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Abstract: Physical intermediary firms, such as logistics firms, are the foundation of marketplace
platform ecosystems. This study introduces the case of a delivery crisis caused by the withdrawal of
major logistics firms from the Japanese marketplace platform. To address such a problem, this study
considers the application of an “ecosystem strategy”. We define an ecosystem strategy in this situation,
as “the strategy by which the platform owner cooperates with logistics firms to standardize logistics
services and provides a platform system to improve cooperation among them”. We constructed an
agent-based simulation system customized by a dataset of Japanese platform-based markets to test
the effectiveness of the proposed strategy. The results indicate that the introduction of the ecosystem
strategy postponed the start of the collapse. It also increased the number of platform users by roughly
1.10 times and increased the total profits of logistics firms about 1.22 times. Additionally, it removed
the trade-off relationship between platform users and the profits of logistics firms and allowed the
maximization of both. This study contributed to the research stream of platform ecosystems by
defining an ecosystem strategy, including physical intermediary firms, and verifying the effectiveness
of the strategy for ecosystem evolution and sustainability.

Keywords: platform-based market; platform ecosystem; marketplace platform; e-commerce; delivery
crisis; ecosystem strategy; service open innovation

1. Introduction

1.1. Marketplace Platforms and Physical Intermediary Firms

Marketplace platforms have developed extensively in recent years. In a marketplace platform
model such as Amazon.com, third-party sellers (and the platform owner) provide the products to be
sold on the platform, consumers buy the products via the platform website, and the platform arranges
for their delivery to the consumer [1]. Researchers have considered platform owners, third-party
complementors (product or service providers), and consumers as major actors [2–8]. However,
our focus is on firms that are physical intermediaries of products. In this study, such firms are
referred to as “physical intermediary firms”. Physical intermediary firms are significant actors in
platform-based markets where things are physically conveyed. For example, marketplace platforms
(e.g., Amazon.com) need logistics firms such as physical intermediary firms. Physical intermediary
firms are the foundation of marketplace platform ecosystems. Without them, the platform business
model could not be implemented. Furthermore, the quality of service that physical intermediary
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firms provide affects platform consumers. Accordingly, we deem physical intermediary firms to be as
important as third-party complementors are to platform-based markets. Table 1 shows an example of
physical intermediary firms on different types of platforms.

Table 1. Example of physical intermediary firms on different types of platforms.

Platform Type Example of
Platforms Complementors Intermediator

of Transactions Intermediator of Goods Interface with
Consumers

Hardware platform
Nintendo

Switch;
PlayStation 4

Software provider Retail shop Logistics firm Retail shop; Interface of
the platform

Application and/or
software download

platform

Google Play;
App Store;

PlayStation 4;

Software and/or
application

provider
Platform - (Internet supplier) Interface of the platform

Marketplace
platform Amazon.com Product provider Platform Logistics firm Logistics firms;

Interface of the platform

Service
intermediary

platform

Expedia,
Hotels.com Service provider Platform

Transporter
(for service customers)

Service provider;
Interface of the platform

Note. Actors that are in bold and underlined refer to physical intermediary firms.

1.2. Delivery Crisis in the Marketplace Platform Ecosystem

We have confirmed a tendency for platform owners to neglect physical intermediary firms. As an
example, we introduce the case of a “delivery crisis” that was caused by the withdrawal of a major
logistics firms from the Japanese marketplace platform. Major firms in Japan (Yamato Transport
Co., Ltd., Sagawa Express Co., Ltd., and Japan Post Holdings Co., Ltd.) have captured most of the
home-delivery market and the e-commerce delivery business, including platform-based markets [9].
However, the large volume of Amazon transactions exceeded the capacity of one of the three major
logistics firms, Sagawa, forcing it to subcontract logistics firms [10]. Amazon’s high requirement for
logistics firms and low prices nearly crippled Sagawa [10]. Finally, Sagawa ended the majority of its
partnership with Amazon in 2013 [10]. The remaining two major logistics firms (Yamato and Japan
Post) acquired these abandoned transactions [10]. However, the increasing volumes from Amazon
worsened the working environment in Yamato [11]. Subsequently, Amazon (and its consumers) agreed
to raise the delivery fees in 2016 [12]. However, ultimately, Yamato decided to withdraw a portion
of its Amazon delivery business (same-day delivery service) to improve its working conditions [13].
Amazon then covered this shortfall using minor logistics firms [14]. However, as these minor firms
could not provide the same quality of services as the major logistics firms, consumers began receiving
lower-quality services from the platform [14]. We consider that Amazon’s ecosystem became not to
exert previous values because of lower service quality and higher delivery fees. However, in the worst
case, if Amazon (or its consumers) had not accepted the increase in delivery fees, the ecosystem would
have collapsed after the larger scale of withdrawal of major logistics firms.

In spite of the importance of these firms, we also consider researchers of platform fields have
not focused on physical intermediary firms. We deem the reason might be because such works are
considered to be the domain of researchers focused on logistics management. Researchers started
to focus on matters concerning e-commerce delivery delays from about 1999. They studied the
optimization of delivery specifically for e-commerce endeavors [15]. Researchers suggested that
the traditional focus of such studies have been on the optimal placement of logistics centers and
warehouses, stock and distribution in logistics networks, and algorithms of delivery and routing [16].
Some researchers focused on the management of delivery prices according to delivery situations.
Ha, Li, and Ng [17] suggested that logistics firms acquire a sense of competitiveness due to the high
frequency of deliveries and such situations increase price competitions among other logistics firms.
Zhang, Gou, Yang, and Liang [18] investigated the pricing policies of e-commerce enterprises in
situations of service quality declines during busy seasons and suggested that long-term service quality
declines lead to lower product prices.
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We deem that these findings from previous research can be applied to physical intermediary
firms on marketplace platforms. However, the occurrence of the Japanese delivery crisis implies that
mere logistics management would face limitations in their capacity to handle increasing demand for
marketplace platforms. We believe that a new approach is needed with regard to ecosystem collapses
that are caused by physical intermediary firms in platform-based markets.

1.3. Research Question and Purpose

As a new approach, this study considers the application of an “ecosystem strategy” for enabling
physical intermediary firms to handle such problems. In the research field of management, researchers
have recently developed an ecosystem strategy [19] (p. 47) that defines the ecosystem by the “alignment
structure of the multilateral set of partners that needs to interact in order for a focal value proposition
to materialize”. Furthermore, it defines an ecosystem strategy as “the way in which a focal firm
approaches the alignment of partners and secures its role in a competitive ecosystem”. Applying this
strategy to the relationship between the platform owner and physical intermediary firms, we consider
that the platform owner approaches the alignment of physical intermediary firms. Although there are
several ways to secure its role, this study considers the sustainability of the ecosystem as a platform
owner by maintaining sustainable physical intermediary services. Therefore, the platform owner tries
to enhance the capacity of physical intermediary firms by improving their alignment relationship.
This can be another approach to the sustainability of a platform-based marketplace, instead of logistics
management [16–18].

Here, current researches on platforms have also focused on ecosystem perspectives and developed
the concept of “platform ecosystems” [1,7,20–22]. However, besides some studies (e.g., [1]), as far as we
know, no study has included physical intermediary firms as significant actors in platform ecosystems.
Therefore, this research gap provides our research question as follows:

RQ: In marketplace platform ecosystems, is ecosystem strategy approaching physical intermediary firms effective
for delivery crisis?

We define ecosystem strategy in this study as “the strategy with which the platform owner
approaches the alignment of physical intermediary firms to improve their capacity to maintain
sustainability of the ecosystem”. We will revise this definition with more precision for the hypothesis
testing in the subsequent section (especially in Section 2.2.2). Thus, the aim of this study is to test how
the application of an ecosystem strategy on physical intermediary firms can contribute to circumventing
the collapse of platform ecosystems as well as facilitating the evolution and sustainability of the
platform-based market. Since the phenomena of delivery crisis in our research question occurred in
the Japanese marketplace platform, this study investigates the Japanese platform-based marketplace.

This study developed an agent-based simulation system of a platform ecosystem. We customized
this system by a dataset related to Japanese marketplace platforms. From the simulation results, we
succeeded in computationally confirming the situation of the Japanese delivery crisis and the future
ecosystem collapse. Furthermore, we confirmed that the application of an ecosystem strategy for
physical intermediary firms is effective both in avoiding the collapse of platform ecosystems and in
improving the profits of actors within the ecosystem. Specifically, the platform owner could avoid such
a collapse with a smaller increase in additional delivery fees if the ecosystem strategy was applied. The
application of this strategy would also provide about 1.10 times the number of platform transactions
and about 1.22 times the profits of logistics firms.

The remainder of our paper is organized as follows. In Section 2, we review the related literature
and develop a research hypothesis. Additionally, we describe our methods, including the structure of
an agent-based simulation system and an explanation of the data analysis. Some detailed parts of the
methods are described in the Appendix A. In Section 3, we show the simulation results. In Section 4,
we discuss the implications of our study and make suggestions for future research. Finally, in Section 5,
we conclude this study.
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2. Materials and Methods

2.1. Literature Review

In this subsection, we review the related literature about platform ecosystems, its evolutional
mechanisms, and the methodology of agent-based simulation.

