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Abstract: Fishbone multilateral wells are applied to enhance well productivity by increasing the
contact area between the bottomhole and reservoir region. Fishbone wells are characterized by
reduced operational time and a competitive cost in comparison to hydraulic fracturing operations.
However, limited models are reported to determine the productivity of fishbone wells. In this paper,
several artificial intelligence methods were applied to estimate the performance of fishbone wells
producing from a heterogeneous and anisotropic gas reservoir. The well productivity was determined
using an artificial neural network, a fuzzy logic system and a radial basis network. The models were
developed and validated utilizing 250 data sets, with the inputs being the permeability ratio (Kh/Kv),
flowing bottomhole pressure and lateral length. The results showed that the artificial intelligence
models were able to predict the fishbone well productivity with an acceptable absolute error of 7.23%.
Moreover, a mathematical equation was extracted from the artificial neural network, which is able to
provide a simple and direct estimation of fishbone well productivity. Actual flow tests were used to
evaluate the reliability of the developed model, and a very acceptable match was obtained between the
predicted and actual flow rates, wherein an absolute error of 6.92% was achieved. This paper presents
effective models for determining the well performance of complex multilateral wells producing from
heterogeneous reservoirs. The developed models will help to reduce the uncertainty associated with
numerical methods, and the extracted equation can be inserted into commercial software, thereby
significantly reducing deviation between the actual data and simulated results.

Keywords: fishbone multilateral wells; artificial intelligence; predictive models; well productivity

1. Introduction

A multilateral well is defined as a well with multiple branches in the lower bore-hole targeting the
pay zone in the same layer or different layers. Depending on the main well bore, a multilateral well can
be classified as a root well or a fishbone well. For a root well, the main well bore is vertical, while for a
fishbone well the laterals are drilled out from a horizontal well bore [1]. Fishbone wells are applied
to enhance well productivity by increasing the contact area between the bottomhole and reservoir
region. The productivities of vertical, horizontal and fishbone wells are depicted in Figure 1. Fishbone
wells are characterized by larger drainage area; consequently, higher production rates can be achieved
compared to vertical and horizontal wells [2]. In comparison to hydraulic fracturing operations,
fishbones require less operational time and incur less expense [3]. Furthermore, fishbone wells have
shown better performance than fractured horizontal wells in producing from tight reservoirs [2].
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Figure 1. Hydrocarbon productivity for vertical, horizontal and fishbone wells. 

Predicting the well productivity is an essential factor in designing and completing a production 
well, as well as selecting the artificial lift and stimulation processes [4]. Several techniques have been 
reported to estimate the well performance for multilateral wells. Different correlations and analytical 
models have been developed to determine the inflow performance relationship (IPR), with the most 
popular equations being Fetkovitch’s and Vogel’s correlations [5,6]. Recently, numerical simulators 
have been utilized to estimate well productivity, which resulted in a significant reduction in 
estimation errors. 

Fishbone wells can be considered a combination of different types of wells, such as horizontal, 
directional and multilateral. They have a complicated geometry and require complex models to 
predict their inflow performance. Therefore, several assumptions are generally applied to predict the 
performance of a fishbone well, such as neglecting the number of laterals or assuming constant 
pressure in all laterals. This leads to considerable estimation errors and significant deviations 
between the actual production data and predicted results. 

This paper presents a new approach to determine the productivity of fishbone wells. Artificial 
intelligence techniques were utilized to develop predictive models and avoid the uncertainty of 
numerical methods. The developed models require the permeability ratio (Kh/Kv), flowing 
bottomhole pressure and lateral length to determine well productivity. The reliability of the 
developed models was verified using actual field data, wherein an absolute error of 6.92% was 
achieved for an ANN-based equation. 

1.1. Inflow Performance Relationship 

Borisov [7] proposed an analytical model to estimate the inflow performance relationship (IPR) 
for single phase multilateral wells. This model assumes steady state conditions, leading to impractical 
predictions. Therefore, Economides et al. [8] modified Borisov’s model by including pseudo steady 
state conditions. Furthermore, Salas et al. [9] investigated the impact of nearby damage (skin factor) 
on well productivity using different multilateral configurations. Furui et al. [5] developed an 
analytical model for fishbone multilateral wells. They concluded that the productivity can be 
expressed as a function of skin factor, drainage distance, permeability ratio and reservoir dimensions. 

