Mapping Manager (TMM) mappes relevant tasks to relevant virtual objects. TMM loads tasks and
virtual objects to the mapping window and visualizes it through Graphical shapes. User maps a task
on a virtual object based on the suggestions; A line is dropped from tasks to virtual objects to establish
a connection. A mapping window generates mapping pairs of tasks and virtual objects based on these
connections.

Some of these tasks and virtual objects pairs are more important than others and should be
executed first than the others. The reordering of these pairs is done by VO-Task Scheduling Manager
(TSM). TSM has a scheduler component that receives the mapping pairs from TMM and reorders the
mapping pairs through scheduling algorithms of the TSM. Task Allocation Manager( TAM) handles
scheduling results and allocate tasks into physical device based on the virtual object information in
the scheduling results, i.e., id and URI of the virtual object, which virtualizes a physical device. TAM
passes the allocated time, device address and task message to deployer, which finally deploys the task
on a physical device at the allocated time. Figure 1 represents the proposed methodology.

Good IoT architecture can help develop a robust and scalable IoT solution. In this paper, we
propose a five-layered architecture for the design of IoT applications based on tasks composition
and virtual objects mechanisms. The proposed architecture is given in Figure 2. Each Layer has its
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functionality; the functional goal of all layers is to allocate tasks on virtual objects in an IoT environment
efficiently. Physical things Layer composed of physical devices, these devices can be actuators and
sensors. Examples of actuators can be categorized to pneumatic actuators, hydraulic actuators, electric
actuators, and thermal actuators, fan and LEDs are examples of actuators in IoT smart space. Examples
of sensors are a pressure sensor, humidity, proximity sensors, smoke sensors, gas and smoke sensors,
IR and temperature sensors.

Analyze Thermal 
Comfort Service 

Description

Thermal 
Comfort

Device 
Information

Input Task 

AdmissionVirtual Object Generation

Tasks 
Database

Virtual 
object 

Database

Mapping 
Database

Scheduling 
Database

Allocation 
Database

VO-Task Mapping

VO-Task Scheduling

Tasks Allocation

DIY 
Interface

Add

Users

Interact using

Figure 1. IoT Platform based on Tasks Allocation for Implementing Thermal Comfort System.

The Virtual Objects Layer represents the virtualization of physical layer things; these physical
devices are virtualized into virtual objects. VDM manages these virtual objects; virtual objects
management includes the registration of physical devices to IoT server registry, Creation of virtual
for the physical device and connectivity of physical devices to virtual objects. These virtual objects
are visualized through sensors and actuators icons on Google map. Each marker icon represents a
virtual object in the interactive map environment; the marker is placed on the latitude and longitude
of physical device location on the building or other places where the device is physically deployed.
Each virtual object performs specific actions and having certain properties representing attributes of
the physical device.

The Micros service layer is responsible for analyzing the description of services and splitting
these services into functional units based on the analysis results. A group of virtual objects provides
some of these services and hence, this layer performs the role of interconnection between Virtual
objects. The microservice composition manager(MSCM) module is responsible for the management
of this layer. MSCM is responsible for providing the user interface for services composition, services
analysis, and microservice generations. MSCM uses two approaches for Micro Services composition,
the first approach compose microservices directly from its associated sensors and actuators. The other
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approach for microservice composition uses logical objects such as proxy server and fuzzy system
between sensors and actuators virtual objects.

The tasks layer is responsible for the composition of tasks from the microservices; this layer
manages intuitive and easy to use interface for task composition based on the microservices description.
The architecture utilizes the IntelliSense approach to output Intellisense dialogues with tasks and
micro services suggestions generated from service at the time of service orchestration.

Physical things

ProcessesProcesses

Virtual objects Vo 1 Vo 2 Vo 5 Vo 6 vo nVo 3 Vo 4Virtual objects Vo 1 Vo 2 Vo 5 Vo 6 vo nVo 3 Vo 4

Tasks task 1 task 4 task ntask 3task 2Tasks task 1 task 4 task ntask 3task 2

Micro Services ms 1 ms 2 ms 3 ms 4 ms nms 5

Thing

Thing
Thing

Thing Thing Thing n

Process 1 Process 2 Process 4 Process nProcess 3

Figure 2. Task Composition Architecture based on Virtual Objects in IoT Environment.

