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Abstract: Solar energy is considered the greatest source of renewable energy. In this paper, a case
study was performed for a single-axis solar tracking model to analyze the performance of the solar
panels in an office building under varying ambient temperatures and solar radiation over the course
of one year (2018). This case study was performed in an office building at the College of Engineering
at Shaqra University, Dawadmi, Saudi Arabia. The office building was supplied with electricity for a
full year by the designed solar energy system. The study was conducted across the four seasons of the
studied year to analyze the performance of a group of solar panels with the total capacity of a 4 kW
DC system. The solar radiation, temperature, output DC power, and consumed AC power of the
system were measured using wireless sensor networks (for temperature and irradiance measurement)
and a signal acquisition system for each hour throughout the whole day. A single-axis solar tracker
was designed for each panel (16 solar panels were used) using two light-dependent resistors (LDR)
as detecting light sensors, one servo motor, an Arduino Uno, and a 250 W solar panel installed
with an array tilt angle of 21◦. Finally, an artificial neural network (ANN) was utilized to estimate
energy consumption, according to the dataset of AC load power consumption for each month and
the measurement values of the temperature and irradiance. The relative error between the measured
and estimated energy was calculated in order to assess the accuracy of the proposed ANN model and
update the weights of the training network. The maximum absolute relative error of the proposed
system did not exceed 2 × 10−4. After assessment of the proposed model, the ANN results showed
that the average energy in the region of the case study from a 4 kW DC solar system for one year,
considering environmental impact, was around 8431 kWh/year.

Keywords: solar energy; energy use in building; energy consumption; environmental impact;
wireless sensor network; artificial neural networks single-axis solar tracker; irradiation measurement;
renewable energy; ambient temperatures; light sensor; servo motor; Arduino Uno; average energy

1. Introduction

The irresponsible use of the Earth’s non-renewable energy resources is causing serious damage
to all organisms on the planet. The uncontrolled usage of energy resources causes global warming,
pollution, and accelerates the depletion of these non-renewable resources. Consequently, the global
trend currently is to search for new, clean, and renewable sources of energy. Moreover, it is imperative
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to develop previously discovered energy sources to eliminate the damage caused by non-renewable
sources and to also compensate for the depletion of non-renewable resources in the future [1,2].

Solar energy has always been a promising source of renewable energy. It continues to attract
research into its optimal development and utilization as a result of the good response and remarkable
developments in solar energy systems to date. There has been a consistent, significant increase in
the number of researchers investigating photovoltaic (PV) solar cells. In recent years, significant
and remarkable developments have been observed in solar energy systems, which have led to a
significant increase in the renewable energy market, with more solar energy systems being installed [3].
According to the REN21 (2018) Global Status Report, 2017 was a very important year in the field of
solar energy, representing the increase of solar energy system installation above any other renewable
energy technology. According to this report, at least 98 GW of grid-connected and off-grid solar energy
systems were installed in this year, which led to an increase in the total global capacity [4].

Numerous studies have been conducted to improve the performance of solar panels by tracking
sunbeams. Active solar tracking devices use motors, gears, and sensors to track the Sun’s motion faster
and more accurately than passive tracking devices. Sensors help to detect the position of the Sun in all
directions. The motor motion is controlled by the signal coming from the Arduino board according to
the signal from sensors. If the solar rays do not fall vertically on the solar panel of the tracking system,
there will be a difference in the intensity of light falling on one sensor compared to the other sensors.
As a result, the motor receives a signal from the Arduino board to move the solar panel toward vertical
alignment of the solar rays [5]. A passive tracking system does not use any motors, gears, or controllers.
The movement of the passive tracking system depends on a low-boiling-point liquid or compressed
gas. The system moves due to the solar heat creating gas pressure, or the evaporation of liquid [6] due
to the heat of the Sun.

Many studies have been conducted to analyze the performance of solar cells and study the effects
of various factors such as temperature and radiation on the power extracted from the PV system.
It has been observed that the changes in irradiance and temperature significantly affect the overall
performance of PV systems [7–10].