Yildiz [10] upgraded Salas and colleagues’ equation to model multilateral wells producing from 
extremely heterogeneous reservoirs. Guo et al. [4] reported that multilateral wells are involved with 
several flow regimes, including linear horizontal flow, radial flow, and vertical radial flow. Also, they 
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Predicting the well productivity is an essential factor in designing and completing a production
well, as well as selecting the artificial lift and stimulation processes [4]. Several techniques have
been reported to estimate the well performance for multilateral wells. Different correlations and
analytical models have been developed to determine the inflow performance relationship (IPR), with
the most popular equations being Fetkovitch’s and Vogel’s correlations [5,6]. Recently, numerical
simulators have been utilized to estimate well productivity, which resulted in a significant reduction in
estimation errors.

Fishbone wells can be considered a combination of different types of wells, such as horizontal,
directional and multilateral. They have a complicated geometry and require complex models to
predict their inflow performance. Therefore, several assumptions are generally applied to predict
the performance of a fishbone well, such as neglecting the number of laterals or assuming constant
pressure in all laterals. This leads to considerable estimation errors and significant deviations between
the actual production data and predicted results.

This paper presents a new approach to determine the productivity of fishbone wells. Artificial
intelligence techniques were utilized to develop predictive models and avoid the uncertainty of
numerical methods. The developed models require the permeability ratio (Kh/Kv), flowing bottomhole
pressure and lateral length to determine well productivity. The reliability of the developed models
was verified using actual field data, wherein an absolute error of 6.92% was achieved for an
ANN-based equation.

1.1. Inflow Performance Relationship

Borisov [7] proposed an analytical model to estimate the inflow performance relationship (IPR)
for single phase multilateral wells. This model assumes steady state conditions, leading to impractical
predictions. Therefore, Economides et al. [8] modified Borisov’s model by including pseudo steady
state conditions. Furthermore, Salas et al. [9] investigated the impact of nearby damage (skin factor) on
well productivity using different multilateral configurations. Furui et al. [5] developed an analytical
model for fishbone multilateral wells. They concluded that the productivity can be expressed as a
function of skin factor, drainage distance, permeability ratio and reservoir dimensions.

Yildiz [10] upgraded Salas and colleagues’ equation to model multilateral wells producing from
extremely heterogeneous reservoirs. Guo et al. [4] reported that multilateral wells are involved with
several flow regimes, including linear horizontal flow, radial flow, and vertical radial flow. Also, they
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mentioned that two different regions exist in the reservoir, the outer undrilled region and inner drilled
region, with each region having a certain flow regime.

Yu et al. [11] used the net present value (NPV) concept to compare the performance of fishbone
wells with that of fractured horizontal wells. They found that fishbone wells performed better
than fractured horizontal wells, especially in tight reservoirs. The first attempt to couple the inflow
performance with out-flow performance was reported by Lian et al. [12]. They developed a model
by assuming uniform flow rate distribution, which is applicable in pseudo steady or unsteady flow
state conditions.

In addition, different numerical models have been developed to simulate well productivity by
treating each branch as a fracture with dimensions similar to the lateral dimensions. Several reservoir
models have been evaluated to simulate dual porosity systems, triple porosity systems, and isotropic
and anisotropic permeability conditions [13]. Moreover, computational fluid dynamics (CFD) analysis
has been utilized to model the performance of fishbone wells in depleted reservoirs under water
flooding operations. Fishbone multilateral wells have shown a productivity improvement of 25% in
comparison with conventional horizontal wells during water flooding treatments [14].

Abdulazeem and Alnuaim [15] developed a new empirical model to determine the performance
of a fishbone well in a homogeneous oil reservoir. Their model investigated the effects of reservoir
permeability, porosity and fluid properties on the well’s productivity. They used Vogel’s model
to validate the developed IPR fishbone model, and found that the developed model had a lower
estimation error compared to Vogel’s model. Moreover, Ahmed et al. [6] extended the model proposed
by Abdulazeem and Alnuaim in order to predict the performance of fishbone wells producing from gas
reservoirs. They reported that their extended model was able to determine the gas production rate for
a wide range of reservoir and well parameters. Also, they used real field data to verify their model’s
reliability, with an acceptable match obtained between the actual data and predicted gas flow rates.