2.1.1. Platform Ecosystems

A recent major topic in platform research concerns platform ecosystems [20,21]. A platform
ecosystem is made up of systems or architectures that are supported by a collection of complementary
assets [21,23,24]. Among complementary asset providers, producers of complementary goods
for the platform are called the complementors [25]. A platform ecosystem can foster unlimited
innovation via the participation of various organizations that hold several management resources as
complementors [20]. It also leads consumers with various needs to adopt the platform [26].

The platform ecosystem has been extensively researched and various types of platforms have been
considered. For example, the video game market is a platform ecosystem. It consists of hardware as the
platform, software as a complementary good, software providers as complementors, and the consumers
who purchase the final products [2–8]. The focus of research on platform ecosystems varies among the
evolution of platform ecosystems and competition (and co-evolution) among platform ecosystems [2,3,
22,27,28], the growth mechanisms of complementors [26,29], the diversity of complementary goods
provided by complementors [30], the development of competition within a platform ecosystem [31],
intergenerational platform-technology transitions [32], integration among platform ecosystems [33],
intellectual property and the technology of platforms and complementors [34–38], governance of
ecosystems [39], heterogeneity in platform-based markets [40], and sustainability of ecosystems [41].
This study can be classified as a research stream of the evolution of platform ecosystems. We contribute
to the research stream by studying the perspective of physical intermediary firms.

2.1.2. Evolutional Mechanisms of Platform Ecosystems

One of the most significant mechanisms of platform ecosystems is the “indirect network effect” [42].
The indirect network effect signifies that in a two-sided market, as scale grows on one side, profit
increases on the other [43–46]. As this effect implies that complementors and consumers interact
with one other and the number of complementors and customers grow exponentially, the result
could be a winner-takes-all market where a single platform absorbs almost all complementors and
consumers [47–49].

Establishing an installed base is important in generating indirect network effects [2,3,50].
A platform with a smaller installed base with no specialized markets would face negative growth due to
the indirect network effect [48]. In addition, as superior complementary goods promote the total sales
of the platform [51], platform owners often offer attractive complementary goods themselves [5,52] or
encourage capable complementors to do so [53]. However, even if a platform achieves a large installed
base, lower volumes of complementary goods would cause its ecosystem to decline [54]. Accordingly,
the platform owners should pay attention not only to the profits of its consumers but also to the profit
of the complementors.

Therefore, researchers have suggested that the evolution of the platform ecosystem is driven
by the establishment of installed bases and the variety of complementary goods to provoke indirect
network effects. However, in the case of general product intermediary platforms, these natures
might be somewhat different. Consumers and third-party sellers can generally register on multiple
marketplace platforms. Unlike the case of video games or other hardware platforms, consumers on
marketplace platforms do not incur many expenses to start with; they can easily register themselves on
the platform website and access it. Some marketplace platforms do provide premium services (e.g.,
Amazon Prime). However, these services are for loyal customers of the platform. Additionally, as each
platform can easily be accessed through internet searches, there is almost no physical barrier to using
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multiple platforms. In the case of third-party sellers, the initial cost is low and typically only consists
of a platform usage fee. Therefore, platform owners must constantly offer benefits to consumers and
third-party sellers to maintain or increase the number of platform participants. An effective way of
doing this is by introducing a pricing scheme for usage fees and incentive settings. Therefore, we will
review previous studies of pricing on platform-based markets.

Studies on platform price-setting methods have been conducted mainly within the context of
two-sided markets. An early definition of a two-sided market (or multi-sided market) was “markets
in which one or several platforms enable interactions between end-users and try to get the two (or
multiple) sides ‘on board’ by appropriately charging each side” [45] (p. 645). Currently, the scope of
the two-sided market (or multi-sided market) has broadened to not only include end-users but also
various organizations [46]. As a price-setting strategy, Yoo, Choudhary, and Mukhopadhyay suggest
that higher platform fees should be imposed on those who can enjoy a more effective indirect network
effect [55]. Rochet and Tirole state that platform price allocation should be based on demand elasticity
in accordance with the Ramsey pricing method [44]. Caillaud and Jullien suggest that the best strategy
to dominate the market and protect market shares entails setting low participation costs (possibly
subsidized) and maximum possible transaction fees [56]. Armstrong [57] and Rochet and Tirole [44]
focus on single-homing and multihoming among multiple platforms. They indicate that when one side
is single-homing while the other is multihoming, a high price should be charged on the multihoming
side. In the next subsection, we consider the application of such a pricing scheme on the relationship
between consumers and physical intermediary firms.

2.1.3. Agent-Based Simulation

This study reproduces the transactions of the marketplace platform ecosystem in Japanese markets
using agent-based simulation. This method simulates the behavior of actors (agents) that comprise
the social system, especially how they act to influence others [58]. The system is programmed on a
computer, and the agent attempts to reproduce the real exchanges among the actors by autonomously
making decisions and interacting in the artificial environment [59].

Although the agent-based simulation approach is not a commonly used technique in strategy
and management, some studies have applied it to study the impact of new enterprises on the market
environment [60], spread of innovation [61], impact of consumer purchasing behavior on other
consumers [62], effectiveness of management strategies of retail chain stores [63], cooperative network
formation in business ecosystems [64], and competition between platforms [65]. In addition, some
studies examine platform ecosystems using agent-based simulation methods [41]. Thus, studies
have used the agent-based simulation approach to examine the interactions between agents. The
platform ecosystem in this study also consists of interactions between agents, and the outcome of the
whole ecosystem can change because of emergent phenomena caused by their interactions. Therefore,
the application of the agent-based simulation approach is appropriate for this study.

2.2. Conceptualization and Hypothesis

In this subsection, we consider the mechanisms behind the collapse of marketplace platform
ecosystems. Then, we develop a research hypothesis related to the application of an ecosystem strategy
on physical intermediary firms.

2.2.1. Mechanisms behind the Collapse of Marketplace Platform Ecosystems

As described in Section 2.1.2, previous studies focused on pricing in terms of usage fees between
the two sides. We believe this approach can be applied to consumers and third-party sellers. However,
we also consider the difficulty in applying this theory to the relationship between consumers and
physical intermediary firms, especially logistics firms. As the profits for consumers decrease as platform
usage fees increase, the demand elasticity of consumers is relatively large. Meanwhile, if logistics
firms cannot acquire delivery orders, they have to keep employees and transportation vehicles as idle
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assets. Accordingly, the demand elasticity of logistics firms is relatively smaller than that of consumers.
Conversely, logistics firms can benefit from the indirect network effect as their profits increase as the
number of consumers increases. Besides, from the perspective of the marketplace platform, there is
no difference in terms of the type of homing between consumers and logistics firms; both consumers
and logistics firms are basically multihoming. Therefore, we suppose that consumers have the upper
hand in determining fees over logistics firms. This situation would not be problematic until the
delivery amount reaches the upper limit of the logistics firms’ capacities. This is because the difference
between the upper delivery limit and the delivery amount becomes dead stock, as is the nature of the
logistics business.

However, after the delivery amount exceeds the upper capacity limit of the logistics firms,
they must force their employees to work overtime or devise a plan to outsource the deliveries. Thus,
we deem that the profit functions of logistics firms would be changed before and after the excess.
If we simply formulate such a change of profit functions and set y as the profit of logistics firms, x
as the number of deliveries, and a as the delivery fees, we can define the function of the pre-excess
situation as y = ax. If we set the upper delivery limit of as L and the additional overtime work fee
or additional outsourcing fee per delivery unit as b, we can define the function of the post-excess
situation (i.e., x > L) as y = aL− b(x− L). Ultimately, when the profit of the logistics firm becomes zero
or becomes lower than the expected profits of other businesses, the logistics firm would withdraw
from the platform. If any major logistics firm withdraws from the platform, the delivery amounts
of the remaining logistics firms would, in turn, drastically increase. At this moment, if the platform
owner does not support the increases faced by the remaining logistics firms (e.g., by increasing the
delivery fee), they would also withdraw from the platform. Finally, since the amount of handled
product deliveries becomes fewer, the platform ecosystem would become unable to function as a
marketplace. We define this situation as the “collapse of an ecosystem”. Additionally, we define the
boundary consisting of the delivery demand and logistics capacity, which resulted in the collapse of
the ecosystem, as the “boundary of collapse”. If we do not consider the growth of delivery capacity
in time, we can observe the boundary of collapse as the combination of the amounts of platform
transactions and delivery fees on the marketplace platform. Figure 1 shows the overview of a collapse
of an ecosystem and the boundary of collapse. Additionally, Figure 2 shows the process leading to the
collapse of ecosystems. We consider the case of the Japanese delivery crisis as having followed the
sequence of process 4b (at least in the current situation) as in Figure 2.

Figure 1. Overview of the ecosystem collapse and the boundary of collapse. The boundary is not
limited to only being linear.
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Figure 2. Process reaching collapse of ecosystems. If the delivery capacity of logistics firm A is
sufficiently small, it may not reach process 4 after the passage of process 3a. However, in the case of
the Japanese delivery crisis, the withdrawal of logistics firm A (Sagawa) sufficiently influenced the
remaining logistics firms.

2.2.2. Application of the Ecosystem Strategy for Physical Intermediary Firms

In this section, we consider how the application of an ecosystem strategy for physical intermediary
firms on marketplace platforms influences the prevention of the ecosystem’s collapse. Adner [19]
(p. 47) defines an ecosystem strategy as “the way in which a focal firm approaches the alignment
of partners and secures its role in a competitive ecosystem”. Additionally, this study defined the
ecosystem strategy in this study as “the strategy which the platform owner approaches alignment of
physical intermediary firms to improve capacity of them for keeping sustainability of the ecosystem”.
Since our focus is on platform-based markets, we consider the application of an ecosystem strategy in
terms of the concept of platform ecosystems.

