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Abstract: Carbon dioxide (CO2) injection is one of the most effective methods for improving
hydrocarbon recovery. The minimum miscibility pressure (MMP) has a great effect on the performance
of CO2 flooding. Several methods are used to determine the MMP, including slim tube tests, analytical
models and empirical correlations. However, the experimental measurements are costly and
time-consuming, and the mathematical models might lead to significant estimation errors. This paper
presents a new approach for determining the MMP during CO2 flooding using artificial intelligent
(AI) methods. In this work, reliable models are developed for calculating the minimum miscibility
pressure of carbon dioxide (CO2-MMP). Actual field data were collected; 105 case studies of CO2

flooding in anisotropic and heterogeneous reservoirs were used to build and evaluate the developed
models. The CO2-MMP is determined based on the hydrocarbon compositions, reservoir conditions
and the volume of injected CO2. An artificial neural network, radial basis function, generalized
neural network and fuzzy logic system were used to predict the CO2-MMP. The models’ reliability
was compared with common determination methods; the developed models outperform the current
CO2-MMP methods. The presented models showed a very acceptable performance: the absolute
error was 6.6% and the correlation coefficient was 0.98. The developed models can minimize the time
and cost of determining the CO2-MMP. Ultimately, this work will improve the design of CO2 flooding
operations by providing a reliable value for the CO2-MMP.

Keywords: minimum miscibility pressure (MMP); CO2 flooding; artificial intelligence; new models

1. Introduction

Enhanced oil recovery (EOR) processes are used to create favorable conditions for producing oil,
through interfacial tension (IFT) reduction, wettability alteration or decreasing the oil viscosity [1].
CO2 injection is one of the most practical and effective EOR methods because it significantly reduces
the oil viscosity and improves the sweep efficiency [2,3]. The minimum miscibility pressure (MMP)
plays a significant role in designing the gas flooding operations. The minimum miscibility pressure
can be measured using slim tube tests [4]. However, the laboratory measurements are costly and
time-consuming [5]. MMP can also be determined using empirical correlations, but these correlations
can lead to significant deviations, where the absolute error can reach up to 25% [6–10]. Several
empirical correlations were proposed to estimate the MMP based on the reservoir condition and
the fluids compositions. The empirical correlations were developed utilizing regression approaches.
The common correlations are the Glaso correlation, Sebastian et al. correlation and Khazam et al.
correlation [6,8,9]. Generally, the accuracy of the empirical correlations is increasing as the mathematical
complexity of the equation increases. Most of the empirical correlations are used mainly for the fast
screening applications [10].
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In addition, analytical methods have been coupled with the equation of state (EOS) to estimate the
MMP, and an average absolute percentage error of 15.7% is reported. The main advantage of analytical
methods is that they can determine the MMP without introducing uncertainties associated with the
condensing or vaporizing displacement (CV) process. Since the displacement processes are associated
with complex miscibility mechanisms and then reduce the reliability of MMP prediction [11–13],
Yuan et al. [14,15] applied the analytical gas theory to estimate the CO2-MMP. They used more than
180 data sets to build and evaluate the proposed semi-empirical model. They concluded that the
developed model is more accurate and reliable than the empirical correlations, with a maximum
average absolute percentage error of 9%. Furthermore, numerical approaches are used to determine
the MMP. Fine-grid compositional simulations are utilized to solve the equation of state for particular
grid sizes. The advantage of this approach is that it can be applied for heterogenous system of different
pressure and temperature distributions as well as various fluid compositions. However, the numerical
models can suffer from stability problems and may require a significantly small time-step in order to
obtain stable solutions [10,15].

The use of artificial intelligence (AI) has proved to be an effective tool for prediction tasks because
AI can capture the complex relationships between the output and input parameters [16]. Artificial
neural network (ANN) is the most famous technique applied in the petroleum industry [17–20]. ANN
technique has been utilized to predict the drilling fluids rheology, estimate the reservoir permeability
and characterize the unconventional reservoirs [21–26]. AI also has been used for predicting the
performance of several enhanced oil recovery (EOR) processes, such as steam-assisted gravity drainage
(SAGD) process in heavy oil reservoirs [27–29].

