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Abstract: In higher education, predicting the academic performance of students is associated with
formulating optimal educational policies that vehemently impact economic and financial development.
In online educational platforms, the captured clickstream information of students can be exploited in
ascertaining their performance. In the current study, the time-series sequential classification problem
of students’ performance prediction is explored by deploying a deep long short-term memory
(LSTM) model using the freely accessible Open University Learning Analytics dataset. In the pass/fail
classification job, the deployed LSTM model outperformed the state-of-the-art approaches with 93.46%
precision and 75.79% recall. Encouragingly, our model superseded the baseline logistic regression
and artificial neural networks by 18.48% and 12.31%, respectively, with 95.23% learning accuracy.
We demonstrated that the clickstream data generated due to the students’ interaction with the online
learning platforms can be evaluated at a week-wise granularity to improve the early prediction of
at-risk students. Interestingly, our model can predict pass/fail class with around 90% accuracy within
the first 10 weeks of student interaction in a virtual learning environment (VLE). A contribution
of our research is an informed approach to advanced higher education decision-making towards
sustainable education. It is a bold effort for student-centric policies, promoting the trust and the
loyalty of students in courses and programs.

Keywords: students-at-risk; virtual learning environment (VLE); classification; deep learning; long
short-term memory (LSTM)

1. Introduction

The abundance of the vast available educational data provides opportunities to utilize it for
various purposes, such as tapping the learning behaviors of the stakeholders involved, improving
these behaviors by addressing the issues, and optimizing the learning environment [1]. With the
readily accessible educational data, several research communities have exhibited noticeable interest in
predicting students’ patterns and extracting meaningful insights from these patterns. Such information
extraction is not only bound to the data mining community. However, new communities have
also emerged that focus not only on the agenda of improving students’ performance but, as a
whole, optimizing the learning environment, referred to as learning analytics [2]. Educational data,
accumulated due to the interactional activity between learners and instructors, has been substantiated
as a multidisciplinary field of study, involving researchers from various research communities, which
has yielded to the inclusion of numerous terms associated with the exploration of the educational data,
such as academic analytics, predictive analytics, and learning analytics [3].

With the emergence of the learning analytics research community, much emphasis has been
laid on the investigation of students’ behavior, assembling methods to improve understanding to
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yield an optimal environment with enhanced learners’ performance by early predicting potential
grades [4,5]. Such practices contribute to maintaining and achieving a positive educational atmosphere
that subsequently supports an institute to maintain its conduct [6,7]. In higher education, the learning
analytics paradigm is cumulatively defined with multiple dimensions, including academic analytics,
assisting institutes in maintaining their finance sectors by providing proper resource allocation practices
to reduce student attrition, understanding learner’s behavior to propose counteractive policies for
enhancing the learning mechanism [8]. Furthermore, it assists an institute in maintaining student
retention, ultimately contributing to a higher number of graduation rates [9].

An array of various data analytic techniques and machine learning practices are administered for
the prediction of several measures and events, with deep artificial neural networks (ANNs) being a
prominent practice among these due to their learning abilities [10]. The paradigm of deep learning
is defined as hierarchical representational learning, encompassing various layers of computation
and enabling the system to learn from prevailing examples, intervening in the traditional feature
engineering methods [11,12]. In the literature, only a limited number of studies can be observed
that measure the effectiveness of deep learning approaches in the learning analytics paradigm,
especially for early intervening with students to improve their performance. Recently, a systematic
literature review conducted by LeCun and Silveira [10] analyzed the learning analytics studies
that deployed deep learning practices, demarcating some prominent problems where such practices
superseded the conventional statistical practices; such as learners’ performance [6,9,13], their knowledge
assessments [14], and their writing recognition patterns [15]. To intervene early with the students
for optimal performance, various forms of ANNs, such as recurrent neural network (RNN) and long
short-term memory (LSTM), have been employed. These practices correspond to the course duration
as sequential data by analyzing each learner’s daily, weekly, or monthly performance. Overall, in this
discipline, the research community is embarking towards the adoption of these sequential practices
to predict early on the students at risk of poor performance and intervene with them on time for
optimal results.

In the recent past, online educational systems have emerged as a rising phenomenon, contributing
in the generation of educational data repositories encompassing learners’ interactions, activities, and
engagement patterns, which can be further analyzed to capture the behavior of students and extracting
critical differences in the engagement patterns of successful students and those at risk. Such analysis
assists the academic and administrative community to formulate optimal policies and corrective
strategies for the improvement of risky students and to yield a supportive pedagogical system [14,16].
This study intends to investigate the effectiveness of deep learning practices to early predict the
students at risk of a failure in a virtual learning environment, from the easily accessible Open University
Learning Analytics (OULA) dataset. The objectives of this study are as follows:

• Firstly, we intended to leverage deep learning models by transforming the dataset into a sequential
format by assembling students’ engagement with the virtual learning environment (VLE) weekly.