In a recent study, Jacobides, Cennamo, and Gawer [66] suggested a way of realizing platform
ecosystems. They classified types of complementarities in terms of production and consumption
as generic, unique, and supermodular [66]. A detailed definition of each term is included in the
paper, but we will simply summarize them. Generic complementarities refer to the “production or
consumption of items can be independently each other”, unique complementarities mean that the
“joint production or joint consumption of items is either mandatory or has superiority over their
independent production or independent consumption”, and supermodular complementarities mean
“more production or more consumption can bring benefits to other items”. Additionally, they predicted
that when both production and consumption are higher than or equal to unique complementarities,
they can be regarded as an ecosystem.

If we consider the application of these definitions on physical intermediary firms and consider
the production and consumption of delivery services, we can find room for more ecosystemization.
As an element of production, we confirmed that logistics firms provide specific delivery services for
the marketplace platform in Japan. Specifically, the Amazon platform provides an Expedited Shipping
service as part of Amazon Prime and the logistics firms handle this specialized delivery service.
One of the logistics firms, namely Yamato Transport Co., Ltd., a major actor in Japan, developed its
e-commerce service systems (e.g., Today Shopping Service or TSS and Free Rack Auto Pick System or
FRAPS) to facilitate close cooperation between Amazon and the delivery centers of Yamato. Therefore,
we consider the platform owner and the logistics firm to jointly provide a unique delivery service.
Additionally, since the created service must be achieved by joint use between the platforms’ special
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delivery plans and the specialized logistics firms, the consumption side is also regarded as unique.
Based on these considerations and the concepts of Jacobides, Cennamo, and Gawer [66], we can
derive an ecosystem strategy wherein the platform owner provides its platform systems and policy to
facilitate coordination among logistics firms that improve the complementarity level of production and
consumption from unique to supermodular.

As an example, we propose the following coordinated delivery scheme. First, the platform owner
makes logistics firms declare (or measure in some way) its delivery capacity and provides a delivery
allocation system to equally distribute the delivery orders based on that capacity. Second, the platform
owner coordinates with logistics firms and develop a system that allows each logistics firm for the
co-use of the delivery base with other logistics firms. The realization of this scheme would be achieved
by standardization (or modularization) of these systems by the platform owners and the adaption of
the standard (or module) by logistics firms. As logistics firms join these systems, the total delivery
efficiency increases, and the total delivery capacity becomes larger. This means that the average
capacity of the delivery service increases and the increased service quality (caused by preventing each
firm’s capacity to be exceeded) can, in turn, increase the consumers’ profit. Therefore, we deem that
this scheme could improve the complementarity level of production and consumption from unique
to supermodular. Additionally, since this scheme increases the total capacity of logistics firms, the
boundary of collapse may move towards the right in Figure 1 and decrease the risk of the ecosystem
collapsing. Since this means lower delivery fees are needed to sustain the platform-based market in
large platform transactions, we predict that a larger platform user base and larger logistics profit may
be realized. Thus, we propose the following hypothesis:

The introduction of an ecosystem strategy, which facilitate standardization and cooperation among physical
intermediary firms, can (a) decrease the risk of an ecosystem collapse and (b) improve the evolution of the platform
ecosystem by increasing the number of platform users and the profits of physical intermediary firms.

In summary, we finally defined the ecosystem strategy in this study as “the strategy by which
the platform owner cooperates with logistics firms to standardize logistics services and improves
platform system cooperation among them”. In the simulation, this strategy has two effects as follows:
(a) the platform owner makes logistics firms declare their delivery capacity and provides a delivery
allocation system to equally distribute the delivery orders based on that capacity, and (b) the platform
owner provides a system that facilitates each logistics firm to co-use the delivery base with other
logistics firms.

2.3. Analysis Framework

This study tests how the introduction of an ecosystem strategy can influence marketplace platform
ecosystems. However, we cannot conduct an empirical approach to the statistical analysis since there
are no existing cases as far as we are aware. Therefore, this study takes the approach of an agent-based
simulation to test our hypothesis.

Figure 3 shows the structure of the platform ecosystem assumed in this study. We referred to
the structure of platform ecosystems expressed by previous studies (e.g., [7,41]) and revised them for
marketplace platforms, including logistics firms. Consumers purchase the products of third-party
sellers via the platform. The third-party sellers deliver the products to consumers through logistics
firms. The platform can receive usage fees from third-party sellers and provide discounts as an
incentive for consumers. Logistics firms receive delivery fees from the platform. For simplicity, our
simulation does not include the stock of products of platform owners.
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Figure 3. Structure of the platform ecosystem assumed in this study.

Some portion of researchers using agent-based simulations may argue that the method should
be simplified as far as possible and should not use a real dataset. However, we consider such an
approach to be inappropriate for an analysis of platform ecosystems, since they include interactions
among various types of actors and generate problems of change in results depending on the parameter
settings of the agents. Additionally, some researchers highlighted the significance of empirical data in
agent-based simulation. Boero and Squazzoni [67] suggested that empirical knowledge needs to be
appropriately embedded into modeling practices through specific strategies and methods. They also
argued that empirical data are needed to build sound micro specifications of the model and to validate
the macro results of the simulation. Furthermore, models should be both empirically calibrated
and empirically validated. Therefore, this study uses data related to the Japanese platform-based
marketplaces and specialized the simulation system according to the Japanese market.

2.4. Structure of the Agent Simulation

For simplicity’s sake, our simulation mainly focuses on the interactions between consumers and
logistics firms. Therefore, our simulation does not include more detailed information about sellers,
such as the participating mechanisms of individual sellers and features of the products. Figure 4 shows
the simulation process. Our agent-based simulation included four types of agents, namely the platform
agents, consumer agents, logistics firm agents, and third-party seller agents.

The simulation procedure is as follows: (a) The number of consumer agents which can use
platform is updated. (b) Each consumer agent decides to purchase a product from either a platform or
from other sources. The consumer decides by considering various factors, including the price discount
on the platform, the product variety, the probability of delay in delivery, and the delivery period as
part of the delivery service. (c) The number of platform users at the simulation step is updated. The
platform allocates the delivery of goods purchased on the platform to each logistics firm agent. The
third-party seller agents change the scale of provision of their products on the platform according to
the scale of the consumers’ platform usage as an indirect network effect. (d) The logistics firm agents
deliver as many products as possible at their delivery capacity to each consumer’s home from their
own delivery bases. This simulation deals with the so-called “last mile” from the delivery base to
each consumer’s home. We do not focus on the processes that take place before the last mile, namely
the collection and shipping processes. They accumulate products at the delivery base nearest to the
address of each consumer and deliver them to each house. If a consumer is absent at the time of
delivery, logistics firm agents carry it back to the delivery base to re-deliver later. (e) For each certain
period of simulation steps (we set 30 steps), the logistics firm agents change the degree of outsourcing
as and when it is appropriate to do so. For simplicity’s sake, our simulation considers outsourcing
but does not consider the influence of employee’s overtime work that comes as a result of excessive
demand. (f) The logistics firm agents refer their past average profits for a certain period (we set 90
steps) and decide whether or not to withdraw from the platform when they continuously incur losses
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of profits caused by excessive demand and insufficient delivery fees. (g) The value of the product
variety on the platform and the value of the parameters of delivery services are updated. (h) If the
simulation reaches a certain step, or if all major logistics firms agents withdraw from the platform, the
simulation is finished. If not, the procedure returns to (a).

Figure 4. Simulation procedure.

This study used a lot of data to establish the parameter settings of agents, especially for consumer
agents and logistics firm agents. For the consumer agent, we used public information on the distribution
of location and age, current platform user base sizes, and the number of internet shopping users
who are potential platform users. Additionally, we conducted a consumer questionnaire survey for
marketplace platform users to build consumer decision models of platform use and set parameters on
the use of platforms. For the logistics firm agents, we used public information on the home delivery
shares of each logistics firm at a certain period. Additionally, we collected data from each logistics
firm to acquire the number of delivery vehicles they possessed and establish the locations of the
delivery base for last mile delivery from available information for each logistics firm. A more detailed
explanation of these is shown in subsequent subsections and in the Appendix A.

2.4.1. Platform Agent

Our simulation included single-platform agents and did not consider competitive platforms.
The platform agent acts as an intermediary between consumer agents and third-party seller agents
and arranges the delivery for them. As per the e-commerce platform business model, the platform
owner can reduce wholesale and retail fees, unlike the business models of retail stores. For simplicity’s
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sake, our simulation assumed that the revenue of the platform agent and the basic shipping fees for
the logistics firm agents are paid for by the reduction of wholesale and retail fees. Thereafter, the
simulation assumed that the platform usage fee (discount rate) of the consumer (qpay) is paid for by
the platform usage fee of third-party sellers. If consumers are charged an additional delivery fee slogi.

by the platform in the simulation, the fee is deducted from qpay. We refer the platform usage fee for
third-party sellers of Amazon.com and set it to 0.1, i.e., 10% of the product price. If we suppose the
standard value of qpay is about 0.1, the relation between qpay and slogi. is defined as

qpay = −0.1 + slogi.. (1)

In actual cases, the platform owner can change the price settings between qpay and slogi. over
time. However, we did not consider the time variations of the price setting and we set values for
experimental conditions in the simulation because the effect of such changes of the price depends on
the method used. Additionally, to simplify our research structure, our simulation does not test for
price settings including third-party sellers. We reserve this for future research.