Edalat et al. [30] presented a new ANN model to determine the MMP during hydrocarbon injection
operations. Multi-layer perceptron (MLP) with two-layer feed-forward backpropagation were used.
A total of 52 data points from an Iranian oil reservoir was employed with 20% for testing and 80% for
training. They compared their results with a slim tube test and correlations, the maximum error of
18.58% and R-squared (R2) of 0.938 is reported. They concluded that their ANN model can determine
the MMP for different fluid compositions.

Dehghani et al. [31] combined a genetic algorithm with an ANN technique (GA–ANN) to
determine the minimum miscibility pressure for gas injection operations. A total of 46 data
points of MMP experiments were utilized, and back propagation with two hidden layers was
used. The GA–ANN model predicts the MMP using the reservoir parameters and the injected-gas
composition. They concluded that the developed model can afford a high level of dependability and
accuracy for determining the MMP.

Shokrollahi et al. [32] utilized a support vector machine technique to determine the MMP for
CO2-injection operations. A total of 147 data points from experimental CO2-MMP was used to
developed and validate the model reliability, and the values of coefficient of determination (R2)
and average absolute percentage error were 0.90% and 9.6%, respectively. They mentioned that the
proposed model shows high performance and good matching with the experimental data.

Liu et al. [33] suggested an improved method for estimating the CO2-MMP utilizing magnetic
resonance imaging (MRI). The obtained results showed good agreements with the experimental
measurements. Khazam et al. [9] developed a simple correlation to determine the CO2-MMP using a
regression tool. A total of 100 PVT measurements from Libyan oilfields were used with a wide range
of conditions, and a CO2-MMP between 1544 and 6244 psia. The developed correlation requires the
values of the oil properties and system condition (pressure and temperature) to estimate the CO2-MMP
with a high degree of accuracy, R2 is 0.95 and AAPE is 5.74%. However, the model was developed
based on limited data and from one region, and all samples were collected from Libyan oilfields.
Czarnota et al. [5] presented a new approach to estimate the CO2-MMP using an acoustic separator
by taking images for the CO2/oil system as a function of system pressure. They mentioned that the
proposed approach can minimize the time required to obtain the CO2-MMP.
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Rostami et al. [34] applied the support vector machine (SVM) technique to estimate the CO2-MMP
during CO2 flooding. SVM was used to determine the CO2-MMP for live and dead crude oil systems.
The developed model showed an accurate prediction with the average absolute relative deviation
(AARD) of less than 3% and minimum coefficient of determination (R2) of 0.99. However, no direct
equation is reported and the developed SVM model is considered as a black box model. Alfarge
et al. [35] used laboratory measurements and field studies to characterize the CO2-flooding in shale
reservoirs; more than 95 case studies were used. They constructed a proxy system to predict the
incremental oil recovery based on the affecting parameters. The relationship between rock properties
and incremental oil recovery were explained; the effect of permeability, porosity, total organic carbon
content and fluid saturations on oil production was investigated. They mentioned that their findings
could help to understand the complex recovery mechanisms during CO2-EOR operations.

Based on an intensive literature review, significant deviations between the measured and predicted
CO2-MMP was observed. Analytical and empirical models can lead to considerable estimation errors.
Artificial intelligence methods can improve the prediction performance for CO2-MMP. However,
the available AI models were developed based on the hydrocarbon’s injection, not CO2 flooding
data, which may lead to unreliable predictions. The difference between hydrocarbons injection and
CO2-flooding is significant in terms of system disturbance and miscibility mechanisms [10,14,15].
Usually, hydrocarbons injection was implemented by injecting the same reservoir composition, while
CO2-flooding introduces new components into the reservoir system which results in disturbing the
reservoir system. First contact miscibility (FCM) is usually associated with hydrocarbon injection
while injecting non-hydrocarbon fluids (such as CO2 and N2) leads to multiple contact miscibility
(MCM) [10,15]. Considerable errors could be generated when hydrocarbons injection models are used
to predict the CO2-flooding performance [34,35]. Therefore, looking for a reliable model to estimate
the CO2-MMP based on actual CO2-flooding data is highly needed.

In this paper, a reliable approach is presented to determine the MMP during the CO2 miscible
flooding. Several artificial intelligence (AI) methods were studied, such as neural network, radial basis
function, generalized neural network and fuzzy logic. The studied models investigate the significance
of reservoir temperature, oil gravity, hydrocarbon composition and the injected-gas composition on the
CO2-MMP. More than 100 data sets belonging to actual CO2-MMP experiments were used to develop
and investigate the model reliability. This work introduces an effective approach for estimating the
MMP during CO2-flooding, which could be used to refine the current numerical or analytical models
and result in a better determination of the CO2-MMP.