Once tasks are composed in the tasks layers, these tasks are utilized by process layers for further
operation on these tasks. The process layer is responsible for the visual environment where tasks can
be mapped on virtual objects. Task Mapping is done manually through a drag and drop approach.
These mapped task results are utilized by a process created for task scheduling. The scheduling process
considers task attributes and scheduling algorithms to generate scheduling results. A process is created
for task allocation, which handles scheduling results and allocates tasks to the physical device in the
available time slot; finally, tasks are deployed on the physical devices.

4. Design

In this section, we discuss the design of the proposed system developed on the Task Composition
Architecture based on Virtual Objects in IoT Environment. We discuss the processes of the platform
on top of which thermal comfort mechanism is implemented. The first process is the analysis of
thermal comfort servic to generate tasks. Task Generation Manager (TGM) component of the system is
responsible for the initialization of TGM components for Services analysis to generate tasks, the design
of task generation from microservices is given in Figure 3. Natural Language Processing techniques,
i.e., tokenization, stemming, and lemmatization, are used to generate tasks from the description of the
microservices.The Part of Speech (POS) tagging technique is used to detect the verb, which helps in
deciding the type of the task. Once tasks are produced from the microservice description, the Task
manager is also responsible for the interface for displaying the generated tasks profile on the form and
filling out the form’s visual components.

Task Manager’s other responsibility is extracting the configuration profile from both the
information generated autonomously through NLP algorithms and from the form information filled by
the user. The parsed profile is converted to task data and stored in the task repository. The generated
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task data is passed to TMM, where it is loaded into a visual interface used for task mapping on virtual
objects.

Micro Service 2 Micro Service nMicro Services ……..

End

Micro Service 
analyzer

Task Repository

7.Passes tasks data to TMM 6. Persist Task data 

Fetch Tasks 
Data

Task Generation Manager (TGM) 

Service 
analyzer

1.Initialize TGM components

2. split services 
to functional units

4. generate  tokens

Extract  Configuration
Profile

Parse Profile Task working Data

5. convert data to tasks

 Task mapping 

Manager

3. analyze micro services

startstart

Figure 3. Task Generation from Services.

The second process is the virtualization of physical resources. VDM is the main module
responsible for it to form virtual objects (VO). The virtualization process is also visualized through
visual components by this module. VDM responsibilities include analyzing the supported protocols
on the devices, e.g., CoAP and metadata. VDM also analyzes supported methods and platforms that
provide the interface for adding, deletion and updating of the virtual objects. The virtual object is a
simulation of the physical device at the virtual IoT smart space. These virtual objects contains all the
attributes of the physical device with some extra attributes particular for the virtual IoT environment.
These virtual objects also simulate the behaviour of the physical device. Figure 4 represents the design
of the Device virtualization mechanism.

The third process is the association of tasks with virtual objects called task mapping in recent
studies [8]. Task Mapping Manager(TMM) is the design component responsible for the mapping
mechanism. Task Mapping Configuration Flow is shown in the Figure 5. TMM initializes the graphical
user interface and libraries needed for the mapping mechanism. The mapping mechanism is drag
and drop achieved through mapping libraries. TMM is connected to both task and virtual objects
repository. TMM fetches all virtual objects, tasks, and stores it in lists in the main memory. Task and
virtual object profiles are extracted and fed into the mapper submodule of TMM. The user uses a drag
and drop approach to select a task and map it on the relevant virtual object by dropping a line from
the task to a virtual object. TMM visualize the connection between tasks and virtual objects using a
graphical line from task to a virtual object. TMM saves the connections between virtual objects and
tasks to a database repository.
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Figure 4. Virtualization of Things.
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Figure 5. Task mapping Configuration Flow.
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The fourth process is the scheduling of the mapped pair in time. Scheduling Manager is
responsible for scheduling the Mapping Results on the physical devices. The Scheduling Manager
manages the whole flow of the information in the scheduling window. Scheduling Manager is
connected to Task Mapping Repository, Virtual Object Repository, and Task Repository.