2.4.2. Consumer Agents

Our simulation included consumer agent i of Nconsumer(i.e., i ∈ Nconsumer). To reduce the calculation
time of the simulation, as representative of the Japanese marketplace platform, one consumer agent
in the simulation corresponded to 10,000 consumers in the market. Given that Nmax.con. is defined
as the potential maximum size of consumers targeted by the platform, this simulation supposed
that Nconsumer increases to reach the value of Nmax.con. through the simulation steps as the platform
usage spreads to consumer agents. As reference values, the mean daily increase in the number of
Japanese users of Amazon.com was determined to be 6380, based on the fact that Amazon.com was
launched in November 2000 in Japan and had about 40 million users as of June 2018 [68]. However,
when we applied this value (0.638 consumer agent increases per simulation step) in our simulation,
the calculation time turned out to be too high. Therefore, we set t as the unit of simulation steps,
considering the days of the week to calculate Nconsumer as 6.38t.

The consumer agents had the following parameters: probability of considering platform use,
delivery appointment date and time, and inherent delivery acceptance dates and times. They also had
inherent parameters for their influence on the platform usage fee (discount fee), namely the product
variety on the platform and the delivery service quality, including delivery delay and delivery period.
They decided on whether or not to use the platform based on these parameters and the situation
that the platform was in. These parameters were based on the questionnaire survey and an analysis
of the obtained survey results. They also had position parameters of home locations based on the
demographic data. The consumer agent settings are described in further detail in the Appendix A.

2.4.3. Logistics Firm Agents

Our simulation includes four logistics firm agents x: the three major firms of Yamato Transport
Co., Ltd.; Sagawa Express Co., Ltd.; and Japan Post Holdings Co., Ltd. (JP), and one agent intended for
Others. We defined the allocation of the delivery ratios in each of these firms as Yamato: 0.46, Sagawa:
0.34, JP: 0.12, Others: 0.08. We assigned the ratio of home deliveries to the year 2013, which was when
the delivery crisis started [69].

Each logistics firm agent x has its own delivery bases and transport vehicles. We confirmed that
Yamato has 3688 bases [70] Sagawa has 445 bases [71], and JP has 1088 bases [72]. We collected the
address data of the delivery bases and converted them to latitudinal and longitudinal values. For the
sake of simplicity, this study did not define the delivery bases of Others. We also confirmed that Yamato
has 43,754 vehicles [70], Sagawa has 25,153 vehicles [71], and JP has 33,083 vehicles [72]. We assumed
the number of vehicles of Others to be 8869, based on the delivery ratio (43,754 + 25,153 + 33,083)
× 0.08. Here, these values refer to the sum of all transport vehicles. Based on pre-interviews held
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with Yamato employees, the maximum delivery vehicles gx of agent x were defined as 85% of the
transport vehicles of agent x. The logistics firm agents deliver products to each consumer from their
nearest delivery base. As our simulation regarded one consumer agent as representative of 10,000
actual consumers, the logistics firm agent implements 10,000 times more deliveries for each order.

Each logistics agent has delivery bases for the last mile, which have position parameters based
on real data. They deliver goods from the delivery bases to each consumers’ home. If the demand
they receive exceeds their delivery capacity, they outsource the work to fulfill the delivery demands in
exchange for losing their profits. They observe their own profits on the platform. If their profits from a
certain period become less than zero, they decide to withdraw from the platform. These settings for
logistics firm agents are described in further detail in the Appendix A.

2.4.4. Third-Party Seller Agents

For the sake of simplicity, since this study focuses on consumers and logistics firms, our simulation
did not include detailed information about third-party sellers. Therefore, although we understand that
actual third-party sellers make complex decisions on their platform usage (e.g., [73]), our simulation
did not consider such parameters as the participating mechanisms of individual sellers and the features
of products. Additionally, our simulation set third-party seller agents as an entire group of third-party
sellers, that is, they do not act as individual agents. Third-party seller agents decide to change the
degree of provision of their goods on the platform based on the size of the platform user base on the
consumer side. The third-party seller agent settings are described in further detail in the Appendix A.

2.5. Simulation Experiments

2.5.1. Experimental Conditions

In our experiments, we tested cases where the proposed ecosystem strategy was not introduced
and cases where it was and compared them. We tested the coordinated delivery scheme as an ecosystem
strategy described in Section 2.2.2. The expressions in the simulation were as follows. (a) As shown in
Section 2.4.3, we defined the delivery ratio allocation of each firm as Yamato: 0.46, Sagawa: 0.34, JP:
0.12, and Others: 0.08. When the proposed ecosystem strategy was introduced, the ratio was redefined
as Yamato: 0.39, Sagawa: 0.23, JP: 0.30, and Others: 0.08 based on the ratio of the delivery capacity of
each logistics firm by the number of delivery vehicles. (b) When the proposed ecosystem strategy was
introduced, each logistics firm could use the delivery bases of other logistics firms for last mile delivery.

Within such tests, this study comprehensively conducted experiments in terms of the number of
platform users and delivery fees parameters. The collapse of the marketplace platform ecosystems
could be caused by exceeding the boundary of collapse of the logistics firms. This boundary is
determined by the balance between consumer demands and the delivery capacities of the logistics
firms. Therefore, this study conducted simulation experiments by changing the maximum number
of consumer agents Nmax.con. and the additional delivery fees slogi.. We confirmed that the number of
current internet shopping users in Japan is at least 70 million. The value is acquired the total number
of 95 million internet users in Japan multiplied by the rate of internet shopping users (72 percent).
We obtained the number of internet users in Japan from e-Stat [74]. We also obtained the rate of
internet shopping users from the White Paper on Information and Communication, 2015, of the
Japanese Ministry of Internal Affairs and Communication [75]. We regarded this value (70 million) as
the potential number of platform users. As mentioned previously, one consumer agent corresponds
to 10,000 consumers and so we set the maximum upper limit of consumer agents in the simulation
experiment at 7000. Additionally, we confirmed that the collapse of ecosystems would not occur until
3000 consumer agents were reached. Therefore, we set the minimum upper limit of consumer agents
in the simulation experiment at 3000. We experimented with 9 patterns of Nmax.con. in increments
of 500 within the range 3000–7000. We also experimented with 21 patterns of slogi. in increments of
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0.005 within the range 0–0.1 as in Equation (1). Therefore, we conducted experiments based on the
conditions of a total of 189 patterns.

While the agent parameters were refreshed when the Nmax.con. values were changed, they were
not refreshed when the slogi. values were changed. This was because we specified the value of slogi.

which corresponded with boundary of collapse or maximized the platform user base and the logistics
firms’ profits. The detailed analysis method is described in a subsubsection of the section entitled
“Analysis of Simulation Results and Evaluation Indicators”.

As we confirmed in advance that 4000 steps are enough for convergence, the simulation ran
until it reached 5000 steps. Note that this convergence includes not only a convergence to a specific
value but also a convergence to the limit cycles. We simulated each experimental condition 50 times
and calculated the values of the consumer agents’ platform usage rate as the platform ecosystem
development index. Table 2 summarizes these parameter settings as experimental conditions.

Table 2. Parameter settings as experimental conditions.

Parameter Value

Introduction of the proposed ecosystem strategy Not introduced or introduced
Additional delivery fee slogi. 0, 0.005, 0.01, . . . , 0.095, 0.1 (21 patterns)

Maximum number of consumer agents Nmax.con. 3000, 3500, 4000, . . . , 7000 (9 patterns)
Simulation steps t 1, 2, . . . , 5000 steps

Number of repetitions of experimental trial 50 times

2.5.2. Analysis of Simulation Results and Evaluation Indicators

Corresponding to the hypothesis, this study conducted an analysis from the following two
perspectives.

First, we identified the boundary of collapse and compared it before and after the introduction of
the ecosystem strategy. The procedure was as follows. (a) At any Nmax.con., and at any experimental
trial, we acquired the number of remaining major logistics firm agents for each value of the additional
delivery fee slogi. at the last step of the simulation. (b) The maximum value of the additional delivery
fee slogi., which satisfied the situation when all major logistics firm agents withdraw, was defined as the
boundary point of collapse at Nmax.con.. (c) We collected the boundary point of collapse for all Nmax.con.

and formed the boundary of collapse trajectory. The concept image was shown in Figure 1. (d) We
confirmed the difference in the boundary of collapse trajectory before and after the introduction of the
ecosystem strategy.

Second, we evaluated the degree of platform users and profits of logistics firms and compared
them before and after the introduction of the ecosystem strategy. The calculation procedure was as
follows. (a) For each simulation condition, we calculated the mean value of platform users (indicator A)
and the mean total profit of three major logistics firm agents (indicator B) over the last 500 steps (from
step 4501 to step 5000). (b) At any Nmax.con., and at any experimental trial, we respectively identified
the values of slogi., which satisfies the maximum values of indicators A and B. (c) We collected the
values of slogi. and maximizing indicators A and B for all Nmax.con. and formed their trajectory. (d) We
confirmed the values of indicators A and B by following the trajectories made at (c) and comparing
them to before and after the introduction of the ecosystem strategy, respectively.