Al-Mashhad et al. [16] evaluated the performance of multilateral wells using an artificial neural
network (ANN). Their ANN model was able to determine the oil production rate for multilateral
wells based on reservoir and well parameters. They compared the developed model with several
analytical models and empirical correlations. They found that the developed ANN model was capable
of outperforming the other models, with strong matching between the actual and predicted flow rates
achieved. Specifically, the model had an average absolute percentage error of 7.9%.

In this work, three artificial intelligence methods were utilized to predict the performance of
fishbone wells. An artificial neural network, fuzzy logic system and radial basis function were
used. The inputs to the models included the permeability ratio, flowing bottomhole pressure and
lateral length. The developed models showed a strong predictive performance, with an acceptable
absolute error of 7.23%. Also, a mathematical equation was extracted using the optimized ANN
model. This extracted correlation provides a simple and direct estimation of the fishbone productivity.
The ANN-based equation was verified using actual field data, wherein an absolute error of 6.92%
was achieved.

1.2. Artificial Intelligence Techniques

The concept of artificial networks was introduced into engineering research in the 1940s [17,18].
In the early stages, artificial intelligence was used to solve complex equations and mimic the nervous
system [19,20]. Artificial intelligence (AI) techniques include artificial neural networks, fuzzy logic
systems, support vector machines and radial basis networks. Artificial neural networks (ANNs) are
considered effective AI tools; therefore, they have been widely applied in several fields, such as in
classification and optimization tasks [21,22]. An ANN model is a system of neurons and hidden
layers [23]. Usually the whole data is grouped into two sets, namely the training and testing data sets.
The training set is used to train the network and capture the relationship between the input and output
parameters, while the testing data are used to measure the reliability of the developed ANN system.
During the training stage, the testing data remain unseen by the model, which increases confidence
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in the model’s reliability [24–26]. A fuzzy logic model is an integrated network that combines a
neural network with fuzzy logic. The most common model of fuzzy logic is an adaptive neuro-fuzzy
inference system (ANFIS), which has the ability to extract the benefits of AI techniques in (a) single or
multi-framework(s) [27]. Another kind of AI method is the radial basis function (RBF), which consists
of linear and nonlinear functions [28].

Recently, artificial intelligence techniques have been extensively applied in the petroleum industry,
especially in predicting well or field performance. Alajmi et al. [29] made predictions about choke
performance using an ANN. Alarifi et al. [30] estimated the productivity index for horizontal oil
wells using an ANN, a functional network and fuzzy logic. Chen et al. [31] applied a neural network
and fuzzy logic to evaluate the performance of an inflow control device (ICD) in a horizontal well.
Their model investigated the influence of reservoir parameters, such as reservoir size, thickness,
heterogeneity and permeability ratio, on ICD completion performance.

Elkatatny et al. [32,33] comprehensively applied artificial neural networks (ANNs) to determine
the permeability of a heterogeneous reservoir, and to estimate the rheological properties of drilling
fluids based on real-time measurements. They developed robust models that can be used by petroleum
engineers to obtain highly accurate predictions in less time. Van and Chon [34,35] evaluated the
performance of CO2 flooding using artificial neural network techniques. Specifically, they developed
ANN models to determine the oil production rate, CO2 production and gas oil ratio (GOR).

2. Data Acquisition and Analysis

In this work, the used data were generated by a commercial well performance software, with
more than 250 runs performed. Real reservoir and well data were utilized as inputs for the commercial
software. The minimum and maximum limits for each parameter were accurately selected. Then, the
software outputs were carefully reviewed by a production consultant with over 30 years’ experience
in the petroleum industry. Thereafter, the most practical results were used to develop the proposed
models. The reservoir model was constructed in a 3D Cartesian grid system (62 × 21 × 11) with a
fishbone well placed at the center. The dimensions of the reservoir were set to 20,000 ft (length) by
10,000 ft (width), with a depth of 750 ft. The reservoir was single layer, dry gas and anisotropic, and
had produced for 20 years. The generated data, which comprised of more than 250 data sets, were
sufficient to train and validate the artificial intelligence models. The data sets included simulation
results for flowing bottomhole pressure (Pwf), well production rate, distances between laterals, length
of each lateral, number of laterals, and permeability ratio (Kh/Kv).