Scheduling Manager first initializes the Scheduling window graphical user interface.
Task mapping results are then fetched from task Mapping repository. Task mapping results contain the
ID of a task, and a virtual object, based on these ID’s tasks and virtual objects are fetched from their
repositories. The design of the scheduling configuration is given in Figure 6. Once tasks and virtual
objects are loaded next step is the ordering of the tasks, the primary purpose of task scheduling is a
reordering of tasks for task allocation in IoT application.

Scheduler module fetches virtual object information and task profile and creates a scheduling
process using the scheduling algorithm. The scheduling process outputs the scheduling order, which is
reordering of the mapping pairs. Scheduling Manager saves these results into the scheduling repository
in the pairs format task id, virtual object id, scheduled time. Task Allocation Manager utilizes these
scheduling results for the allocation of tasks on the physical devices connected to the virtual objects.

Scheduling Manager

Initialize UI components

1.Initialize UI components

Task mapping repository

2.connect to TMM repository

 Virtual objects   
Repository

3.1.load VO’s info

Task Repository

3.2.load task profiles

Tasks list

3.4. Extracts tasks l ist

Tasks Profile

3.5.Extracts task profile

Virtual object info

3.3.Extracts information

Scheduler

Create process 
representation

Scheduling 
algorithm

Scheduling orderSave ordering
Scheduling 
repository

4.initialize process 5.apply algorithm

6.results7.save scheduling results locally8.sync scheduling results

Figure 6. Scheduling configuration Flow.

5. Implementation and Results

In this research, we developed two DIY based applications on the proposed architecture. One
application is desktop-based developed in .NET technology; the other is web-based developed in
python. Each of the application projects has two main components, one is the IoT server and the
other the DIY toolbox, Table 2 explains the IoT server technology stack, whereas Table 3 explains the
technology stack of the DIY toolbox. The IoT server is installed on Raspberry PI, all physical resources,
i.e., sensors and actuators, are connected with the IoT server. Arduino is used for the support of
sensors, i.e., MQ-2 sensor. A registry is maintained of the devices with its current status, the status of
the device can be connected, disconnected, available or busy. The implementation at the server side is
done through the Python programming language.
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Table 2. IoT server’s Tech stack.

Component Description

Operating System Fedora
Hardware Raspberry PI, Arduino
Memory 1 GB
Server Flask Webserver

Resources sensors and actuators
Programming language Python

Integrated Development Environment Vim

Flask, which is a python based framework popular due to the fact that it is widely used in the
industry and acceptable to the developers because it is a Model View Controller (MVC) paradigm. For
the experimental purpose of this study, different physical resources such as actuators and sensors are
used. Examples of actuators used are LEDs and fans, whereas among the sensors used are a hybrid
sensor called BME 280, at which three sensors are embedded, i.e., temperature, pressure, and humidity
sensors. Other sensors used as physical resources are particulate matter (PM2.5 and PM10) and Gas
sensor Co2.

Flask server-side application is responsible for the registration of these physical resources. This
server-side application identifies each physical resource by a unique identifier called URI for every
resource. To request these remote resources applications such as our DIY toolbox is accessed through
these URI by sending an HTTP request to the IoT server, the server give an HTTP response containing
JSON object which is then parsed by the DIY Toolbox.

Table 3. DIY based Task and Virtual Objects Composition toolbox Tech stack.

Component Description

Operating System Windows 10, 64 bits
CPU Intel i3-2120 CPU @3.30 GHz(4 CPUs)

Memory 16 Gigabyte
Programming Language C Sharp, Python

IDE Visual Studio 2019, Community Version
Libraries Mind Fusion Diagraming, GMap, MySQL, Ribbon, Json.NET

Persistence Json files in synch with cloud SQL for MySQL

The toolbox provides the graphical user interface to IoT application users where they can virtualize
the physical resources connected to their IT smart space. Based on the services needed by the users,
tasks are composed through DIY application and flask server. These tasks are mapped to virtual
objects based on the mapping mechanism explained in the design section. The DIY toolbox allocates
tasks on physical resources based on task scheduling results. The DIY toolbox provides all these
functionalities through simple dragging and dropping approach. In the future, we will focus on
developing intelligence to the toolbox for making the IntelliSense and suggestions to users more
efficiently. For the ease of the user, we will use natural language processing algorithms such as the one
used by the Alexa application.