3. Results

In this section, we show the simulation results and the correspondence between the results and the
hypothesis. In the first subsection, we show the reproduction results of the Japanese platform-based
marketplace and its collapse. In the second subsection, we show a comparison between the results
before and after the introduction of the ecosystem strategy for physical intermediary firms.



Sustainability 2019, 11, 5866 14 of 33

3.1. Reproduction of the Japanese Platform-Based Marketplace

Figure 5 shows an example of the results of one experimental condition, where the maximum
number of consumer agents Nmax.cons. is 4000 and the additional delivery fee slogi. is zero. Here, we
show the changes in the number of consumer agents Nconsumer as inputs and the platform usage rate of
consumers, the remaining number of major logistics firm agents, and the minimum delivery steps
(logarithm) as outputs. The results demonstrate the process of the ecosystem’s collapse as follows.
First, the evolution of the platform ecosystem was smoothly achieved. Second, at step 720, a logistics
firm agent decided to withdraw from the platform. The delivery environment subsequently became
unstable. Delivery delays and an extension of delivery times occurred due to the increasing influence
of a low-quality logistics firms. Additionally, these deteriorations of service quality decreased the
number of platform users. Third, at step 990, the second logistics firm agent decided to withdraw from
the platform. Thereafter, the deterioration of service quality worsened, further decreasing the number
of platform users. Finally, at step 1890, the third logistics firm agent decided to withdraw from the
platform. Ultimately, the platform ecosystem collapsed. Therefore, this result demonstrates the process
that platform-based marketplaces undergo before the ecosystem collapses.

Figure 5. Example of the simulation results of one experimental condition. The condition is that where
Nmax.cons. is 4000, the additional delivery fee slogi. is zero. Values of (a) are input in the simulation
experiment. Values of (b–d) are acquired output.

Figure 6 shows the simulation results of all the combinations of Nmax.con. and any slogi.. In each
figure, the x-axis represents the Nmax.con. value and the y-axis represents the slogi. value. First, Figure 6a
shows the change in the number of platform users by Nmax.con. and slogi.. As the results indicate, when
Nmax.con. was 3000, the number of platform users was at its maximum value with no additional delivery
fee. However, when Nmax.con. was larger than 3000, the ecosystem collapsed. Therefore, to acquire
the maximum number of platform users, an additional delivery fee was needed. Figure 6b shows
the change in total profits of logistics firms. Although the tendency of the changes in values was
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similar to that in Figure 6a, the trajectory maximizing logistics firms’ profits was different to that of the
platform users.

Figure 6. Simulation results of all combinations of Nmax.con. and any slogi..

Figure 7 shows the trajectory of the boundary of collapse and the delivery fees that maximize each
indicator. Figure 7a shows the boundary of collapse. The results show that as Nmax.con. increases, the
platform owners must charge consumers larger additional delivery fees. The results also indicate that
the collapse of the ecosystem occurred drastically and the difference between the slogi. of the maximum
value of platform users and the slogi. of the boundary of collapse was only about 0.005–0.010. Figure 7b
shows the comparison between the trajectories of delivery fees that maximize each indicator. Until
Nmax.con. reached 3000, the number of platform users and the profits of the logistics firms could acquire
the largest values with almost no additional delivery fee. However, at Nmax.con. > 3000, there is a
difference of about 0.015 to about 0.022 between the slogi. for the maximization on the platform users’
side and the slogi. for the maximization of the logistics firms’ side. Therefore, the results indicate that
platform owners had to trade-off between their platform user base size and the logistics firms’ profits.

Figure 7. Trajectory of the boundary of collapse and additional delivery fees maximizing each indicator.
We note that the value of logistics firms in figure (b) at Nmax.con. = 7000 might be calculated to be
smaller than the real value because of the maximum value of slogi. in these experimental settings.
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3.2. Comparison before and after the Introduction of the Ecosystem Strategy

Figures 8 and 9 show the results of the comparison before and after the introduction of the
ecosystem strategy. First, Figure 8 shows the results of the comparison by way of the trajectory of
the boundary of collapse. The results demonstrated that the introduction of the strategy moved the
trajectory in the direction of a lower additional delivery fee. The difference between the slogi. of the
trajectories before and after was from about 0.030 to 0.034. Additionally, the results indicate that the
introduction of the strategy provided postponement for collapse of the ecosystems: it was equivalent
of platform users of about 2000 consumer agents (20 million consumers) at slogi. = 0.04. Therefore, the
results imply that the introduction of the strategy can decrease the risk of an ecosystem collapse. Thus,
hypothesis (a) was supported.

Figure 8. Comparison of the trajectory of the boundary of collapse. In the figure, “before” means
before the introduction of the ecosystem strategy and “after” means after the introduction of the
ecosystem strategy.

Second, Figure 9a,b shows the comparison of the trajectory of the slogi. maximizing platform
users (indicator A) and the logistics firms’ total profits (indicator B), respectively. Figure 9c shows the
comparison of the maximum values of platform users (indicator A) at each Nmax.con. and Figure 9d
shows the comparison of maximum values of the logistics firms’ total profits (indicator B) at each
Nmax.con.. As the results indicate, both the number of platform users and logistics firms’ total profits
increased due to the introduction of the ecosystem strategy. The increase was observed after the
collapse of the ecosystem was risked (Nmax.con. > 3000). The results showed that the amount of increase
grew larger as the Nmax.con. value increased. At Nmax.con. = 7000, it increased the number of platform
users to about 411 consumer agents (about 1.10 times) and increased total profits of the logistics firms
by about 1016 (about 1.22 times). Thus, hypothesis (b) was supported. Additionally, as shown in
Figure 9a,b, the trajectory maximizing the number of platform users and maximizing the profits of
logistics firms almost corresponded after the introduction of the strategy, although there was a trade-off

between the platform user base size and the logistics firms’ profits before its introduction. Accordingly,
the results implied that the introduction of the ecosystem strategy for physical intermediary firms
allowed that the platform owners could maximize both of platform users and profits of logistics firms.
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Figure 9. Comparison of the trajectory of additional delivery fees maximizing each indicator and
the maximum value of each indicator. In the figure, “before” means before the introduction of the
ecosystem strategy and “after” means after the introduction of the ecosystem strategy.

4. Discussion

This study focused on the collapse of ecosystems caused by physical intermediary firms. It aimed
to test how the application of an ecosystem strategy in these firms can contribute to avoiding such
collapse and facilitate the evolution and sustainability of platform-based markets. As an alternative
approach to logistics management [16–18], this study developed an ecosystems strategy [19] to maintain
the sustainability of a platform-based marketplace in terms of logistics firms. We constructed an
agent-based simulation customized for Japanese platform-based marketplaces to test our hypothesis.
The results indicate that the introduction of an ecosystem strategy postponed reaching the boundary of
collapse and delayed the collapse of the ecosystem. Additionally, it increased the number of platform
users by about 1.10 times and increased the total profits of logistics firms by about 1.22 times. Although
these results cannot compare with the results of logistics management research, at the very least, we
confirmed the effectiveness of the proposed ecosystem strategy. Additionally, we consider that it may be
possible to adopt the ecosystem strategy in parallel with optimization based on logistics management.
Therefore, this study illustrated that an ecosystem strategy for physical intermediary firms is effective
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in the evolution of platform-based markets and its applications facilitate the sustainability of the
markets by preventing the collapse of platform ecosystems.

In addition to these main results, we confirmed that our results indicated that the introduction of
the ecosystem strategy eliminated the trade-off relationship between platform users and the profits
of logistics firms and allowed for the maximization of both. In intermediary platforms such as
the marketplace, since the platform owner needs to gain profit from either the supply or demand
side [44,55,57], the structure of profits between these sides becomes the trade-off. Although a previous
study indicated that intermediary platforms could increase the profits of both sides in certain types
of markets [41], the trade-off relationship remained. Therefore, we believe our results have novelty,
as they imply that certain ecosystem strategies could resolve this relationship. We inferred that this is
caused by the following mechanisms: The logistics firm agent will decide to outsource work if the
delivery demands exceed their delivery capacity. Here, there is a time lag between the occurrence
of lack of capacity and commencement of outsourcing. This occurrence happens outside simulation
settings too. Since delivery delays due to insufficient delivery capacity happen in the real world, we
have to consider that logistics firms may find it difficult to prepare (or intentionally do not prepare) for
a lack of capacity in advance. In such instances, when the proposed ecosystem strategy is introduced,
a delivery delay due to an insufficient delivery capacity has a larger influence on consumers, since the
delay occurs across all major logistics firms. We consider that this delay could automatically adjust
the size of consumers’ platform use. In contrast, before the introduction of the ecosystem strategy,
a single major logistics firm can cause the delivery delay. This means that the influence on delivery
delay is relatively small and it cannot control consumers’ demands. Thus, our results imply that the
introduction of ecosystem strategy, which facilitates standardization and cooperation among physical
intermediary firms, benefits the platform ecosystem by generating a new self-adjustment mechanism
among actors.