Several methods have been developed for adjusting the single-diode model parameters under
different levels of temperature and solar irradiation [11]. The impacts of changes in solar irradiation on
seven parameters of the two-diode model have been studied, based on the levels of solar irradiation
at the standard maximum power point (MPP) test conditions. Computing the values of the seven
parameters at various levels of irradiation was carried out using the Runge–Kutta–Merson numerical
analysis method [12].

The effects of irradiance and temperature on the behavior of single-crystal silicon (mono c-Si),
polysilicon (poly-Si), and copper indium diselenide (CIS) solar cells were studied in [13]. The results
showed remarkable superiority of mono c-Si and poly-Si cells in the early morning compared with
CIS modules. However, as a result of the higher temperatures and radiation, this was diminished by
midday. It was also observed from these tests that the short-circuit current (Isc) increased for the three
types of modules only when temperatures increased, and that increasing irradiance had a positive
effect on the Isc, open circuit voltage (Voc), and maximum output power (Pmax) in all modules [13].

A theoretical study was conducted to analyze the performance of solar cells under the influence
of different temperatures and rapid changes of radiation, and the impact of these changes on the
power output of the cell. Tests were performed on 92 series-connected cells under the influence of
variable irradiation and temperature [14]. A new model for a photovoltaic cell has also been presented,
considering high variations in temperature and solar irradiance based on a one-diode PV cell [15].

A study was carried out on six different PV technologies to analyze the irradiance effect on the
shunt resistance of the PV cells. This study was conducted under 20 irradiance levels by measuring the
I–V characteristic of the PV modules. The results obtained showed an inverse relationship between
irradiance and the shunt resistance [16].
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Another study was conducted on seven polycrystalline solar cells to analyze the effects of
temperature and solar irradiance on the single-diode parameters when subjected to irradiance changes
in the range of 600 to 1000 W/m2 and temperature changes from 25 to 55 ◦C. The results obtained
from this study showed that shunt resistance increased with increases in temperature more than with
irradiance changes [7].

A new algorithm for maximum power point tracking (MPPT) based on the perturb and observe
method is implemented to achieve the high performance of the PV system with multi-changing in the
irradiance of the solar panels in a rapid manner. To investigate the performance of the tracking system
of the presented algorithm, a photovoltaic system was designed, simulated, and tested experimentally.
The results obtained from both the simulation and experiment showed that this algorithm had the best
accuracy, performance, and speed than the other methods with rapid multi-changing in the irradiance
of the solar panels. [17]. Eight theoretical models have been presented by developing two modules for
calculating the temperature of the PV module. The presented models were examined and compared
with the data obtained experimentally. The results obtained showed the extent of the agreement and
the convergence between the calculated and the measured temperature of the eight models [18,19].
The level of uncertainty was investigated by comparing the performance of a simple photovoltaic
model with the AC power of three photovoltaic systems when the measurements of the site module
temperature and the plane of array irradiance were not available [20].

Currently, most research studies focus on:

• the development of solar energy systems to increase the solar energy captured to connect them to
the grid, or

• the implementation of a hybrid system between solar energy and any source of other renewable
energy sources and then connecting the hybrid system to the grid.

A recent study investigated the possibility of integrating solar, wind, and wave energies together.
The experimental and simulation results showed the effectiveness of this hybrid system and its ability
to cover the required loads at any time [21].

An approach for increasing the efficiency of the solar panels was presented based on transparent
pyramidal covers. Several pyramids with various height ratios were used to cover the solar panels
to study their impact on the output voltage of the solar cells. The experimental results obtained
showed when pyramids with a vertical height equal to their base length and with an angle of light
incidence equal to 90 covered all the panels, the cover shape of the pyramids improved the output
voltage of the solar panels by 4.2% [22]. A hybrid concentrated photovoltaic thermal solar system
to generate high-temperature and electricity at the same time was modeled, simulated, and tested
experimentally [23].