Figure 7 represents the structure of the DIY applications developed for the evaluation of the
architecture client application in C Sharp which executes over the common language runtime, and the
web-based DIY application runs on python. The IoT server has handlers for HTTP requests from the
DIY toolbox and provides an HTTP response containing JSON objects to the toolbox. The IoT server
provides VDM component of the toolbox requests for virtualization of a physical device and devices
information. The response for virtualization requests contains device metadata and other attributes of
a physical device. Requests containing the analysis of services of the IoT environment are handled by
the service configuration manager(SCM) a module developed in python at the IoT server. The requests
are parsed by the request parser and responses are generated by the response manger.
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Figure 7. Task and Composition DIY toolbox layered architecture Structure.

5.1. Execution Flow

First, the services added for thermal comfort monitoring is analyzed and microservices are
generated. IoT resources are available to the users through IoT services. The user adds services
through the DIY application; Microservices are generated autonomously from services description.
Natural Language Processing POS technique is used to identify conjunction in the description of the
service and the Bigram model is used for Semantic Analysis. Python’s NLTK library is used for the
tokenization and POS tagging. For the Bigram model python, ngram library is used. Figure 8 represent
the implementation results of services and microservices. Section (a) of Figure 8 visualize the services
composed manually by the user through the DIY application Interface. Section (b) of Figure 8 shows
the microservices results generated based on the description of the service through Natural Language
Processing techniques.

Each service and microservices having a context menu which can be open by right-clicking
on the service or microservice. The context menu contains a command for creating new services.
Delete command can be used to delete a service or microservice, and View command can be used to
display a property window where description and various attributes of services and microservices are
visualized through graphical user interface. A service named ‘Monitoring Thermal comfort’ are used
to generate two microservices, namely, Monitoring Thermal comfort results and analysis of Thermal
comfort conditions. For better visualization, if the microservice title is long, a short title is generated
by abbreviating the verb tokens.
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(a) Services (b) Micro Services

Figure 8. Service and Micro Services Generation.

Once microservices are generated, they are analyzed to generate tasks. Task generation from
microservices is visualized in the Figure 9. The figure shows task suggestions based on the
microservices description analysis by the DIY Application. Users can either ignore the task suggestions
by clicking the cancel command button or utilizing the suggestion by pressing the Add Task command
button. The task information is then used by the Task Manager module to fill the window form for
adding a task profile. The user fills the rest of the information or modifies the task title, and then
saves the task by clicking the add command button. If the user wants to cancel the task profile adding
operation, the user has to click the close command button.

Figure 9. Task Generation from Services.

The task profile is then added to the local database table developed in MySQL in our case, but any
database server can be used. The task profile is finally added to the cloud-based MySQL database. Each
task is fed to the Task Mapping Manager which is responsible for visualization in the mapping window.
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Each task is having a context menu, from which various operations on the task can be performed.
Tasks can be added, deleted and previewed in the graphical user interface of the DIY Application.

The next process is device virtualization. As already discussed in the design section, VDM is the
main module responsible for the whole virtualization process of physical things into Virtual objects.
The device virtualization process is also visualized through an interactive map environment based
on the GMAP.NET library. A Virtual object is represented through a map marker using a visual icon
of the physical thing. For example, Figure 10a represents the Interactive map with three physical
things virtualized. Two temperature sensors are visualized through a temperature icon image. LED
Actuator is visualized through Red LED icon image. Each virtual object is having an options window
from where properties of the virtual object can be previewed. Figure 10b is showing the options
menu which contains commands button for opening windows of task mapping, task scheduling, task
allocation, and Task deployment. Each of these windows contains mapping, scheduling, allocation,
and deployment modules.

Physical things which are registered and currently connected to IoT server are visualized on the
map at a location based on latitude and longitude address of the physical device. The virtual objects
configuration is stored in the form of JSON docs temporarily which is then stored to MySQL database
at a local server and finally synced to the cloud-based MySQL database.

(a) Map with Virtual objects (b) Virtual objects option Menu

Figure 10. Device Virtualization and Visualization on Map.