2. Methodology

The data used were gathered from several published papers [7,10,14,15,36,37]. The minimum
miscibility pressures (MMP) were measured using slim tube tests. The used dataset covers a wider
range of reservoir conditions and hydrocarbon compositions; the main inputs are fluid composition,
reservoir temperature and molecular weights. The dataset was randomly categorized into two divisions,
training group (70% of the total data set) and testing group (30% of the total data). Before developing
the AI models, statistical analysis was conducted by determining the minimum, maximum, mean,
mode and other parameters, as listed in Table 1. The temperature data is changing in a range of 229 ◦F
with a minimum value of 71 ◦F, maximum of 330 ◦F and arithmetic mean of 185.67 ◦F. The MMP values
are changing between 1100 psia to 5000 psia with an arithmetic mean of 2583.49 psia. The statistical
dispersion for MMP results was measured by calculating the standard deviation, skewness and kurtosis,
and values of 876.98, 0.21 and 2.20 were obtained, respectively, which indicates that the data points are
spread out over a wider range of values.
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Table 1. A statistical analysis of the input and output data used in this study.

Parameter Temperature, ◦F Mole % of C2–C6 MW of C7+ MMP, psia

Minimum 71.00 2.00 139.00 1100.00
Maximum 300.00 43.50 319.70 5000.00

Arithmetic Mean 185.67 22.06 204.85 2583.49
Range 229.00 41.50 180.70 3900.00

Variation 3630.62 73.64 1550.35 769,100.02
Standard deviation 60.25 8.58 39.37 876.98

Skewness 0.23 0.16 −0.11 0.21
Kurtosis 2.00 2.54 2.53 2.20

Coefficient of variation 32.45 38.90 19.22 33.95

In addition, the frequency histograms were obtained for all data to give a rough estimation for
the distribution density. The data set showed a multimodal pattern as shown in Figure 1. Finally, the
correlation coefficient was determined to measure the strength and direction of the linear relationship
between the input data and MMP data, Figure 2. Values of 0.7481, −0.493 and 0.1626 were obtained
for temperature, mole fractions, and molecular weight, respectively, which indicates a weak linear
relationship for both the mole fractions and molecular weight. Histogram plots indicate that most of
the data set can be represented by the multimodal pattern. The correlation coefficient analysis reveals
that the MMP has a weak relationship with the molecular weight, moderate relationship with the mole
fractions, and a strong relationship with the system temperature.
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Figure 1. Histograms of input and output data. (A) Reservoir temperature, (B) Mole % of C2–C6,
(C) MW of C7+ and (D) CO2-MMP (MMP = minimum miscibility pressure).
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Figure 2. Correlation coefficient analysis: the effect of input parameters on CO2-MMP.

The correlation coefficient analysis showed that the molecular weight of C7+ and the mole fractions
of C2–C6 have a small effect on the MMP; however, those parameters are playing a significant role
in controlling the MMP. Therefore, to improve these relationships the input data was transformed
to different domains using different approaches (i.e., log, power, sigmoidal, etc.) until the best
relationships, that have the highest correlation coefficient values, were obtained. Using the power
model with power values of −1 and −0.5 for the molecular weight and the mole fraction, respectively,
showed the best relationships between the input and output parameters (results are listed in Table 2).

Table 2. Correlation coefficient analysis for original and power transformed data.

Input Parameters Correlation Coefficient

Original Data Power Transformed

Temperature 0.7481 0.7481
C2–C6% −0.4935 0.6682
MWC7+ 0.1626 0.4982

3. Results and Discussion

Different artificial intelligence methods were used to obtain the optimum model that has the
lowest average absolute percentage error (AAPE) for both the training and testing data and has the
maximum correlation coefficient (R) value. Appendix A illustrates the equations used to calculate the
AAPE and R. Sensitivity analysis was performed to fine tune the model parameters; the most suitable
models are reported in this paper.