At present, a large number of research studies have focused on the precise prediction of the
generation of solar energy, and particularly on the prediction of temperature and solar radiation.
Accurate forecasting of solar irradiation greatly helps in the precise and optimal design of a solar
energy system, which leads to improved solar energy generation. There are many methods used
in the forecasting process and researchers are still seeking to develop and discover more accurate
methods [24].

A model for forecasting the solar irradiation every hour was presented in [25]. The presented
approach predicted each hour of solar irradiation from the historical database in a day similar to the
forecasting day. The experimental results obtained indicated that the new approach gives a good
forecasting performance [26,27].

Accurate irradiation forecasting is essential for integrating this intermittent energy with the
network. One of the most effective and popular methods for hourly solar forecasting is machine
learning [28–31]. A new study used the deep neural network (DNN) method for forecasting the
short-term irradiation of solar panels [32]. Additionally, for energy estimation, the artificial neural
network (ANN) can be utilized that considers the impact of solar irradiance and temperature. The
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main idea behind the development of the ANN was to model the human brain in order to solve
complicated problems in a variety of scientific areas such as engineering, psychology, linguistics,
philosophy, economics, neuroscience, etc. An ANN is defined as a computing system that is made up
of a group of simple and highly interconnected processing elements (neurons) with linear or nonlinear
transfer functions. These elements pass the information through the energetic state to external inputs.
Neurons are used coordinately in several layers as the input layer, hidden layer(s), and output layer.

Currently, ANN is one of the most common and obvious prediction methods. This method
depends on the neural network theory. A study has been conducted to study the effect of the number
of input variables on the reliability of the ANN model used to predict the performance parameters of a
solar energy system. The study was conducted in Ottawa, Canada for two years in different weather
conditions. This study showed the accuracy of the ANN technique in predicting the performance of
solar energy systems with reduced input variables [33]. The ANN technique has been used to predict
the energy consumption of an excavator and CO2 emissions in different weather conditions. The
model used was based on five input parameters. The results proved that the neural network was able
to predict very accurately, in addition to the importance of the input parameters and their impact on
output [34].

This study investigated the performance of the solar panels for small power equipment in an
office building under conditions of diverse temperature and solar radiation fluctuations. A special
focus was the impact of seasonal changes in temperature on the solar panels in a 12-month period
(2018). Additionally, a pivotal objective was to determine which season(s) surpassed the rest in terms
of the production of energy from the solar panels. This study was conducted using a single-axis solar
tracking system. To assess the proposed model, the energy consumption for one year was investigated
using an ANN taking into account the impact of temperature and solar irradiance. The results show
that the average energy in the region of the case study with environmental impact for one year was
around 8431 (kWh/Year).

2. Methodology and Design Analysis

Sixteen high-efficiency solar panels were selected to ensure optimum performance levels of the
solar energy system that formed an integral part of this study. The purpose was to analyze the
performance of the solar cells under different weather conditions, primarily changes in temperature
and solar radiation during certain months of the year. Each cell was able to generate 250 Watt and
subsequently, the total capacity of the system was 4 kW. The system was installed to feed an office
building located in the College of Engineering at Shaqra University, Dawadmi, Saudi Arabia at 24.5◦ N
latitude and 44.4◦ E longitude as shown in Figure 1. The solar energy system used in this study
depended on single-axis solar tracking technology, see Figure 1b, which helped to increase the efficiency
of the solar cells. Usage of the tracking system increased the efficiency of the solar system by about
20% to 30%, in accordance with the climate changes and the location when compared to the fixed solar
panels. The single-axis solar tracking system was designed and tested experimentally at different times
throughout the day. The single-axis solar tracker with automatic control was designed using two light
dependent resistors (LDR) as detecting light sensors, one servo motor, an Arduino Uno, and 250 Watt
solar panels.
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Figure 1. Photovoltaic 4 kW system. (a) Photographic recording of 4 kW Photovoltaic (PV) modules,
(b) single-axis solar tracker with automatic control system, (c) a schematic diagram of the PV system.