After the virtualization of physical things and Task generation, the next step is the mapping
mechanism. The Mapping mechanism from the implementation perspective is presented in Figure 11.
The virtualization module extracts all the available virtual objects from the virtual objects repository
and feeds the virtual objects to the mapping module. The task manager extracts the candidate tasks
from the task repository and feeds them to the mapping module. In the figure, Virtual objects are
visualized at the left side of the mapping window as rounded cornered rectangles, whereas tasks are
visualized at the right side of the mapping window as circle shapes. A window interface utilizing
Mind Fusion diagramming library enables the user to do a simple drag and drop operation of mapping.
A line is dragged from the task and dropped at the virtual object establishing a connection between
the virtual object and task. Once the connection is made, the Generated Mapping results are saved
into it the mapping repository. Mapping repository is a relational table of MySQL database at the local
server and cloud MySQL. One mapping connection is stored as one record of the mapping repository
table at the MySQL database. The mapper repository stores the id of participating tasks and the id of
virtual objects and the mapping time as a single row. In the figure ‘Mapped Task’ relational table is the
repository where the results of the mapped tasks are stored.
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Figure 11. Task mapping from Implementation Perspective.

After task mapping, the next step is task scheduling. As discussed earlier, mapping results are
pairs of tasks and virtual objects, i.e., { task id, vo id, mapped time }. In the context of this research
study, Task scheduling is referred to the ordering of these mapping pairs to minimize the network
latency. So Task scheduling changes the order of mapping pairs such that more important tasks are
allocated on the devices first, the importance of tasks is calculated from various task attributes through
scheduling algorithms. We used the concept of traditional scheduling algorithms for the ordering of
the tasks. The scheduling window is embedded with these algorithms and user select algorithms for
the ordering of tasks. The ordered tasks are visualized through table and grant chart. Table 4 lists task
attributes considered by the scheduler for reordering the tasks.

Table 4. Task attributes important for task Scheduling.

Component Description

ID Identifier of a the task
Period The period for which the task is assigned to the physical device
VO ID ID of virtual device to which task is mapped

Deadline Deadline of the task
Arrival Arrival of the task
Priority Priority of the tasks in numbers

Execution The execution period the task

Figure 12 represents the task scheduling mechanism from an implementation perspective. Task
scheduling algorithms are used to produce optimal task orders based on the attributes of mapped tasks.
Algorithms we considered for scheduling are First Come, First served (FCFS), Shortest Task Execution
First (STEF), Shortest Task deadline Time (STDT), highest Priority Task First(HPTF) and priority-based
round-robin. The scheduling manager is responsible for fetching the task and virtual object profiles.
It also fetches mapping results of these tasks from the mapping module. The interface provided by
scheduling manger is used to choose an algorithm and preview the scheduling results on the table
and grant chart. Scheduling algorithms consider an attribute or group of attributes mentioned in
Table 3. For example, FCFS considers only the arrival attribute, whereas STDT considers the deadline
attribute only. Human inspection on the scheduling results is currently necessary. In the future, we are
considering an autonomous intelligent approach for task scheduling. Task scheduling manager saves
the generated results into local and cloud-based MySQL repository. The scheduling results are stored
in the scheduling repository, which is fed into the task allocation manager for allocation of the tasks on
physical devices.
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Figure 12. Task scheduling from the Implementation Perspective.

5.2. Execution of Tasks Allocation of Thermal Comfort System

Once all the processes is done by the platform, the actuall deployment happens which is the
real running of the service on IoT devices installed in smart homes. The task allocation manager is
responsible for the allocation of the task to correct physical devices based on the scheduling pairs.
The physical device is accessed through the URI attribute of the virtual object. As discussed earlier,
the Raspberry PI based IoT server keeps track of all the devices by maintaining the registry of the
connected devices. URI contains a device model and encoded Message, e.g., getTemp. This Message is
parsed and decoded by the IoT server to allocate the task on the physical device. Figure 13 shows the
implementation of the task allocation mechanism.

Task 
Allocation 
Manager

Scheduling 
Repository 1

2

`̀

Figure 13. Task allocation from Implementation Perspective.