Initially, the original data were used to predict the MMP; however, significant errors were observed
for all AI models. For example, the ANN model gave an error of 41.39%, and fuzzy logic system
showed an error of 26.14%. Therefore, data processing techniques were implemented, by filtering
the data to remove the outlier based on the average values and standard deviation (SD). The input
data were also transformed into another domain using a power model. Trial and error technique
was used to determine the best combination for the input parameters. Mainly, the fluid composition
was categized into two groups: the first group is the mole percentage of ethane to hexane (C2 to
C6%) and the second group is the molecular weight of heptane plus (MW C7+). Then, the square root
of the first group (C2 to C6%) and the reciprocal of the second group (MW C7) were used as input
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parameters. As results of that, the error was reduced significantly, for example, in the ANN model
the error decreased from 41.392% to 9.682%. The results from the artificial intelligence techniques
are discussed below. Moreover, the problem of local minima was avoided by running the AI models
several times using different model parameters. The profile of the error for the training and the testing
data sets were also monitored during the phase of model development and validation. The error
profiles were used to avoid the model memorization and the local minima problems.

3.1. Artificial Neural Network

Figure 3 illustrates a schematic of the ANN model developed for estimating the CO2-MMP. The
model inputs are reservoir temperature (Temp.), the molecular weight of the heptane plus (MWC7+)
and the mole fraction of ethane to hexane (C2–C6%). The ANN model was trained using the seen data
(training dataset), then the model becomes ready to determine the MMP for the testing data (unseen
data). The model parameters were fine-tuned to minimize the AAPE and maximize the correlation
coefficient. The ANN parameters were fine-tuned by changing the number of hidden layers and the
number of neurons per each layer, and the best predictive models listed in Table 3. Three cases were
reported, the number of hidden layers and neuron per each layer were varied to find the best ANN
model. A minimum error of 7.22% and a relatively high correlation coefficient of 0.974 were obtained
by using one hidden layer with 20 neurons. Figure 4 shows the predicted results against the actual
values for training and testing data for visual validation.

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 16 

 

3.1. Artificial Neural Network 

Figure 3 illustrates a schematic of the ANN model developed for estimating the CO2-MMP. The 

model inputs are reservoir temperature (Temp.), the molecular weight of the heptane plus (MWC7+) 

and the mole fraction of ethane to hexane (C2–C6%). The ANN model was trained using the seen data 

(training dataset), then the model becomes ready to determine the MMP for the testing data (unseen 

data). The model parameters were fine-tuned to minimize the AAPE and maximize the correlation 

coefficient. The ANN parameters were fine-tuned by changing the number of hidden layers and the 

number of neurons per each layer, and the best predictive models listed in Table 3. Three cases were 

reported, the number of hidden layers and neuron per each layer were varied to find the best ANN 

model. A minimum error of 7.22% and a relatively high correlation coefficient of 0.974 were obtained 

by using one hidden layer with 20 neurons. Figure 4 shows the predicted results against the actual 

values for training and testing data for visual validation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Artificial neural network (ANN) model architecture with input, hidden and output layers. 

 

1500

2000

2500

3000

3500

4000

1500 2000 2500 3000 3500 4000

P
re

d
ic

te
d

  
M

M
P

, 
p

si
a

Actual MMP, psia

ANN Training

R = 0.97

AAPE = 6.62%

(A)

 

 

 

Figure 3. Artificial neural network (ANN) model architecture with input, hidden and output layers.

Table 3. Artificial neural network (ANN) for testing results.

No. of Hidden Layers No. of Neurons in Each Layer R AAPE, %

1 20 0.95 7.61
2 20 0.94 10.42
3 20 0.93 12.45
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data set and (B) the testing data.

3.2. Fuzzy Logic System

Different cases were investigated to optimize the model parameters and achieve the best possible
model, and the results are represented in Table 4 and Figure 5. Correlation coefficients (R) and absolute
error (AAPE) for testing data were used to select the optimum model. Increasing the cluster radius
led to better results, i.e., increase the R-values and decrease AAPE for the testing data. Increasing
the number of iterations led to worse results that could be due to memorization, i.e., decreasing the
R-values for testing data; 50 was selected as the optimum value for the iteration number. Case 7 has
the lowest AAPE of 9.54%, and can be considered as the best possible model.
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Table 4. Results of using the fuzzy logic system for testing results.