A randomization function was utilized to divide the whole data into two sets: training and testing
groups. The training data, which was 70% of the total data, was used to train the networks to capture
the relationship between the inputs and flow rate. The testing data, which was data that was unseen
during the training stage, was utilized to evaluate the reliability of the models. Before running the AI
models, statistical analyses were conducted to determine their minimum, maximum, mean, mode and
other statistical parameters, the results of which are summarized in Table 1. As shown in the table, the
permeability ratio (Kh/Kv) ranged from 1 to 1000, while the flowing bottomhole pressure (Pwf) varied
between 14.7 and 4800 psia. The statistical dispersion for flow rate results was measured by calculating
the skewness and kurtosis, with the data showing huge spread over a wide range of values.

In addition, statistical distributions were obtained for all of the data to get a rough sense of the
density of the underlying distributions, wherein the data set was found to represent a multimodal
pattern. Figure 2 shows the distributions for input and output parameters against the number
of samples. In general, the data showed typical trends for reservoir properties. For example, a
hydrocarbon reservoir usually has one average permeability value, but it can produce using several
bottomhole pressures. Therefore, one value can be used to represent the reservoir’s permeability, while
a wide range of flowing pressures can be applied. Finally, correlation coefficients were determined
to measure the impact of the input parameters on the well flow rate, as shown in Figure 3. Strong
relationships were observed between the production rate and the flowing bottomhole pressure (Pwf),
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permeability ratio (Kh/Kv) and lateral length (L), with correlation coefficient values of −0.831, 0.292
and 0.230, respectively. The results of the correlation coefficient analysis indicate that the flow rate
can be increased by reducing the flowing pressure or by increasing the lateral length. Also, increased
hydrocarbon production can be obtained from a hydrocarbon reservoir with a higher permeability
ratio. However, the number of laterals (N) and distance between laterals (D) showed very small
correlation coefficient values (0.171 and −0.035, respectively). The same observation was reported by
Ahmed et al. [6], who found that increasing the number of laterals or the distance between the laterals
only had a minor effect on improving the fishbone productivity. Therefore, the number of laterals and
the distance between laterals were excluded from further research as input parameters.

Table 1. A statistical analysis of the input/output data.

Parameter Kh/Kv
No. of

Laterals Length (ft) Distance (ft) Pwf (psia) Flow Rate
(scf/D)

Minimum 1 2 700 1300 14.7 0
Maximum 1000 14 3100 5200 4800 197,903.226

Mean 61 6.667 2759.523 2723.809 2359.558 81,860.474
Mode 10 6 3100 2600 14.7 0
Range 999 12 2400 3900 4785.3 197,903.226

Standard Deviation 211.275 2.499 693.099 685.121 1551.738 48,712.516
Skewness 4.192 1.412 −1.9159 2.0689 0.09535 −0.118
Kurtosis 18.73 5.358 5.3081 9.503 1.7184 2.216

Coefficient of variation 346.352 37.491 25.116 25.153 65.763 59.507
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neural network (ANN) model.

In summary, the statistical distribution plots indicated that most of the data set was represented
by a multimodal pattern, while the correlation coefficient analysis revealed that the production rate
was in a moderate positive linear relationship with the permeability ratio, in a weak positive linear
relationship with the lateral length, and in a strong negative linear relationship with the flowing
bottomhole pressure.

3. Results and Discussion

Several artificial intelligence models were investigated to obtain the model with the lowest average
absolute percentage error (AAPE) and maximum correlation coefficient (CC) value. A sensitivity
analysis was performed for each AI technique in order to optimize the model parameters. Evaluating
the fishbone performance using the original data showed significant deviations between the predicted
results and the target values, with an error of 28.12% and correlation coefficient of 0.290 obtained for
the ANN model. To reduce these deviations, data processing techniques were implemented, and the
number of inputs was reduced from five to three. The model inputs considered were the flowing
bottomhole pressure, permeability ratio and lateral length. As a result, the prediction performance was
improved significantly, with the error decreasing from 28.12% to around 12.65% and the correlation
coefficient increasing from 0.290 to 0.982 for the ANN model. In the following sections, the results
from several AI techniques in determining fishbone productivity are discussed.