The allocation results are stored into the allocation repository, storing the allocation results is
helpful for the deployment manager for the deployment of tasks on the physical devices. The repository
contains information at the format of task, physical device, allocated time, a background service is
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managed by the deployment manager to check the allocation repository continuously and deploy the
tasks on the physical devices at the allocated time.

5.3. Maintaining Thermal Comfort in Smart Homes: From Service Analysis to Tasks Allocation

In this section, a brief overview of maintaining Thermal Comfort in IoT smart space is presented
which summarized the use of the platform and the accomplishment of service goal. The IoT smart
space in this case study is the Mobile Computing lab, at Jeju National University. The example case
study has been illustrated in the light of the proposed architecture, signifying the strengths of the
proposed architecture. Table 5 describes the case study at service, microservice and task levels. Service
1 in the case study for the Thermal Comfort detection and Notification. This service is analyzed from
its description to split the service into functional units called microservices.

For Example, there are two microservices with Id’s 1.1 and 1.2 belonging to Service ID 1. There
are six tasks in Microservice with Id 1.1 and 2 tasks in Microservice with Id 1.2. For this case study,
Raspberry PI is used as an IoT server and a PC server for Data Staging between sensors and Cloud
SQL based MySQL. Sensors such as MQ-2 Gas is connected to Arduino ESP 8266 board because
these sensors belong to analog sensors family and connecting to Raspberry PI would require another
hardware such as digital to analog which will add a further overhead and cost on the overall system.
The resources we use are shown in the experimental setup shown in Figure 14. From the Experimental
setup, it can be understood that The PC Server is responsible for accumulating all the data from Http
client and IoT servers. All sensors are either connected to the Http client or the IoT server installed
on Raspberry PI. The PC server syncs the data with Cloud SQL for MySQL and deploys tasks on the
physical devices either through the HTTP client or through the IoT server.

NOVA Dust Sensor SDS011
(PM 2.5,PM 10)

IoT Server

PM2.5, PM 10

<Temperature,Humidity,Pressure>

HTTP ClientGas Sensor CO2

CO2

Data Staging (PC Server) RESTFul API

Arduino
 ESP 8266 board 

Lighter

Cloud SQL for 
MySQL

upload

Raspberry PIRaspberry PI

download

MQ-2 GAS 
Sensor

BME 280
(Pressure, Temperature, 

Humidity)

Figure 14. Embedded Hardware for Implementation of Maintaining Thermal Comfort Case Study.
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Table 5. Service, Micro service and Tasks Description of Maintaining Thermal Comfort Case Study.

Type Service
ID

Service Name Service Description

Service 1 Monitoring Thermal comfort
Monitoring results and analysis of thermal comfort conditions in experimental buildings for different
heating systems and ventilation regimes during heating and cooling seasons different heating systems and
ventilation regimes

Service Service
ID

Micro
Service ID

Micro Service
Name

Host Edge Type Number
of Tasks

Micro Service 1 1.1
Monitoring

comfort results
PC Raspberry Urgent 6

1 1.2
analysis of

thermal comfort
conditions

PC Raspberry Urgent 2

Tasks
Meta Data

Service
ID

Micro
Service

ID
Task ID Task Description Type Task Title Targeted

Resource

Tasks 1 1.1 1.1.1 Get & send temp
data

periodic Get Temp data BME 280
Sensor

1.1.2 Receive temp data Periodic Receive Temp
data

BME 280
Sensor

1.1.3 Get and send
hum data

Periodic Get hum data BME 280
Sensor

1.1.4 Receive Hum
data

Periodic Receive hum data BME 280
Sensor

1.1.5
Get and Send

CO2 data
Periodic Get Wind data MQ-2 Gas

Sensor

1.1.6 Receive wind
data

Periodic Receive Wind data MQ-2 Gas
Sensor

Tasks 1.2 1.2.1
Detect thermal comfort

State based on temp,
& hum

periodic
Compute Thermal

comfort intensity (TCI) IOT Server

1.2.2 turn on fan, or turn
off fan

Event-Driven Predict fan state based
on TCI

Actuator
(Fan)

6. Performance Analysis

In this section, we present the performance analysis of the proposed architecture. The performance
of the proposed architecture is evaluated using a round-trip time (RTT), Response Time, Latency and
Task Dropping rate metrics. The RTT in our scenarios is the total time the system takes from task
generation till task execution and physical device response back to the DIY application. The DIY
application developed based on the proposed architecture maintain logs for each task from its
generation until its execution. A log contains information such as task id, target device, deployment
status and execution time. For Performance analysis, we calculated the RTT metric by deploying tasks
mentioned in Table 5 via the toolbox.