3. System Configuration

3.1. Single-Axis Solar Tracking System

The solar tracking device is a device used to reduce the incidence angle between the incoming
light from the sun and the solar panels to increase the solar energy captured by the solar cells. This
process is done by changing the position of the solar panels according to the direction of the movement
of the sun from east to west. The solar tracker makes the solar panels face the sun directly at most
times of the day during the movement of the sun. This technique has only one level of freedom and
flexibility as it can only rotate the solar panel from one side to another. The block diagram shown in
Figure 2 explains that the sensors sent the analog signal to the microcontroller after sensing the amount
of light. The intelligent microcontroller then analyzed this signal and sent a signal to the servo motor
to move toward the light. It had only one axis for tracking the sun from sunrise to sunset.
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Figure 2. Block diagram of the single-axis solar tracker.

The light-dependent resistors (LDR) sensors were distributed in two different directions (see
Figure 1b). If the sun was on one side, the LDR sensor on this side captured the sunbeams and the
panel moved in this direction while the other sensor did not capture these sunbeams and vice versa.
However, when the sun was vertical on the solar tracker, the light was equal on both sides and therefore
the panel did not move. This model was less expensive than the dual-axis solar tracker and had a
longer lifespan because of the lack of moving parts.

3.1.1. Sensors

Light Dependent Resistor (LDR)

LDR is a light-sensitive resistor that is used for the indication of the absence or the presence of
sunlight. The resistance of the LDR is affected by the sunlight as its resistance decreased with the
increase in the sunlight intensity, as shown in Figure 3.
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Figure 3. Variation of LDR efficiency with solar radiation.

The LDR was used for sensing the intensity of sunlight in the tracking systems to track the
sunbeams and then to send a signal to the Arduino, which in turn gave the order to move the panel in
the irradiation direction. The voltage divider configuration was the best method used for connecting
the LDR sensors. The LDR acted as a variable resistance in the voltage divider circuit.

Temperature Sensor

To study the effect of temperature on the solar panels, the temperature was measured continuously.
The panels were mostly designed to work at a maximum temperature of 25 ◦C. Temperatures rise
significantly during the summer in Saudi Arabia, thus the impact of this rise on the performance of
solar panels was investigated. A high-accuracy sensor, TEHU-2121, was used to measure the ambient
temperature and consisted of the SensiNet wireless sensor network. This sensor is a highly accurate
wireless sensor.
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3.1.2. Servo Motor

The servo motor tended to operate in a voltage range from 4.5 to 6 V and the typical value was
5 V. It rotated in the shape of a semi-circle from 0 to 180 degrees (see Figure 1b). The servo motor was
connected through three wires: the power, ground, and control wires.

3.1.3. Arduino Uno

The Arduino, considered the brain of the solar tracking system, was responsible for activating
the motor to rotate toward the sunbeams through the signals received from the various sensors.
The Arduino UNO is a microcontroller board based on the Microchip ATmega328P microcontroller.
The Arduino board consisted of a set of digital and analog pins that were used as inputs and outputs.
It had six analog inputs and 14 digital I/O.

3.1.4. Solar Panel

Solar panels are the most important element in solar tracking systems and 250 W Mono solar
panels with an efficiency of 18% were used in the studied system. The whole system consisted of
sixteen high-efficiency solar panels, thus the total capacity of the system turned out to be 4 kW. The
dimension of the solar panel was 159 × 99 × 3.5 cm (see Figure 1a). The weight of each panel was 18 kg.

3.1.5. Working Principle of the Tracking System

The working principle of the single-axis solar tracking system depends on the signals received
by the microcontroller from the two LDR sensors. As above-mentioned, the Arduino UNO had a
set of digital and analog pins that were used as inputs and outputs. LDR sensors were connected
to the analog pins, which represented the inputs of the tracking system as shown in Figure 4. The
Arduino had a built-in Analog to Digital Converter (ADC) that was used for converting the analog
signal from LDR sensors into a digital signal. The intensity of the light on both LDR sensors was
compared together. If the intensity of the light on one LDR was more than the other LDR, a signal was
sent from the Arduino to the servo motor to move in the direction of the LDR that had the highest light
intensity. The solar panel moved in parallel with the servo motor movement in the same direction that
had the maximum light intensity.
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The input voltage, Vin, was applied to the LDR circuit. The analog output voltage, Vout, varied
based on the LDR resistance, RLDR, which varied according to the intensity of the sunlight. This is
illustrated using the voltage divider equation represented below:

Vout = Vin
RResistors

RResistors + RLDR
(1)

where RResistors represents the total circuit resistance.
The analog output voltage was sent from each LDR to the Arduino. The microcontroller then

automatically converted the analog output voltage (0–5 V) to digital output voltage from (0–1024 V)
through the built-in ADC. After that, the microcontroller analyzed the data obtained and calculated
the difference between the two sensor voltages. Considering that, Vw represents the sensor voltage
value of LDR located at the west direction and Ve represents the sensor voltage value of LDR located
toward the east. The difference between the two sensors was then compared to the selected tolerance.
When the difference between the two sensors was more than the tolerance value that had been selected,
the microcontroller sent a digital signal to the servo machine to rotate the solar cell in the correlated
direction, as shown in Figure 5.
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3.2. Battery

Solar panels are able to produce electrical energy only when there is solar radiation. Therefore, a
storage system must be provided to store the excess energy to be used in times when there is no solar
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radiation. The battery used in this solar system was a 12-V gel battery, (gel battery is a valve-regulated
lead-acid battery (VRLA) with a gel electrolyte cell technology battery), see Figure 1c. This battery had
a nominal capacity of 200 Ah. The life span of the battery was eight years. The number of batteries
used was eight batteries connected, respectively, thus the total voltage became 96 V.

3.3. Charge Controller

The charge controller was one of the most important parts in this system due to the random
nature of solar energy and the fluctuations that occur as a result of climatic changes. Its function was
to regulate the charge and discharge of batteries to protect batteries from overcharging. The charger
automatically adjusted itself to the system voltage. A 60 A MPPT solar charge controller was used in
the proposed system and had a LCD to display the working status of the controller (see Figure 1c). The
efficiency of the MPPT solar charge controller was higher than the traditional solar charge controller
as it made the solar panel work at the optimal power point, which increased the efficiency to reach
98 percent, reducing the amount of energy lost. It had the ability to automatically recognize the system
voltage and could also charge all kinds of batteries.

3.4. Inverter

Most of the load in the office building were AC loads. To take advantage of the energy obtained
from the solar panels, the DC electricity had to be converted to AC electricity. This process was done
by the DC–AC inverter (see Figure 1c). The rated power of the inverter was preferred to be higher than
the maximum AC load by 10–25%, and in turn, the specified inverter was preferred as suitable for the
charge controller. The selected inverter had a 4 kW rated power.

3.5. Load Reference

The office building studied contained:

• lights
• a fan, an air conditioner (1.5 HP), an extractor fan
• a computer, a printer, and a fax machine
• a refrigerator, an electric kettle, a water cooler
• a sound system

Table 1 shows the values of these loads. The PV system was used to supply the loads in the office,
as shown in Table 1. The load power consumed was not constant and depended on the load variation
and the amount of DC power from the PV system, which in turn was influenced by the amount of
irradiation received as well as the ambient temperature.

Table 1. Loads of an office building in Dawadmi, Saudi Arabia.

Load Type Load’s (Watt) No. Total (Watt)

Lights 11 W 10 110 W

Fan 80 W 2 160 W

Computer 150 W 2 300 W

Printer 250 W 1 250 W

Fax machine 150 W 1 150 W

Electric kettle 1200 W 1 1200 W

water cooler 550 W 1 550 W

Air conditioner (1.5 HP) 1120 W 1 1120 W

Extractor Fan 12 W 2 24 W

Sound System 84 W 1 84 W

Total 3948 W
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4. Estimating the Energy Consumption from the Proposed Model

To estimate the energy consumption taking into account the impact of the temperature and
irradiance with the AC power consumption from the reference load connected to 4 kW DC PV modules,
a proposed artificial model using an artificial neural network (ANN) was presented. The ANN
considered the system as a single-axis tracking system with an array tilt of 21

◦

and array azimuth of
180

◦

. In addition, an estimation value from the data measured of system losses around 14.08% and
inverter efficiency of 96% with DC to AC load size ratio of 1.2 was taken into account.