Case No. Cluster Radius Number of Iterations R AAPE, %

1 0.1 200 0.76 17.09
2 0.3 200 0.86 14.65
3 0.6 200 0.89 10.77
4 0.7 200 0.87 11.61
5 1 200 0.83 13.80
6 0.6 100 0.89 10.58
7 0.6 50 0.89 9.86
8 0.6 10 0.84 13.47
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3.3. Generalized Neural Network

A generalized neural network (GRNN) was used to determine the CO2-MMP based on the
reservoir temperature and the hydrocarbon composition. This network showed a good performance
for predicting the minimum miscibility pressure. Table 5 and Figure 6 summarize the results obtained
using the GRNN method. Several cases were investigated to optimize the model parameters. It was
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found that increasing the spread from 1 to 50 led to improving the R-value from 0.96 to 0.98. Different
training functions were also tested, with “newgrnn” showing the highest performance among the
others. The best GRNN model (Case 2) showed an error of 7.02% and R-value of 0.98.

Table 5. Generalized regression neural network (GRNN) results for the testing data.

Case No. Training Function Spread R AAPE, %

1 newgrnn 1 0.96 9.69
2 newgrnn 10 0.97 8.79
3 newgrnn 50 0.98 16.14
4 newrbe 1 0.97 18.07
5 newrbe 10 0.48 19.76
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Figure 6. Cross plot of actual against predicted CO2-MMP using the GRNN model for (A) the training
data set and (B) testing data.
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3.4. Radial Basis Function

Different model parameters (goal, spread, the maximum number of neurons and number of
neurons) were studied to achieve the optimum values. Generally, increasing the goal values mean
increasing the model tolerance, leading to increases in the AAPE and a decreased R-value; the same
trend was observed for the spread. Table 6 summarizes the obtained results for 5 cases. For this data
set, the goal showed a minor effect in obtaining a better solution, and the value of 0.5 is selected for
the goal. Reducing the spread has a positive effect in improving the solution, spread of 10 is selected.
Increasing the MN (maximum number of neurons) led to memorization and then reduced the R-value,
and 20 MN is selected as an optimum value. The number of neurons to add between displays (DF) has
a small effect in improving the model accuracy; a DF of 1 is selected. Based on the previous analysis,
the optimum case could be obtained by using the goal of 0.5, the spread of 10, MN of 10 and DF of 1,
the obtained R is 0.98 and the AAPE is 6.56% (Case 4); the obtained results are shown in Figure 7.
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Figure 7. Cross plot of actual against predicted CO2-MMP using the radial basis function (RBF) model
for (A) the training data set and (B) testing data.
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Table 6. Radial basis function network (RBF) results for unseen data.

Case No. Goal Spread MN DF R AAPE, %

1 0 100 10 1 0.96 8.98
2 0.5 100 10 1 0.96 8.98
3 1 100 10 1 0.96 8.98
4 0.5 10 20 1 0.98 6.56
5 0.5 100 20 1 0.95 9.84

3.5. Validation of the Developed Model

The radial basis network was utilized to extract an empirical correlation, the weights of the hidden
layer (w1) and the output layer (w2) were used to derive the empirical equation, and the values are
listed in Table 7. The proposed model to predict the CO2-MMP is given by the following equations:

MMP =

 N∑
i = 1

w2itansig

 J∑
j = 1

w1i, jx j + b1i


+ b2 , (1)

MMP =

 N∑
i = 1

w2i

(
2

1 + e−2(w1i,1(x1) j+ w1i,2(x2) j+ w1i,3(x3) j+b1i)

)+ b2 . (2)

Table 7. The developed RBF-based weights and biases for CO2-MMP determinations for Equation (2).

No. of Neurons
Input Layer Output Layer

Weights (W1) Biases (b1) Weights (W2) Bias (b2)
x1 x2 x3

i = 1 300 2.0145 4.6110 0.0023 1.191E+11

−3,966,379.393

i = 2 71 0.3679 2.1756 0.0023 −6.700E+08
i = 3 88 0.3667 1.9069 0.0023 −3.196E+10
i = 4 280 1.4368 3.7815 0.0023 7.492E+10
i = 5 110 0.3873 1.5902 0.0023 −9.397E+09
i = 6 250 0.8993 4.5083 0.0023 9.049E+11
i = 7 260 1.3342 3.6439 0.0023 −5.683E+11
i = 8 250 1.0348 4.9060 0.0023 −8.044E+11
i = 9 90 0.4369 1.8974 0.0023 4.042E+10
i = 10 300 1.5394 3.9142 0.0023 −4.105E+11
i = 11 260 1.7459 4.2926 0.0023 4.109E+11
i = 12 300 1.2435 3.4496 0.0023 2.750E+11