3.1. Artificial Neural Network

The neural network model was developed to evaluate the fishbone performance by determining
the flow rate based on the well bore configurations and reservoir parameters. The model inputs were
the permeability ratio, lateral length and flowing bottomhole pressure. The developed ANN model
consisted of three layers: input, hidden and output. The optimum number of neurons was found to be
5 (see Figure 4). The ANN model was trained using 70% of the data, after which the model became
ready to predict the flow rate for the testing or unseen data. Different cases were investigated in order
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to optimize the model parameters, the results of which are summarized in Table 2. Four cases were
investigated, each with a different number of neurons (from 1 to 20 in each layer) or a different number
of hidden layers (between 1 and 3). From this, optimum values for the number of neurons and layers
were able to be defined. A minimum average absolute error of 7.23% and a relatively high correlation
coefficient of 0.979 were obtained using 1 hidden layer with 20 neurons. Figure 5 shows the predicted
results against the actual values for the training and testing data.
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3.2. Fuzzy Logic System

Fishbone productivity was estimated using an adaptive neuro-fuzzy inference system (ANFIS).
Several scenarios were studied to fine tune the model parameters in order to minimize the estimation
error and maximize the correlation coefficient, and Table 3 summarizes the ANFIS results. The optimum
model was selected based on the absolute error, correlation coefficients and visualization check. Usually,
better results can be obtained by increasing the cluster radius; or increasing the number of iterations.
In this study, the best scenario was achieved by using five membership functions, a linear output
membership function, a cluster radius of 0.8 and an iteration number of 200 (Case 3), for which the
AAPE was 13.92% and the correlation coefficient was 0.985. Figure 6 shows the actual values against
the predicted flow rates using the fuzzy logic model.

Table 3. Adaptive neuro-fuzzy inference system (ANFIS) results.

Case No Cluster Radius Number of Iterations CorrCoef_Test AAPE_Test

1 0.1 200 0.9822 14.4962
2 0.3 200 0.9838 14.1589
3 0.8 200 0.9845 13.9187
4 0.7 200 0.9845 13.9242
5 1 200 0.9845 13.9208
6 0.6 100 0.9848 14.0791
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3.3. Radial Basis Function (RBF) Network

Finally, an RBF network was utilized to predict the fishbone production rate, and the impact of
the model parameters on improving the model prediction was investigated. Different values of goal,
spread and maximum number of neurons were examined to optimize the model parameters, with the
results of this examination summarized in Table 4. It may be observed that increasing the goal or spread
values led to worse results (higher AAPE and lower CC values), which could be due to increasing the
model’s tolerance. In this work, changing the goal value showed insignificant effect in improving the
prediction performance, while reducing the model’s spread led to considerable improvements in the
prediction performance. Also, no further improvement was observed by increasing the maximum
number of neurons (MN) above 20. The optimum case (case 4) was obtained using a goal value of 0.0,
a spread value of 50, an MN of 20 and a DF (number of neurons to be added between displays) of 1.
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For this case, the correlation coefficient was 0.985 and the absolute error was 11.14%. Figure 7 shows
the actual flow rate against the predicted flow rate using this optimal RBF model.

Table 4. Radial basis function network (RBF) results.

Case No. GOAL SPREAD MN, Maximum Number of Neurons CorrCoef_Test AAPE_Test

1 0 100 10 0.8786 19.3701
2 0 100 15 0.9830 11.4670
3 0 100 20 0.9851 11.1697
4 0 50 20 0.9851 11.1464
5 0.5 10 20 0.8614 32.8188
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Figure 8 compares the fishbone productivity obtained using the artificial neural network (ANN),
fuzzy logic system (ANFIS) and radial basis function (RBF), for which the absolute errors are 7.23%,
13.92% and 11.15%, respectively, and the correction coefficients are between 0.98 and 0.99 for all methods.
The model developed using an artificial neural network showed the best prediction performance, with
the absolute error of 7.23% indicating that the ANN model may be the preferred model for determining
the flow rate of a fishbone well.