4.1. Artificial Neural Network (ANN)

An ANN is an algorithm that mimics the behavior of the human brain. This algorithm is similar
to the human brain in the way it works and that distinguishes it from other techniques. It relies on
non-linear mathematics, which enables it to design complex and non-linear systems.

The number of neurons and layers in an ANN model depends on the complication status of the
system. The ANN finds the relationship between the input and output elements of the system by using
an iterative procedure called the training phase. All input and neurons have their own related weight.
Weights are numbers that are determined through the training process [32–35]. Choosing the correct
parameters as inputs and outputs of the ANN is very important to build an accurate and dependable
model. The availability of data for choosing parameters, system information for the identification of
correlation between different parameters, and the goal for the constructing model are basic factors in
selecting suitable inputs and outputs. Accuracy of the selected output parameters can be tested by
sensitivity analysis.

The ANN has many advantages and disadvantages in the prediction of consumed energy, and the
advantages of an ANN can be described as:

• providing the least error in the nonlinear input;
• has the ability to provide a relationship between input and output without complex

mathematical equations;
• learns and makes decisions easily; and
• has flexibility in modeling.

The disadvantages of an ANN can be summarized as:

• errors may occur in the forecasting process due to over fitting;
• training may be unstable, which leads to errors in the forecasted model;
• many parameters need to be determined (such as weights); and
• the inability to use information from a small sample size and low convergence.

To overcome these disadvantages, a huge number of data could be used for training the
proposed ANN.

The proposed system depended on the variation of AC power over time during each studied
month in order to predict the energy consumption. The non-linearity in the proposed model that
required a consideration of the ANN algorithms was the non-linearity of the system and energy
consumption regarding the impacts of temperature and irradiance in this prediction.

Figure 6 shows the training structure of the ANN with five inputs, one output and 60 neurons
in one hidden layer [35]. The proposed system required only one hidden layer and a maximum of
60 neurons to obtain the prediction of the consumed energy during each month with high accuracy.
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4.2. Transfer (Activation) Function

Transfer (activation) functions transform the activation level of a unit (neuron) into an output
signal. There are various transfer functions included in the Neural Network Toolbox in the MATLAB
environment [35]. Transfer function could be placed into three categories:

• linear transfer functions;
• log-sigmoid transfer function; and
• tan-sigmoid transfer function.

The suitability of the case study due to the variation of the temperature and irradiance value was
the log-sigmoid transfer function. Figure 7 shows the proposed transfer functions that were used for
training the neural networks.
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The process to find the output is determined by:
For jth hidden neuron, the output of the first hidden layer y j is estimated from

y j = 1/(1 + exp(−(
n∑

i=1

w jixi − b j))) j = 1, 2, . . . , N (2)
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where xi is the ith input; b j is the base of the first hidden layer; and w ji are the weights between the ith

input neurons and the jth first hidden neurons.
The required output from the lth output layer is determined by:

Ol = (
N∑

j=1

wl jy j) l = 1, 2, . . . , H (3)

where wlk is the weights between the jth first hidden neurons and the lth output neurons.

4.3. Error Criteria

The objective in training the ANN was to minimize as many errors as possible. Minimization of
errors simply means improving the performance of the training and obtaining a more accurate model.
Different definitions and types of errors may be considered when training the ANN. For instance,
absolute error is defined as the difference between the measured (actual) output and the desired output
(target). However, it is common to use the mean square error (MSE) when training the ANN. The MSE
is defined according to Equation (4), as given by [35],

MSE =
1
n

n∑
i=1

{
ymi − yi

ymi

}2

(4)

where ym is the measured average value of energy consumed in the office building for each hour during
each month, which is the input to the system as training and check data; y is the output target that
represents the prediction of the consumed energy of the proposed system; i is the number of datasets;
and n is the number of training patterns.