Equation (2) is an empirical equation extracted from the optimized radial basis model; this
equation can be used to estimate the MMP during CO2 flooding. Similar equations were developed
before based on the weights and biases for determining several parameters as reported by Elkatatny et
al., Moussa et al., Mahmoud et al. and Rammay and Abdulraheem [23–25,38]. In Equations (1) and (2),
N is the total neurons number, j is the input index, x1, x2, x3 are the reservoir temperature, the mole
fraction of C2 to C6, and the molecular weight of heptane plus a fraction, respectively. The weights (w)
and biases (b) are listed in Table 7. The developed model normalizes the input data automatically into
a range between −1 and 1 based on the two-points method. Equations (3) and (4) are used to calculate
the normalized values:

Y − Ymin
Ymax − Ymin

=
X − Xmin

Xmax − Xmin
, (3)

Y = Ymin + (Ymax − Ymin)

(
X − Xmin

Xmax − Xmin

)
. (4)
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Furthermore, a comparison study was performed between the different MMP determination
approaches. CO2-MMP was determined using the Glaso [8] empirical correlation, the Yuan et al. [15]
analytical method and the developed AI model. Figure 8 and Table 8 summarize the obtained CO2-MMP.
The absolute error and correlation coefficient were used to select the best determination approach. Yuan
et al.’s [15] analytical equation showed the highest error (16.7%) and the lowest correlation coefficient
(0.60) among all approaches. Absolute error of 16.4% and correlation coefficient of 0.67 were obtained
using the Glaso [8] empirical correlation, which indicates that those equations (Yuan et al. and Glaso
1985) were developed based on limited experimental results and several assumptions were applied.
The AI model of radial basis function showed the best prediction performance, the absolute error
and the correlation coefficients are 6.6% and 0.98 respectively. Based on this study, the recommended
approach for predicting the CO2-MMP is an AI model with a radial basis function.
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Figure 8. Comparison between different CO2-MMP determination approaches; numerical, analytical
and the developed RBF model.

Table 8. Determination of CO2-MMP using different approaches.

Determination Approach R AAPE, %

Correlation 0.67 16.4
Analytical 0.60 16.7

RBF model (this work) 0.98 6.6

In addition, real case studies for the flooding of hydrocarbon reservoirs with carbon dioxide
were used. The data were collected from Kanatbayev et al. and Alomair et al. [39,40]. The CO2

minimum miscibility pressure was determined using the developed AI model, numerical simulation
and regression techniques. Numerical approach (in Eclipse 300) was utilized to determine the
CO2-MMP, the reservoir system was segmented into 2000 grid blocks, and the numerical dispersion
was corrected using the infinite cell solution [39]. Alternating conditional expectation (ACE) regression
algorithm was used to predict the CO2-MMP, the regression algorithm was proposed by Alomair et al.,
2015 [40]. The predicted MMP values were compared with the actual values that were measured using
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slim tube tests. The actual minimum miscibility pressures and the predicted values were calculated
by different methods and, in addition to the error values, are listed in Table 9. Average absolute
error of 10.2% was obtained using the regression approach, and errors between 8.7% to 17.3% were
obtained using the numerical approach (Eclipse 300). The developed AI model in this study showed
an acceptable prediction performance, with the absolute error varying between 6.4% to 9%.

Table 9. Actual and predicted values of the minimum miscibility pressures.

Case
Number

Actual
MMP, Psi

Regression Approach Numerical Approach The Developed AI Model

MMP, Psi Error, % MMP, psi Error, % MMP, psi Error, %

1 3974.0 3319.3 16.5 3556.9 10.5 4264.7 7.3
2 2407.6 2203.3 8.5 2010.8 16.5 2605.9 8.2
3 4728.2 3810.6 19.4 3909.4 17.3 5138.6 8.7
4 4351.1 3531.1 18.8 3752.1 13.8 4674.5 7.4
5 4380.1 4122.3 5.9 4993.4 14.0 4720.8 7.8
6 2860.1 2637.4 7.8 3342.5 16.9 3064.2 7.1
7 4677.5 4519.6 3.4 5485.6 17.3 5077.0 8.5
8 4890.7 4730.3 3.3 4083.3 16.5 5311.8 8.6
9 4496.2 3619.5 19.5 5126.8 14.0 4892.1 8.8