4.1. Theoritical Implications

This study provides three major implications. First, it demonstrates the importance of physical
intermediary firms in platform ecosystems. Previous research on platform ecosystems has investigated
platform owners, complementors as product providers, and consumers (e.g., [1,7,20–22,41]). However,
as summarized in Table 1, the existence of physical intermediary firms is mandatory for accomplishing
the value chain in platform ecosystems. We deem that relationship building between physical
intermediary firms and platform owners becomes especially significant in the early and latter growth
stages of the platform-based market. In the early stage, platform owners urge physical intermediary
firms to achieve a sufficiently high service quality as a value proposition of the platform ecosystem.
In the latter end of the growth stage, platform owners should prevent physical intermediary firms from
failing to achieve the required service provisions in cases of excessive demand. Although a delivery
crisis might only be observable in Japan at this time, the large growth of various platform-based markets
raises several concerns, wherein similar situations might occur in various sectors and countries in the
future. This study contributes to the research stream by providing the first steps in the investigation of
physical intermediary firms in platform ecosystems.

Second, this study developed methods for adapting an agent-based simulation into predictions
regarding the effectiveness of applying an ecosystem strategy on platform ecosystems. Boero and
Squazzoni [67] suggest that empirical knowledge needs to be appropriately embedded into modeling
practices through specific strategies and methods. Therefore, we attempted to reproduce a simulation
environment that closely mimics reality by constructing a consumer decision-making model based on
a questionnaire survey and mapping real address data for consumers and logistics bases. Although a
theoretical agent-based simulation that is simpler or purer can provide clarification on the structure,
such simulation methods risk potential changes due to changing parameters, which are untested by
actual data. Therefore, we believe that our methods, based on real datasets, provide more reliable and
valid simulation results. Furthermore, because the platform ecosystem can become more complex with



Sustainability 2019, 11, 5866 19 of 33

the interactions of various actors, we consider our approach effective. However, one disadvantage of
our proposed approach is that it complicates the study procedure. Therefore, in the Appendix B, we
attempt to simplify our proposed simulation model for future research.

Third, an implication of this study is about the expansion of sustainability research in platform
ecosystems. Although the platform ecosystem includes an “ecosystem”, its sustainability aspect is
almost undeveloped. As a current example, Inoue and Tsujimoto [7,8] studied platform ecosystems
focusing on new markets and analyzed its unsustainability caused by the profitability of complementors.
Inoue, Takenaka, and Kurumatani [41] expanded these studies and simulated the sustainability of
platform ecosystems in the service industry. Miron, Purcarea, and Negotia [76] investigated the entry
of high-quality complementors as a significant factor in ecosystem sustainability. Wan, Cenamor,
Parker, and Van Alstyne [77] surveyed the organizational ambidexterity of platform owners in terms
of sustainability. This study expanded these research streams in terms of “unsustainability caused by
physical intermediary firms” and “maintaining sustainability by introducing an ecosystem strategy”.

Fourth, we consider the ecosystem strategy in this study can be regarded as a way facilitating
service open innovation. In the simulation, this study set this strategy has two effects as follows: (a) the
platform owner makes logistics firms declare their delivery capacity and provides a delivery allocation
system to equally distribute the delivery orders based on that capacity, and (b) the platform owner
provides a system that facilitates each logistics firm to co-use the delivery base with other logistics firms.
These effects are realized by collaboration between the platform owner and logistics firms. Therefore,
we deem such collaboration would be achieved as the processes of open innovation. For successful open
innovation in the ecosystems, the platform’s technology openness strategy, complex adaptive systems,
and market responses stimulated by technology innovations are important [78,79]. The platform
owner must establish the platform policies to foster a sustainable environment of the ecosystem for
open innovation between the platform owner and complementors [80]. This study implies that these
management for the successful open innovation is significant not only for complementors, but also for
physical intermediary firms.

4.2. Practial Implications

This study provides two major managerial implications. First, it demonstrates the importance
of dynamic pricing for delivery fees in marketplace platform ecosystems. As the simulation results
in Figure 6 show, we confirmed that a difference of just 0.005–0.010 in delivery fees could exceed
the withdrawal boundary of logistics firms from the platform, causing platform ecosystem collapse.
Therefore, platform owners must focus on the profitability of logistics firms in the ecosystem and the
delivery fee settings over time. Without this focus, it will not be possible to secure the sustainability of
marketplace platform ecosystems. Additionally, as Figure 9 shows, since introducing the ecosystem
strategy for physical intermediary firms could resolve the trade-off between platform users and profits
of logistics firms, it allows the implementation of such dynamic pricing to retain platform users.
Therefore, our results imply that the introduction of such ecosystem strategy can support the smooth
implementation of dynamic pricing. We believe that platform owners autonomously change the
delivery fee to maintain the sustainability of the ecosystem.

Second, we believe that our simulation methodology has value in terms of future practical
applications. As our simulation is based mainly on actual data, the acquired results can be interpreted
as an estimation of actual indicators, such as the number of platform users. As some of the indicators
in this study are simplified or assumed, our simulation does not reach practical levels for referring the
estimated values. However, future development of such simulation methods can obtain predictions
that inform effective measures for the evolution and sustainability of platform ecosystems.

4.3. Limitations and Future Work

This study has several limitations. First, the analysis and simulation are specific to the Japanese
market of marketplace platforms, limiting the applicability of this study’s implications to the said
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market. Therefore, future research should analyze and simulate other regions to understand the effect
of logistics firms on platform ecosystems globally.

Second, for the sake of simplicity, this study restricted its focus to the delivery fee settings
between consumers and logistics firms. However, we can suppose situations wherein the platform
owner increases the platform fees of third-party sellers for additional delivery fees in order to assure
consumers’ profits, whether or not the settings actually exist or not. Additionally, some platform
owners may choose to bear additional delivery fees themselves. Therefore, future research could study
the broader fee setting patterns to evolve the platform ecosystems.

Third, this study focuses on delivery fees, which is the most basic measure related to the
participation of logistics firms. However, there are various other measures that platform owners
can implement regarding logistics companies, such as the establishment of delivery boxes, delivery
by platform owners themselves, and the encouragement of delivery acceptance by consumers at
logistics firms’ delivery centers or free depots. Additionally, such novel approaches could allow for the
implementation of a new ecosystem strategy. Thus, future studies could verify how these measures
can support logistics firms and improve the evolution and sustainability of platform ecosystems.

5. Conclusions

This study tested how the application of an ecosystem strategy on physical intermediary firms
can contribute to circumventing the collapse of platform ecosystems and facilitating the evolution and
sustainability of the platform-based market. We elaborated the ecosystem strategy in this study as “the
strategy that the platform owner uses to cooperate with logistics firms to achieve standardization of
logistics services and improves platform system cooperation among them”. We then constructed an
agent-based simulation system using a dataset of Japanese platform-based marketplace and tested the
effectiveness of this ecosystem strategy. The results confirmed that the application of an ecosystem
strategy for physical intermediary firms is effective both in avoiding the collapse of platform ecosystems
and in improving the profits of actors within the ecosystem. In addition, our results indicated that
the introduction of this strategy eliminated the trade-off relationship between platform users and the
profits of logistics firms and allowed for the maximization of both. Thus, this study expanded the
research on platform ecosystems and its sustainability by verifying the effectiveness of the strategy
for ecosystem evolution and sustainability. This study has three major limitations: its analysis is
limited to the Japanese marketplace, restricted pricing scheme between logistics firms and consumers,
and it tests specific content of an ecosystem strategy. Therefore, future research could expand this
study in three directions: focusing on the marketplace platforms of several countries, pricing scheme
including third-party sellers and platform owners, and testing the effectiveness of other contents of
ecosystem strategy.
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Appendix A. Detailed Specifications of Agent Designs

Appendix A.1. Consumer Agents

In this supplementary section, we explain the specifications of consumer agents in more detail.
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Appendix A.1.1. Settings of Consumer Agents

Consumer agents—included as Nconsumer—make decisions on whether to use the platform or not,
respectively. Each consumer had the following parameters:

β1
i : Influence of the platform usage fee on platform use;
β2

i : Influence of the product variety on the platform on platform use;
β3

i : Influence of the delivery delay probability on the platform;
β4

i : Influence of the minimum delivery period on platform use;

f Frequency
i : Probability of considering platform use per simulation step;

f TimeSpeci f .
i : Probability of appointing a day of the week and time for product delivery;

f Acce.Time
i : The day of the week and the time when the agent can receive products at home;

f place
i : Latitude and longitude of the home location of the consumer agent.

We set the values of each of these items according to the survey results. Each value was randomly
determined for each agent, based on the distribution of values from analytical results or datasets.
The days of the week ranged from Monday to Sunday and the time periods were categorized as
morning (09:00 to 12:00), afternoon (12:00 to 15:00), evening (15:00 to 18:00), and night (18:00 to 21:00).
Defining qdeli.

t as the minimum number of days from the time of order at step t on the platform to
delivery at a consumer’s home, the consumer agent can appoint the delivery date and time after t +

qdeli.
t . When the consumer agent does not appoint the delivery date and time, the platform agent sets

the date and time at step t + qdeli.
t and a random time (random hours). The value of qdeli.

t is set based
on the circumstances of the delivery on the platform (details are described in the subsection of the
logistics firm agents). This simulation set the minimum value of qdeli.

t = 2.

We set the values of f place
i based on the geographical population dataset. We collected the latitude

and longitude values of Japanese streets and the f place
i values were randomly set with the probability

based on the population of each street. Figure A1 shows the latitude and longitude values of our
dataset. These data were obtained from e-Stat, the website of Japanese Government Statistics [74].
In our simulation, we excluded parts of streets to which delivery was difficult; streets that were 20 km
or more away from the closest delivery base of any logistics firms were excluded (about 1% of all
streets).