Figure 15. Round Trip Time based Performance Analysis of the proposed Architecture.
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Deployment is made based on different task parameters, i.e., execution time, period, arrival time
and priority. We deployed these twelve tasks eight times and recorded the total times each task took
from task generation to task execution and response back to the application. From 8 observations of
each task, we then calculated min, max and Average RTT, which is shown in Figure 15.The RTT is
measured in milliseconds, results show that the minimum RTT is 5 ms in the case of the event-driven
tasks, for example, task ‘Notify Via Alarm’ and task ‘Notify Via LED’. The maximum RTT is observed
for a task is 92 ms which is also minimum and bearable delay for the execution of task which needs
input data from other tasks for its complete execution.

Figure 16. Round Trip Time Analysis for different Task load.

The average RTT for all the tasks executed is 27.75 ms which shows that architecture strength for
implementing the architecture in real-time scenarios such as fire safety and road safety. We consider the
RTT of Tasks load is the second performance analysis metric. For the RTT of Task load, we simulated 60
tasks in the Apache JMeter load testing tool and analyzed the performance irrespective of the load, RTT
of the simulation results are in the order of a few seconds. Figure 16 illustrates the simulation analysis
visually through the Line chart. Various tasks load from 4 tasks to 60 tasks were taken for the load
testing of the DIY Toolbox. RTT of tasks is directly proportional to the number of tasks, i.e., increasing
the number of task loads will increase the RTT, but the average RTT increase is negligible. For instance,
for 30 tasks, the minimum RTT observed is 22 ms, the maximum RTT for 30 tasks observed is 29 ms,
and the average time for 30 tasks is 24.909 ms. A case study of thermal comfort can be utilized in 12
tasks. The architecture can be utilized for more complex case studies in the IoT environment.

The third metric on which we evaluate the proposed architecture is the response time over time.
Figure 17 shows the response time over time analysis of both periodic sensing tasks and event driven
tasks.The response time is calculated in Milliseconds for both periodic sensing tasks and event-driven
tasks. The maximum and minimum response time for a periodic sensing task is 28.6 ms and 15 ms.
Compare to periodic sensing tasks maximum and minimum response time for event-driven tasks are
18.8 ms and 5 ms. As discussed in earlier sections that the sensing tasks sense ambient scenarios and
based on contextual data generated, irregular patterns are predicted. Based on these prediction control
tasks are activated, which can be executed with a variety of actuators. Having said that, the control
tasks, which are event-driven tasks, are of the highest possible priority. The experiments carried out in
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this section affirms that the proposed architecture always give more priority to event-driven tasks, and
this can be witnessed by the lower response time in comparison with sensing tasks.
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Figure 17. Response Time over Time.

The fourth metric we consider for the performance evaluation is the stability of the architecture in
peak load time. Task dropping rate quantitatively accounts for the stability of the system. The lesser
number of tasks dropped in peak load time; the more stable will be the system. For this, we carried
out the task dropping analysis of the proposed architecture. Figure 18 shows that as the number of
input tasks increases, task dropping increases. The minimum task dropping rate is 0 for 26 tasks, and
maximum task dropping rate is 14 for 600 tasks. It is evident from the rate of increase, although the
number of tasks increases but the rate of the dropping is very steady. Even for 600 tasks, only 27 tasks
are dropped, which in other words implies that the performance of the system is 97.7%.