10 4278.6 3682.6 13.9 4995.9 16.8 4553.8 6.4
11 4496.2 3763.0 16.3 5193.4 15.5 4903.0 9.0
12 4322.1 3926.4 9.2 4989.6 15.4 4662.8 7.9
13 4119.1 3788.7 8.0 3737.0 9.3 4457.5 8.2
14 4612.2 3771.1 18.2 5141.2 11.5 4953.3 7.4
15 4554.2 4511.1 0.9 5117.8 12.4 4865.6 6.8
16 4844.3 3973.1 18.0 4190.9 13.5 5221.1 7.8
17 4960.3 4866.0 1.9 4465.9 10.0 5338.9 7.6
18 4568.7 4468.9 2.2 5003.9 9.5 4891.7 7.1
19 2523.7 2477.1 1.8 2875.9 14.0 2734.2 8.3
20 3190.8 2847.2 10.8 2912.6 8.7 3397.2 6.5

4. Conclusions

This paper presents an intelligent model for determining the minimum miscibility pressure
(MMP) during CO2 flooding. Artificial intelligence (AI) techniques were used to build a new MMP
model. A neural network, radial basis function, generalized network and fuzzy logic system were
used. The best predictive model was selected based on the absolute error and the correlation coefficient
for the testing data set. Based on this work, the following points can be drawn:

• The proposed AI models are quick, rigorous and outperforms the current CO2-MMP methods.
The developed models can minimize the time and cost of determining the CO2-MMP.

• The developed models investigate the effect of hydrocarbon component and the injected gas
composition on the MMP during CO2-flooding.

• A new equation was extracted using the optimized radial basis function, the developed equation
showed a good performance for determining the CO2-MMP, and the absolute error is 6.6% and
the correlation coefficient is 0.98.

• Ultimately, this work will improve the design of CO2 flooding operations by providing a reliable
value for the CO2-MMP.
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Appendix A. Mathematical Formulas

This appendix presents the formulas used in this study for the error calculation, Glaso [8] empirical
correlation and Yuan et al. [15] analytical equation.

Average Absolute Percentage Error (AAPE):

AAPE =
100
N

N∑
i=1

∣∣∣∣∣∣ (MMPm)i − (MMPa)i

(MMPa)i

∣∣∣∣∣∣. (A1)

Coefficient of Determination:

R2 =

∑N
i=1[

(
(MMPa)i − MMPa

)
−

((
MMPm)i − MMPm

)]
√∑N

i=1

[
(MMPa)i −MMPa

]2 ∑N
i=1

[
(MMPm)i −MMPm

]2
, (A2)

where, N = Total number of samples, MMPm = Estimated MMP, MMPa = Actual MMP, MMPm =

Average estimated MMP, MMPa = Average actual MMP.
Yuan et al. [15] analytical equation:

MMP = a1 + a2MC7+ + a3PC2−6 +
(
a4 + a5MC7+ +

a6PC2−6
MC7+

)
T +

(
a7 + a8MC7+ + a9M2

C7+ + a10PC2−6
)
T2 (A3)

where MMP is the predicted minimum miscibility pressure for CO2 injection, MC7+ is the molecular
weight of C7+, PC2-6 is the percentage of C2 to C6 and a1 to a10 are fitting coefficients.

a1 = −1463.4, a2 = 6.612, a3 = −44.979, a4 = 2.139, a5 = 0.11667, a6 = 8166.1,
a7 = −0.12258, a8 = 0.0012283, a9 = −4.0152E-6, and a10 = −9.2577E-4.

(A4)

The Glaso [8] empirical correlation is given by:
For C2-6 > 18%,

MMP = 810− 3.404MC7+ + 1.700 ∗ 10−9MC7+
3.730 e786.8MC7+

−1.058
T; (A5)

For C2–6 < 18%,

MMP = 2947.9− 3.404MC7+ + 1.700 ∗ 10−9MC7+
3.730 e786.8MC7+

−1.058
T − 121.2 C2−6, (A6)

where MMP is the estimated minimum miscibility pressure in psia, C2–6 is the mole fraction of C2 to
C6 and MWC7+ is the molecular weight of heptane plus fraction.
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