The relative error can be used to compare the proposed estimated ANN energy consumption and
the measured one.

relative error = ymi − yi i = 1, 2, . . . , n (5)

In addition, relative error can be utilized to update the weights of the ANN to minimize the MSE.
The fitness value of the training pattern is computed by:

Fitness(Xi) = min(MSE) (6)

4.4. Training Methodology of the Proposed ANN

Designing an ANN model that can predict the average monthly energy consumption requires
determining the number of input parameters. These parameters are:

• the average temperature;
• the average solar irradiance;
• the average AC power output; and
• months of the year and the holidays

The measured data of average solar radiation, temperature, AC consumed power of the system
during each hour of the twelve months for one year considering the holidays using a wireless sensor
network (for average temperature and irradiance measurement) were utilized as the input training
data of the proposed ANN, as seen Figure 8.

According to the dataset of the AC load power consumption during each hour for different
months, the ANN used these data for estimating the energy consumption, considering not only the
AC load power, but also the average measurement values of the temperature and irradiance with
time variation.
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The predicted average monthly energy consumption represented the output. All variables,
weights, and the number of hidden layers were adjusted. The mean square error (MSE) was calculated
and compared with the target entered before, which represented the energy consumed per hour during
the month system as shown in Figures 8 and 9.

The training methodology of the proposed ANN in the details is clarified in Figure 9 and explains
the correlation of the first hidden layer between the input neuron data and output target fitness function.
The final results obtained after different updating cycle to the ANN weights depended on the MSE
values until the proposed algorithm reached the minimum MSE.
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5. Results Analysis

The study was conducted during the four seasons of the year in 2018 to study and analyze the
seasonal performance of solar panels. A single-axis solar tracking system was used for a group of solar
panels with a total capacity of 4 kW. The solar radiation, temperature, and output power of the system
were measured during winter, spring, summer, and finally, autumn.

5.1. The Winter Season

The results obtained during winter were taken in December. During winter, the temperature
decreases, and solar radiation is reduced. Figure 10 shows the variation of the radiation during 720 h
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in December. Figure 11 shows the low and largely random temperatures. The changes in temperature
and irradiation affected the output power of the 4 kW solar system, as shown in Figures 12 and 13.
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5.2. The Spring Season

The results obtained during spring were taken in March, the beginning of spring in the Northern
Hemisphere. This season is characterized by its temperate climate, where the temperature and the
average solar radiation are moderate as the number of daylight hours equals the number of night
hours. The irradiation changes during 720 h in March are shown in Figure 14.
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The temperature in spring is fairly moderate, ranging from 10 to 30 degrees during the night and
day as shown in Figure 15. The changes in the output power of the solar panel during this month are
shown in Figures 16 and 17.
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5.3. The Summer Season

The results obtained during summer were taken in June 2018. June is the beginning of summer in
the Northern Hemisphere.

The summer season is the hottest season of the year and consequently, receives the most solar
irradiation of all the other seasons in the year. The number of daylight hours during this season was
greater than the number of hours of night. Subsequently, the solar panels underwent a longer period
of exposure to solar radiation during the day.

The irradiation changes during 720 h in June are shown in Figure 18. The temperature in the
summer is very high, ranging from 30 to 45 degrees during the night and day as shown in Figure 19.
The changes in the output power of the solar panels during this month are shown in Figures 20 and 21.



Sustainability 2019, 11, 6802 18 of 24
Sustainability 2019, 11, x FOR PEER REVIEW 18 of 29 

 

 

 

Figure 18. The irradiation changes during 720 hours in June. 

  

Figure 18. The irradiation changes during 720 h in June.