Figure 18. Task Dropping Rate.
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Finally, we consider the latency of tasks deployment; for this purpose, we simulated various sets
of virtual users in Locust, an open-source load testing tool, for cross-domain requests from our Toolkit.
Figure 19 shows the latency of tasks deployment in the simulated environment. During testing, we
provided three sets of virtual users, 50 users, 300 users and 1000 users. Minimum latency for 50, 300
and 1000 users are 49 ms,71 ms, and 97 ms, respectively. Maximum latency of 50, 300 and 100 users are
358 ms, 455 ms and 830 ms, respectively. Finally, the average for 50, 300 and 1000 users are 238 ms,
327 ms and 432 ms.

50 Users, 238

300 Users, 327

1000 Users, 432

50 Users, 49

300 Users, 71

1000 Users, 97

50 Users, 358

300 Users, 455

1000 Users, 830

0 100 200 300 400 500 600 700 800 900

50 Users

300 Users

1000 Users

Latency (ms)

Max Min Average

Figure 19. Task Deployment Latency.

Comparison and Significance

To the best of the authors’ knowledge, Task Composition Architecture based on Virtual Objects
in IoT Environment is the first-ever attempt towards task allocations in the IoT environment using a
DIY approach. There are only a few user interfaces for IoT integration platforms such as Node-RED,
AWS IoT, NoFlo, ioBroker, CoAP prototype-based DIY interface for service customization of Remote
IoT devices. These user interfaces are the only integration platform for the internet of things and
do not provide any task level management. First and foremost, The DIY toolkit developed on the
proposed architecture is a complete solution addressing various aspects of task allocation in the IoT
environment. These aspects include device virtualization, microservices generation from services, task
generation from microservices, task mapping to virtual objects, task scheduling and task allocation
and deployment on the physical device. Table 6 provides a comparison of the proposed toolkit and the
related IoT integration platforms.

For the comparative analysis, we consider various parameters including, open-source, DIY
support, Remote Access, Configuration repository, offline access, cloud support, application type,
generic entity support, and task level management. One of the goodness of the proposed architecture
is the loosely coupled nature of the modules, making it very easy to maintain. The architecture is
well-suited for IoT applications that involve multi-devices and multi-tasks. The proposed architecture
is flexible, which means that different algorithms for mapping, scheduling and allocation could be
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introduced without a major revamp to the architecture. The freedom from hardware dependence,
task-level management and DIY nature of the integration platform for the internet of things makes our
solution a significant, better and ideal solution towards the realization of IoT network.

Table 6. Comparative analysis of proposed Architecture with state of art IoT platforms architectures.

S.No Name Open
Source

DIY
Support

Remote
Access

Configuration
Repository

Offline
Access

Cloud
Support

Application
Type

Generic
Entity

Support

Task Level
Management

Programming
Language

1 Dweet.IO [33] Yes No No JSON No No Middleware No No
Multi

language
Support

ine
2 Particle.IO [35] No No Yes XML No Yes Middleware Yes No Java

ine
4 Glue.thing [12] No Yes Yes JSON No No Web No No Node.js

ine
5 Node-red [13] Yes Partial Yes JSON No No web No No Node.js

ine

6 Super Stream
Collider [23]

No Partial Yes JSON/
PLSQL

No No Web No No JavaScript

ine

7 SAM [18] No Partial No XML Yes Yes Desktop No No
JavaScript/
Python

ine

8
Proposed
System Yes Yes Yes JSON Yes Yes Desktop/Web Yes Yes

Csharp.NET/
Python

7. Conclusions

In this paper, we proposed a novel approach towards the design and implementation of a task
composition toolbox based on virtual objects in the IoT environment. The proposed system allows
the user to perform task allocation on both local and remote physical IoT devices. DIY based toolbox
is developed based on usability factors, the intuitive user interface and zero coding approaches for
effective task allocation and visualization of all the modules processes make it a novel architecture. We
have made cloud services available for data storage. The data from the local server is synced and hence
ensures the data available to the user remotely. The DIY toolbox also provides real-time visualization
of the virtual objects and whole task allocation process at remote IoT devices. In the future, we will add
machine learning to automate task mapping to improve the capabilities of the composition toolbox.
Task scheduling can be improved by adding complex scheduling algorithms for real-time scenarios,
such as a Fair emergency first. The proposed work can also be improved by considering network
latencies and device paring for task allocation autonomously. For the ease of the user, we will use
natural language processing algorithms such as the one used by the Alexa application.
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