Figure A1. Latitude and longitude values of Japanese streets. This figure excludes some islands for
visual clarity.
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Appendix A.1.2. Consumer Questionnaire Survey

(A) Sampling

The respondents of this survey were provided by Macromill Co., Ltd., which is one of the largest
internet research companies in Japan. The pool of Macromill’s survey respondents amounts to 1.2
million (at 11 April 2019) and covers a wide range of ages. We asked for 2000 respondents. Our survey
started on 12 November 2018, and ended on 13 November 2018, after the expected number of responses
was acquired. Finally, we obtained 2060 valid responses. The ages of the respondents ranged from
20 years old to 85 years old.

As an initial screening of respondents, we tried to extract consumers that often used products
purchased from delivery platforms for personal use (not for business tasks). In order to restrict the
respondents, we set the following two screening questions: Q1. How often do you use marketplace
platforms? and Q2. What kind of products do you purchase on marketplace platforms? In response to
these questions, we chose respondents who answered “at least once a month” for Q1 and “products
for personal and daily goods” for Q2. By this screening, we lost potential respondents who use rarely
marketplace platforms. However, this influence is small, since consumers who actively use such
platforms would influence the dynamics of platform ecosystems more than those potential respondents
would. We obtained 2060 valid responses after this screening process.

(B) Questionnaire Design

The questionnaire survey had two parts. The first part collected information on the current usage
of marketplace platforms. We utilized the following information in our simulation from this part: (a)
the frequency of marketplace platform usage per month, (b) the probability of appointing a delivery
date and time, (c) the day of the week and time of the day when the product can be received at home,
and (d) the evaluation of the degree of product variety on marketplace platforms compared to that in
retail shops.

The second part collected information to build the decision models for marketplace platform
usage. In this part, we conducted a conjoint analysis. We asked questions based on a hypothetical
situation, namely “When you buy some products that are worth 5000 Japanese yen (about 45–50
US dollars), do you use marketplace platforms with the following conditions or a retail store?” We
then presented them with a series of conditions consisting of the following combinations of elements,
including four factors and five levels.

• Payment amount: (1000 yen discount, 500 yen discount, price the same as the retail store, 500 yen
higher, 1000 yen higher).

• Product variety: (1/4 of the store’s, 1/2 of the store’s, same level as the store, double the store’s,
four times the store’s).

• Probability of delay in delivery: (0%, 25%, 50%, 75%, 100%).
• Minimum delivery period: (0 days, 3 days, 6 days, 9 days, 12 days).

Because we used an orthogonal array, the survey included 25 question patterns presented in
random order.

(C) Analysis, and Building Consumer Decision Models

Setting the probability that the consumer i selects the platform as pi, the platform usage fee for
the consumer as qpay, the product variety on the platform as qvari., the delay probability as qdelay, and
the minimum delivery period as qdeli., we can express the decision model of consumers for platform
usage as:

ln
pi

1− pi
= β1

i qpay + β2
i ln qvari. + β3

i qdelay + β4
i qdeli. + Ci, (A1)

where Ci is the basic degree of use of the platform when all other elements are zero. Based on the survey
responses, its logarithm is calculated as the product variety qvari. is captured as the ratio product variety
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on the platform in comparison with a retail store. The platform usage fee qpay converts from the valued
obtained from the answer items of the questionnaire (1000 yen discount, 500 yen discount, price the
same as the retail store, 500 yen higher, 1000 yen higher) as (−0.2,−0.1, 0, 0.1, 0.2) for a generalization
that depends on the price of the product (dividing the values of the response from each question item
by 5000 Japanese yen). Negative values of qpay imply a discount for consumers as an incentive.

The results revealed several types of consumer decision-making patterns for platform use.
This study classified the survey results by these patterns and constructed each model as follows.

Procedure A. In this procedure, we defined the response patterns of each respondent. Since the
number of data samples of each respondent was 25, the application of the logistic model of Equation
(A1) was difficult. Instead, we calculated a test for noncorrelation between the answer of platform usage
(the value is one when the answer is that they make use of marketplace platforms and the value is zero
when the answer is they make use of retail stores) and the value of each factor, namely the qpay, ln qvari.,
qdelay, and qdeli., of each consumer. If the factor has a significance value of p < 0.05 for platform use, the
factor influences the consumer’s platform use. Here, our classification was applied only to coefficients
that made semantic sense. Accordingly, significance was considered if the coefficient with qpay < 0,
coefficient with ln qvari. > 0, coefficient with qdelay < 0, and coefficient with qdeli. < 0 are satisfied in
each instance. In this calculation, we used Spearman’s nonparametric rank correlation.

Procedure B. In this procedure, we classified the consumers based on the results from Procedure A
simply by patterns of influence factors. For example, if the influential pattern of a consumer is (influence
of qpay, influence of ln qvari., influence of qdelay, influence of qdeli. = yes, yes, no, no), the consumer is
included in the group where all consumers have a (yes, yes, no, no) pattern.

Procedure C. In this procedure, we performed a logistic regression analysis by applying Equation
(A1) to each consumer group to estimate the coefficient values and standard errors of each factor. This
study acquired the estimation results for each classification and applied them to the decision model of
consumer agents in our simulation at a rate that corresponds to the sample rate of each group.

(D) Consumer Questionnaire Survey Results

The gender breakdown of the respondents of this survey was 48.9% male and 51.1% female.
In terms of age, 11.3% were in their 20s, 22.6% in their 30s, 25.5% in their 40s, 23.0% in their 50s, and
17.5% in their 60s or older. To overcome a potential bias in these rates, we calculated the correction
weight for each gender and age based on the actual population distribution data of internet users at
the application for the simulation. This correction method was applied to all of the results related to
the questionnaire survey.

Figure A2 shows the distribution of the frequency of marketplace platform use. The results
showed that some rate of consumers frequently use platforms, although a major rate of consumers
uses them 1~3 times per month. We translated these survey items to numerical values as usage rates
per day and set these as probability of considering platform use f Frequency

i based on their occurrence

probability. The mean value of f Frequency
i was about 0.13.

Figure A2. Distribution of the frequency of marketplace platform use.
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Figure A3 shows the distribution of the probability of a consumers’ appointing a delivery date
and time. The results show that about 35% of consumers do not appoint a date and time, while about
20% almost certainly do. As the expected value for the appointment is 34.5%, about 65.5% of deliveries
risk redelivery. We applied these distributions of probability to f TimeSpeci f .

i of the consumer agents.

Figure A3. Distribution of probability for consumers’ appointment of a delivery date and time.

Figure A4 shows the classified patterns of delivery acceptance dates and times of the consumers.
We classified these responses by the hierarchical clustering of Ward’s method, which resulted in 19
classes, all of which have more than one percent of respondents. We rounded the values in this table off

to the nearest integers for simplicity. The largest class was made up of consumers who could receive
deliveries at home at all times, including housewives and retirees. The second-most common class
was that of consumers who could receive deliveries only during the night, mainly including working
people. The third class was that of consumers who could only receive deliveries in the morning, mainly
including part-time workers and the self-employed. We assigned these 19 classes to each consumer
agent according to probabilities of occurrence and set values of f Acce.Time

i .

Figure A4. Classified patterns of delivery acceptance dates and times. In these cells, 1 means the
consumer is at home and 0 means the consumer is absent.
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Table A1 shows the results of the consumer decision model related to platform use. We adopted
six models, all of which included at least one percent of respondents. These decision models were
assigned to consumer agents according to their rate of consumers. Model 1 included the largest number
of consumers, accounting for 73% of the total. Applying Model 1 revealed that a consumer’s decision
to use the platform is largely influenced by the platform usage fee and discount rates. Model 2 included
11% of the consumers. Applying Model 2 revealed that a consumer’s decision to use the platform is
largely influenced by the length of delivery time, as well as the platform usage fee and discount rates.
Model 3 included 8% of the consumers. Applying Model 3 revealed that a consumer’s decision to use
the platform is largely influenced by the length of delivery time. Although Models 4, 5, and 6 also
represented distinct features, these models only represented about 7% of the consumers. Therefore, the
results indicate that about 85% of Japanese marketplace platform users are motivated by lower prices.

Table A1. Consumer decision-making models regarding platform use

Model 1 Model 2 Model 3

Variables Value S.E. p Value Value S.E. p Value Value S.E. p Value

Influence of platform
usage fee −17.85 0.19 ** −15.87 0.51 ** −5.47 0.38 **

Influence of product
variety on the platform 0.15 0.02 ** 0.14 0.05 ** 0.25 0.05 **

Influence of delay
probability of delivery −0.78 0.05 ** −1.14 0.14 ** −0.09 0.15

Influence of minimum
delivery period −0.09 0.00 ** −0.48 0.02 ** −0.44 0.02 **

Intercept 0.38 0.04 ** 1.66 0.11 ** 0.86 0.10 **

Rate of consumer 0.73 0.11 0.08

Model 4 Model 5 Model 6

Variables Value S.E. p Value Value S.E. p Value Value S.E. p Value

Influence of platform
usage fee −5.94 0.66 ** −16.34 1.24 ** −3.10 0.64 **

Influence of product
variety of the platform 0.46 0.10 ** 0.37 0.13 ** 1.23 0.11 **

Influence of delay
probability of delivery −4.63 0.32 ** −5.97 0.46 ** −0.39 0.26

Influence of minimum
delivery date −0.11 0.02 ** −0.23 0.03 ** −0.04 0.02 *

Intercept 0.71 0.17 ** 1.95 0.30 ** −0.39 0.20 *

Rate of consumer 0.03 0.02 0.02

Note. S.E. refers to standard errors. *: p < 0.05, **: p < 0.01.