Sustainability 2019, 11, x FOR PEER REVIEW 19 of 29 

 

 

 

Figure 19. Ambient temperature changes during 720 hours in June. 
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5.4. The Autumn Season

The results obtained during autumn were taken in September 2018. September is the beginning of
autumn in the Northern Hemisphere. The weather in the autumn is somewhat irregular because it
mediates between summer and winter. In this season, temperatures drop gradually. At the beginning
of the season, the temperatures remain fairly high. As the season progresses, temperatures gradually
decline to signal the transformation from autumn to winter. The irradiation changes during 720 h in
September are shown in Figure 22. The temperature in autumn is very irregular, ranging from 25 to
42 degrees during the night and day as shown in Figure 23. The changes in the output power of the
solar panel during this month are shown in Figures 24 and 25.
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5.5. Estimating the Energy Consumption Using ANN

In the proposed model of the 4 kW DC system PV modules of single-axis tracking system with an
array tilt angle 21

◦

and an array azimuth of 180
◦

, considering system losses of 14.08% and inverter
efficiency of 96% with DC to AC load size ratio of 1.2, the energy consumption estimation using the
ANN during one year was investigated and the results are explained in Table 2.

Table 2. Energy consumption estimation resulting from the ANN during one year for a 4 kW PV system
used to supply the load of an office building in Dawadmi, Saudi Arabia.

Month Average Solar Radiation (kWh/m2/day) Average High Temperature (◦C) AC Energy (kWh)

January 6.78 21 662

February 7.37 23 633

March 7.66 27 722

April 7.77 33 688

May 8.51 39 749

June 9.14 42 771

July 8.92 43 778

August 8.92 43 765

September 8.96 40 746

October 8.65 35 767

November 6.93 28 607

December 5.59 22 543

Annual 7.93
(
kWh/m2/Year

)
33 ◦C 8431 (kWh/Year)
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From Table 2, the average AC energy consumption estimated from the proposed model for the
case study was around 8431 (kWh/Year), which represents the efficiency of the proposed model under
the impact of the temperature and solar irradiance.

5.6. Relative Error (Accuracy of Proposed ANN)

In order to assess the accuracy of the proposed ANN, the relative error between the ANN proposed
estimated value of energy consumption and the measured one was investigated.

The maximum absolute value of the relative error did not exceed 2 × 10−4 during the whole
investigated year. This indicates that the proposed ANN for the estimated energy consumption
provided good results with high accuracy.

Figures 26–29 give different examples of the calculated relative error during different months that
represent different seasons during the year. From these figures, it is clear that the proposed ANN
estimated value increased or decreased from the measured value in a very small and limited error of
around 2× 10−4.
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Figure 26. Relative error between the estimated and measured energy consumption during December.
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Figure 27. Relative error between the estimated and measured energy consumption during March.
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Figure 28. Relative error between the estimated and measured energy consumption during June.
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6. Conclusions

Looking at the obtained results, it is evident that solar cell performance was higher at moderate
temperatures. It is clear from the results that during the spring season, the efficiency of the solar panel
was very high compared to the other seasons. The output power reached about 3250 W during this
season, which was the highest reached out of all four seasons. This was due to the presence of high
radiation of about 990 W/m2 and moderate temperature (high/low) about (33/18) degrees in spring.
For radiation conditions with different temperatures during the four seasons, it was found that the
solar panels did not produce the same power. The increase in solar radiation led to an increase in
output power. Despite obtaining the highest power from the solar panels during spring, the output
power was irregular due to the climatic changes during this season. In this season, temperatures rose
and fell as well as experiencing irregular solar radiation. During autumn and summer, the resulting
power was most regular due to the stability of solar radiation and temperature. Estimating energy
consumption using an ANN was presented during the year considering the impacts of temperature
and irradiance for the 4 kW PV modules used in an office building. The single-axis tracking system
in operation with an array tilt angle of 21

◦

and an array azimuth of 180
◦

was taken into account as
well as system losses of 14.08% with an inverter efficiency of 96% and DC–AC load size ratio of 1.2.
The results obtained from the ANN with 60 neurons for the value of energy consumption was given
of around 8431 (kWh/Year) for the average solar radiation of 7.93

(
kWh/m2/Year

)
and maximum
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average temperature of 33
◦

C. The maximum relative error of the proposed ANN estimated energy
algorithms did not exceed 2× 10−4.
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