• Secondly, we delivered an understanding of the behavior of students at risk of failure, contributing
to the decision making policies to devise early intervention strategies to improve student
performance, enforcing student retention.

• Lastly, ascertaining the effectiveness of the deployed deep LSTM model in the early prediction of
at-risk students compared to conventional approaches.

The organization of this paper is as follows. Section 2 briefly discusses the existing studies
co-relating deep learning with various online learning platforms. Section 3 presents the data and
the deployed methods for its analysis. Section 4 formulates the experimental setup and results, their
discussion, and evaluation. The concluding remarks with the limitations and future directions are
proposed in Section 4.
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2. Literature Review

In several studies, the problem of predicting the academic performance of students is either
classified as a regression problem, where the learners’ perspective scores are predicted, or a classification
problem where a learner’s final result is predicted in terms of pass, fail, or dropout. The behavior of
students in online learning platforms varies from that of the traditional classroom settings, where
learners’ inherent motivation to succeed and excel plays a significant contribution in their performance,
making them solely responsible for their good/bad performance [17]. In the literature, substantial
studies are found that emphasize the prediction of student performance by applying various data
analytic techniques and highlighting various factors impacting a learners’ performance, categorizing
different features contributing to low student retention [18]. In online educational platforms, the
attribute of time is considered as the vital feature of impacting learners and their performance, followed
by the incoherent support provided by the instructors. Moreover, effective curriculum content is
paramount to drive an intrinsic motivation in learners, encouraging them in positive and active
participation, ultimately influencing a learner’s performance and intention to complete a particular
program [19,20].

Another dimension involves predicting students’ grades for the next term potential courses [5,21].
Morsy et al. [22] characterized the course space as a latent vector and suggested regression models for
next term grade prediction. Similarly, another study predicted course-specific next term grades through
Markovian models [4]. Marbouti et al. [23] deployed logistic regression to assess students at risk of
a failure by incorporating attributes of their attendances, quizzes, and examination behavior. They
identified the students at risk of low performance in several weeks of the courses, and their predictions
improved for the final weeks. Furthermore, logistic regression was also applied as the baseline
evaluation technique to predict at-risk students [24]. The previous history of students, encompassing
past grades in previous courses, assessments, and entry tests, is also an essential element in classifying
and predicting an individual’s performance [25].

The correlation of the learning analytics community with deep learning techniques is
still in its preliminary stages, with few pieces of evidence observed in the existing literature.
Deep learning, constituting several non-linear layers, enables self-adaptive models through the
hierarchal representation phenomena, where each layer transcends the learned information, abstractly,
to the successive layers [26]. Corrigan & Smeaton [13] deployed a variation of recurrent neural
networks (RNN) to predict the success of students by incorporating interactional activities of students
with the VLE. Their deployed deep learning approach outperformed the traditional baseline approach.
Similarly, another study predicted success rate by including student attendance and tapped their
behavior through log data information [27]. They predicted the grades of students, including their
engagement patterns and interactions with the VLE, through the application of RNN and LSTM
models. Through the deployed sequential model, they intended to predict the grades of students and
identify at early stages those at risk. The deployed technique was compared with the conventional
regression analysis and was found to be more effective in the early prediction on grades compared
to traditional regression approaches. Fei and Yeung [28] employed a feature set, consisting of the
lectures watched and downloaded, assessments scores and attempts, forum activities, and the number
of times commented on forums, to predict the student performance and assess at-risk students. They
implemented an array of techniques, such as support vector machines, logistic regression, input–output
hidden Markov model, RNN, and LSTM, and found LSTM to surpass the other techniques.

An exciting dimension in the educational community has been the use of virtual reality in the
learning context of distance education, facilitating teacher-to-student interaction more conveniently
and elaborately [29]. This implicitly assists instructors in customized teaching practices for different
categories of students. Furthermore, Kohler provided a theoretical framework for effective teaching to
produce optimized learning outcomes in traditional and blended classroom settings [30]. E-portfolios
are another tool established to facilitate the instructors in personalizing their teaching methods and
supporting student interventions [31]. Overall, in a VLE, we only found a limited number of studies
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embarking on the adoption of deep learning techniques to evaluate and comprehend student behavior
in a rigorous manner. Our study leverages the power of deep learning for the early prediction of at-risk
students in a VLE.

3. Data and Experimentation

The procured Open University Learning Analytics dataset (OULAD) constituted student
demographics, clickstream history, and assessment submission information of 32,593 students over
a course duration of 9 months, from 2014 to 2015 [32]. The data were composed of several courses,
with each course being taught at different intervals in a year. Four distinct performance classes were
defined: distinction, pass, fail, and withdrawal.