3.4. New Empirical Correlation for Fishbone Productivity

An empirical equation was extracted from the optimized neural network model (Equation (2)).
This extracted equation can predict the flow rate based the weights and biases of the ANN model.
Table 5 lists the values of weights and biases used in Equation (2). The proposed model to predict the
fishbone productivity is given by the following equations:

q
qmax

=

 N∑
i=1

w2itan sig

 J∑
j=1

w1i,jxj + b1i


 + b2 (1)

q
qmax

=


N∑

i=1

w2i

 2

1 + e
−2(w1i,1(

Kh
Kv

)
j
+ w1i,2Lj + w1i,3(Pwf/Pavg)j+b1i)


 + b2 (2)
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where N is the total number of neurons, w1 is the weights of the hidden layer, w2 is the weights of
the output layer, Kh/Kv is the permeability ratio, L is the lateral length, Pwf is the flowing bottomhole
pressure, and Pavg is the average reservoir pressure. Note that the ANN model automatically normalizes
the input into a range between −1 and 1.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 15 

 

Figure 8. Comparison of different artificial intelligence (AI) techniques. 

3.4. New Empirical Correlation for Fishbone Productivity 

An empirical equation was extracted from the optimized neural network model (Equation (2)). 
This extracted equation can predict the flow rate based the weights and biases of the ANN model. 
Table 5 lists the values of weights and biases used in Equation (2). The proposed model to predict the 
fishbone productivity is given by the following equations: 

qq = w tansig w , x + b + b   (1) 

qq = w 21 + e ( ,  ,  , ( / ) ) + b  (2) 

where N is the total number of neurons, w1 is the weights of the hidden layer, w2 is the weights of 
the output layer, Kh/Kv is the permeability ratio, L is the lateral length, Pwf is the flowing bottomhole 
pressure, and Pavg is the average reservoir pressure. Note that the ANN model automatically 
normalizes the input into a range between −1 and 1. 

Table 5. The values of weights and biases extracted from the ANN model. 

Neurons (N) 
Weights between Input 
and Hidden Layer (W1) 

Weights between 
Hidden and 

Output Layer (W2) 

Hidden 
Layer 

Bias (b1) 

Output 
Layer 

Bias (b2) Kh/Kv Length Pwf 
1 −3.84692 0.617902 −2.26283 −2.819227146 0.752135 

−0.28498 

2 3.358502 −2.56259 −1.34471 −2.498195347 0.232057 
3 3.162647 −3.3314 1.433747 −0.682675154 0.430348 
4 2.595679 −3.26074 −1.83961 0.666775968 −0.9063 
5 −2.19077 2.3777 1.716382 −2.423948008 0.130544 
6 −1.74031 2.608322 2.778165 −0.581621184 0.281862 

Figure 8. Comparison of different artificial intelligence (AI) techniques.
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Neurons (N)

Weights between Input and Hidden
Layer (W1)

Weights between
Hidden and

Output Layer (W2)

Hidden
Layer Bias

(b1)

Output
Layer Bias

(b2)Kh/Kv Length Pwf

1 −3.84692 0.617902 −2.26283 −2.819227146 0.752135

−0.28498

2 3.358502 −2.56259 −1.34471 −2.498195347 0.232057
3 3.162647 −3.3314 1.433747 −0.682675154 0.430348
4 2.595679 −3.26074 −1.83961 0.666775968 −0.9063
5 −2.19077 2.3777 1.716382 −2.423948008 0.130544
6 −1.74031 2.608322 2.778165 −0.581621184 0.281862
7 1.455491 −2.75341 −2.49005 0.699240526 −0.74851
8 −1.01596 1.755128 1.831094 −2.721731367 −0.23775
9 −0.51291 2.085212 1.655426 −2.701708506 −0.15973
10 −0.30873 3.380575 −1.66117 0.602113511 0.173508
11 0.169321 −1.10784 −3.44826 −1.33129177 0.285198
12 −0.35496 −1.95086 −2.1071 2.340221069 −0.05304
13 1.08924 2.348532 1.9611 −2.136881713 0.191233
14 1.407857 0.420195 2.554844 2.696650854 0.15787
15 −1.74964 −1.27965 −0.31507 3.224532039 −0.16893
16 −2.24378 −1.25899 1.524934 −3.236788256 −0.11517
17 −2.61158 −2.64587 −2.30505 1.377837678 −0.07059
18 3.316892 3.350453 0.264872 −1.109735463 −0.12635
19 3.298386 1.357587 −3.4066 −0.837658734 0.641118
20 3.717023 0.598516 −3.12083 1.403728747 0.227681
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3.5. Model Verification