Figure A5 shows the expected platform use rate depending on the values of influential factors,
given that other values of influential factors are zero. Here, we assumed a total of 1000 consumers and
applied the models shown in Table A1 to the consumers, considering the rate of applied consumers.
This figure shows that consumers are drastically influenced by changes in platform usage fee and
discount rates. Conversely, product variety did not significantly motivate platform use. This result
indicates that the indirect network effect for consumers from third-party sellers is relatively small in
the Japanese platform-based markets. The results also show that service quality, including delivery
delay and delivery time, influence the platform use of consumers. As delivery time can increase to
infinity, an excessively low-quality delivery service could negate the benefits of high platform discount
rates and high platform product variety.
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Figure A5. Expected platform use rate depending on values of influential factors given that other
values of influential factors are zero. The x-axis of product variety is shown as a logarithm, that is, the
range of original values is from 0.25 to 4.

Appendix A.2. Logistics Firm Agents

In this supplementary section, we explain the specifications of logistics firm agents in greater
detail. To calculate the delivery delay and delivery time at each simulation step, we must calculate the
number of consumer agents that each logistics agent can successfully deliver to. To do so, we must
calculate the delivery time needed for each consumer agent. In this study, this includes the delivery
time it takes to reach each consumer and the moving times between the delivery base and the district
of the consumer agent.

First, we need to explain the calculation of delivery times among consumers’ homes. Based
on the pre-interviews with Yamato employees, this study assumed that the average delivery time
for each consumer is 5.5 min from the delivery vehicle to the consumers’ home entrance and back
again. For simplicity’s sake, we applied this value to all delivery cases in this simulation. Therefore,
to handle 10,000 deliveries (i.e., one delivery for one consumer agent), logistics firm agents must spend
approximately 917 h (5.5 ÷ 60 × 10,000) on the job at least.

Second, we will explain the calculation of moving times between the delivery bases and the
districts of the consumer agents. This study classified the times of day for three months as morning
(09:00–12:00), afternoon (12:00–15:00), evening (15:00–18:00), and night (18:00–21:00). As described
above, when logistics firms need to spend an average of 5.5 min on each consumer, each delivery
vehicle can handle about 32.72 consumers every 180 min. Since our simulation set one consumer agent
to mean 10,000 consumers, we assumed that 306 vehicles (÷ (180 ÷ 5.5)) are needed for each consumer
agent. For simplicity’s sake, we calculate the total moving time for one consumer agent as 306 × the
shortest moving time (i.e., the moving time between nearest the delivery base of the logistics agent and
the district of the consumer agent) × 2 (meaning from the vehicle to the customer’s house and back
again).

The delivery time to the street of the consumer agent was defined as di,x/h, where di,x is the
distance from the nearest delivery base to the street address and h is the mean speed of the delivery
vehicle. We calculated di,x by (a) calculating the length between the coordinates of the base and the
consumer’s street and (b) converting the length as a unit of km by Hubeny’s formula. This study
assumed h as 20 km/h. Figure A6 shows the distance di,x for each street by major logistics companies as
a gradation. As seen in this figure, we collected information on each delivery base from the websites of
every logistics firms and translated them into coordinate data of longitude and latitude. As shown in
this figure, di,x decreases as the number of delivery bases increases. In the simulation, we set the value
of di,x for Others uniformly as 20 km, the same as that of h.

Assuming nt,y,x is a consumer agent group assigned to logistics company agent x in step t at time
period s, the total minimum required time mt,s,x of delivery can be calculated as:

mt,s,x =

nt,s,x∑
i

(
917 + 712

di,x

h

)
. (A2)
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Although we could conduct more precise delivery simulations, this study simplified the calculation
of delivery time in order to reduce computational time. As our simulation designated 3 h time periods
for delivery, each logistics firm agent x could deliver mt,s,x ÷ (3× gx) of consumer agents based on
their maximum number of delivery vehicles gx. Here, we rounded down the value of mt,s,x/3gx to the
nearest integer.

Figure A6. Cont.
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Figure A6. Distance between each consumer street address and the nearest delivery base of the logistics
firm. The values of distance are shown as a gradation. The dot locations correspond to the coordinates
of each Japanese street.

If the logistics firm agent could not fulfill the assigned delivery (caused by demands that exceed
the upper limit of the agent or caused by the absence of the consumer at home), the rest of the delivery
would be reassigned to the next simulation step. If the consumer agent could not receive the ordered
product, the consumer agent would appoint an appropriate date and time for redelivery (such a
re-delivery system is standard in Japan). The delay probability qdelay was calculated for each consumer
agent. That is, qdelay

i is appropriate in our simulation. If the consumer agent could not receive the

products at the appointed date and time, then qdelay
i increased by a value of 0.2. If the consumer agent

could receive products at the appointed step and time, then qdelay
i decreased by a value of 0.2, where

qdelay
i ranges from 0 to 1.

The simulation system calculated the minimum delivery date qdeli. by the delivery circumstances
of logistics firm agents. The value of qdeli. was calculated as the sum of the base delivery steps and
the average difference between the initially-scheduled delivery step t′ and the actual delivery step t′′

over the last 30 days. As the current mean delivery period in Japan is about two days, we set the base
delivery steps as two.

In this simulation, logistics firm agents can increase their delivery capacity by obtaining an
additional delivery fee, slogi..

Although we can suppose various ways to express increase of delivery capacity, we directly
increase the simplest indicator of delivery capacity in our simulation: i.e., the number of delivery
vehicles gx. As the current Amazon.com delivery fee in Japan is 400 yen when the product price is less
than 2000 yen, this simulation set the base delivery fee at 20% of the product price. As this simulation
considers product price as constant, logistics firm agents can increase the number of their delivery
vehicles gx by

(
slogi. + 0.2

)
/0.2 times.

Finally, we will describe the revenue model and the withdrawal decision by logistics firm agents.
The simulation assumed that each logistics firm agent considers using other firms’ vehicles when
the demand of delivery exceeds the upper limit of the number of their own delivery vehicles. This
consideration was performed at every 30th step and the number of additional vehicles was calculated
as ĝx = mt,s,x/3− gx, where mt,s,x is the mean of delivery orders of the last 30 steps. This study simply
assumed that logistics firm agents acquire 10 for each of their own deliveries and gain −20 (lose 20)
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for each outsourced delivery. If the cumulative profit of logistics firm agent x in the last 90 steps
(meaning one quarter) is negative, the agent x withdraws from the platform. Here, logistics firm agents
represented by Others do not take any action in terms of outsourcing or withdrawal and they remain
on the platform until the end of the simulation.

Appendix A.3. Third-Party Seller Agents

In this supplementary section, we explain the specification of third-party seller agents in more
detail. Our simulation included third-party seller agents to calculate the product variety qvari. on the
platform. Defining jt as the size of product provision by third-party seller agents, the indirect network
effect from consumers can simply be expressed as

jt = b
(
1− f eeTPS

) nt

Nconsumer (A3)

where f eeTPS is the platform usage fee for third-party sellers for each transaction, nt is the number of
consumers using the platform, and b is the constant of scale of product provision. As mentioned in the
subsection on platform agents, this simulation set f eeTPS as 0.1.

Then, setting r as the size of product provision by third-party seller agents in retail shops, the
degree of product variety on the platform can be expressed as

qvari. =
jt
r

. (A4)

As stated in the subsection on consumer agents, the current number of Japanese Amazon.com
users is approximately 40 million. As described in Section 2.5.1, the number of current internet
shopping users in Japan is at least 70 million. Assuming that almost all platform users in Japan use
Amazon.com regardless of their single-homing or multihoming preferences and that all internet users
can be potential users of marketplace platforms, the current platform use rate can be calculated as
4/7. Additionally, we confirmed through our questionnaire survey for platform users of consumers
that the average value of consumers’ recognition of the degree of product variety on the platform was
1.5 times higher in comparison with that of retail shops. Therefore, we calculated r/b as (4/7)/1.5,
namely 0.381. Finally, integrating the value of r/b and Equation (A3) into Equation (A4), the degree of
product variety of the platform can be expressed as

qvari. = 2.36 nt/Nmax.cons.. (A5)

Appendix B. Simplification of the Simulation System

This study tried to precisely reproduce Japanese marketplace platform ecosystems as an
agent-based simulation. Although we believe this trial provides more reliable simulation results, it
also complicates the procedure of this study. Therefore, in this Appendix, we consider factors that we
can simplify to make it easier for future studies to utilize our proposed approach.

First, we summarize all parameters of consumer agents as mean values (and standard deviation
values). For example, consumers’ decision-making models, as in Table A1, can be summarized as
an averaged decision model, shown in Figure A5. However, since this simplification ignores the
distribution of each parameter, the obtained results will be different from the full simulation model, if
the distributions of the parameters depart significantly from normal distribution.

Second, we may simplify the process of individual delivery for each consumer agent by calculating
the mean value of minimum delivery time based on each delivery base (as shown in Figure A6) and
the locations of each consumer agent. However, since this ignores the detailed process of delivery, the
calculated values of delivery delay time and delay possibility may differ from the full model.
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