Our developed correlation was used to determine the fishbone productivity for the unseen data.
More than 70 data sets with different conditions of reservoir parameters and well bore configurations
were used. This correlation achieved an average absolute error of 7.23% and a relatively high correlation
coefficient of 0.979. Moreover, the developed correlation was compared with different numerical and
analytical models proposed in the literature. Ahmed et al. [6] proposed an empirical IPR correlation
based on Vogel’s productivity model. Ahmed’s correlation (Equation (3)) can be used to determine the
productivity of a fishbone well drilled into a dry gas reservoir. Based on a literature review, Ahmed’s
correlation is considered one of the most accurate models that can be used to estimate the gas flow rate
for fishbone wells. Therefore, the reliability of the developed ANN-based correlation was compared
with that of Ahmed’s model. Figure 9 shows a comparison between the gas flow rate predicted using
Ahmed’s correlation and the ANN-based correlation proposed in this work. It is clear that the flow
rates predicted using the developed ANN correlation are a better match with the actual flow rate data
than Ahmed’s model. Also, at low pressure, the Vogel-form equation overestimates the production rate,
while the developed ANN correlation has excellent predictions. The developed empirical equation
based on the optimized ANN model predicted the flow rate with an average absolute error of 6.92%.

q
qmax

= 1.00756 + 1.154379 ∗
( Pw f

Pw f max

)1.35

− 2.15268 ∗
( Pw f

Pw f max

)1.7

(3)
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Figure 9. Comparison between the gas flow rate predicted by the ANN model and the Vogel-form
equation alongside the actual gas rate.

Overall, this work can increase the confidence of decision makers in deciding to drill more fishbone
wells, instead of drilling vertical or horizontal wells. The main issue with drilling fishbone wells is
that most of the available production models are inaccurate, which leads to significant deviations
between the models’ results and the actual production data. As a consequence, most of the petroleum
engineering industry prefer to drill vertical or horizontal wells in order to reduce the drilling cost and
avoid the risk of fishbone wells, as it is easier to estimate the production rate for a vertical or horizontal
well compared to a fishbone well. However, developing accurate models for determining fishbone well
productivity can add to the credibility of such complex wells. The AI models presented in this paper
can be used to provide an accurate estimation for the hydrocarbon production of multilateral fishbone
wells, which will help in designing and optimizing production plans. Ultimately, this work can help
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in growing the application of complex wells, which can improve the sustainability of hydrocarbon
production from underground reservoirs.

4. Conclusions

In this study, the productivity of fishbone wells was determined using three artificial intelligence
techniques. The fishbone performance was estimated using a neural network model, fuzzy logic
system and radial basis network. The models were developed and validated using more than 250 data
sets. The following conclusions can be drawn from this work;

• The developed models showed very acceptable matches between the predicted and actual flow
rates for fishbone wells.

• Only three parameters are required as inputs to the models for determining the production rate of
fishbone wells: flowing bottomhole pressure, permeability ratio and lateral length.

• The developed models are able to estimate the fishbone productivity without introducing the
uncertainty present in numerical models.

• The ANN model outperforms all of the artificial intelligence methods in predicting the fishbone
productivity. Absolute errors of 7.23%, 13.92%, and 11.14% were obtained using the neural
network, fuzzy logic and radial basis function models, respectively.

• An empirical equation was extracted from the ANN model which can provide a direct and simple
determination of fishbone productivity.

• The extracted ANN-based equation can be inserted into commercial production software to
provide more accurate predictions for fishbone productivity.

• The proposed models can help production engineers in designing and optimizing their production
plans for complex wells.
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Abbreviations

AAPE Average absolute percentage error
AAPE_Test Average absolute percentage error for testing data set
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
b1 Bias for hidden layer neuron j
b2 Bias for output layer of ANN model
CC Correlation coefficient
CorrCoef_Test Correlation coefficient for testing data set
D Distance between laterals in ft
i Index for input parameters
j Index for hidden layer neurons
Kh Horizontal permeability in md
Kh/Kv Permeability ratio
KV Vertical permeability in md
L Length of lateral in ft
N Number of lateral or branches
Ni Total number of input parameters
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Pwf Flowing bottomhole pressure in psia
Pwfmax Average reservoir pressure in psia.
Q Flow rate in Mscf/D
Qmax Absolute open flow in Mscf/day.
w1i Weights vector between input and hidden layer for ANN model
w2i Weights vector between hidden and output layer for ANN model
xi Input parameters
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