The OULAD comprised students’ information regarding their interaction with the VLE—their
assessments, quizzes, and course performances. The interaction with the VLE was further categorized
into 20 different activity types with each activity referring to a specific action, such as downloading or
viewing lectures, course content, or quizzes. The names of each of these activity types are as follows:
dataplus, dualpane, externalquiz, folder, forumng, glossary, homepage, htmlactivity, oucollaborate,
oucontent, ouelluminate, ouwiki, page, questionnaire, quiz, repeatactivity, resource, sharedsubpage,
subpage, and url.

The aggregated average clicks per student were processed weekly to visualize the students’
weekly interactions. Figure 1 depicts the number of clicks for the two classes—pass and fail—where
the aggregated activities for each class were normalized according to per student. It can be observed
that the two classes demarcated in terms of the interaction level in the VLE, with ’pass’ instances being
more active than ‘fail’ instances.
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3.1. Data Preprocessing

The OULAD was procured in a raw structured format with several data files. The log-file data
were computed to obtain features catering to the various actions signifying students’ interactions
with the VLE. These features were formulated by processing the provided data tables in the database.
The data were computed in a week-wise manner, with each week constituting the same activity features,
and each week comprising a homogenous set of students, that is, students in the week i were also
present in the week (i-1) and so on. Each student was identified with a unique ID in the data. Only a
ratio of 5.8% in the data took more than one course and hence were repeated; however, we did not
intend to find academic performances of a student in multiple courses. Therefore, each student was
identified by a unique ID for each course. Similarly, we did not intend to analyze student performance
on a course-granular level; therefore, students repeating the same course were ignored. The unique
student IDs were computed by a combination of their older IDs, the course that was taken, and the
interval in which the course was presented. This study intended to analyze ’pass’ and ’fail’ instances,
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where the ’pass’ instances were merged with the distinction instances to formulate one class. Hence,
the formulated data consisted of 22,437 instances.

3.2. Approach

The structure of deep learning methods is composed of many non-linear levels, where each
level plays a significant role in transcending the learned representation more abstractly to its higher
layers, consequently assisting in learning complex functionalities [33]. As opposed to the conventional
statistical approaches, such self-adaptive techniques effectively determine the underlying associations
between the data by generalizing the input sequence and learning from it [34]. RNNs are designed
to learn the long-term dependencies in the sequential data through a recursive loop at each cell that
supports it to keep a check on the previous input data along with the current input. RNN weights
are updated by backpropagation through time, which transmits the error and the gradient over the
whole vector [35]. Though RNNs were designed for long-term dependencies, pieces of evidence
in the empirical research demonstrate the opposite. Due to the vanishing and exploding gradient
problems, the error in RNN can only be back-propagated to a short distance [36]. To resolve these
issues, LSTM was introduced, where a memory cell is augmented in the network, enabling it to retain
longer sequences.

LSTM constitutes three gates; at some particular time instance say t, the input gate it administers
the writing of the data in the LSTM unit, forgetting gate ft is responsible for controlling the data that is
the amount of data to be written, memory cell Ct is responsible for retaining the past information, and
output gate ot manages the representation of the delivered output. The manipulation of forgetting gate
ft at some time t, held responsible for administering the amount of data to be retained, is described
mathematically in Equation (1):

ft = σ
(
W f [ht−1, xt] + b f

)
. (1)

Further on, the input gate computes the information by multiplying the input xt with the activation
of the input gate and determining the relevant information to be retained, as shown in Equations (2)
and (3):

ξt = Tanh(Wξ[ht−1, xt] + bξ, (2)

it = σ(Wi[ht−1, xt] + bi. (3)

A layer of LSTM constitutes multiple blocks, each with the required gates and memory
component [37]. The memory component Ct is updated at each interval,

Ct = ftCt−1 + itξt. (4)

Three parameters—input, memory component, and previous hidden states ht-1—cumulatively
update the currently hidden state ht via the output gate ot, as shown in Equation (5):

t = σ(Wo[ht−1, xt] + bo), (5)

ht =t .Tanh(Ct), (6)

where b f , bξ, bi, bo, W f , Wξ, Wi, Wo are the corresponding biases and weights for the gates, and σ is
the component-wise logistic sigmoid function. Tanh in Equations (2) and (5) is the activation function
that computes the candidate values and adds it to the memory component Ct.

The augmented memory cell in LSTM blocks facilitates the model with a lookback window that is
flexible enough to retain longer sequences, which ultimately assists in making decisions on the basis of
both past and current input sequences [38]. The proposed study deployed a deep sequential model
for the early prediction of at-risk students on the basis of their week-wise clickstream interactions
with the VLE. To attain this purpose, the OULA dataset was processed to retrieve weekly clickstream
data for each activity. The clickstream information for each student was recorded in a weekly manner,
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where each ith week consisted of the interactions and activities of students for that specific ith week,
as illustrated in Figure 2, where S1, S2 . . . Sn represents the unique students that are the same for
all weeks.Sustainability 2019, 11, x FOR PEER REVIEW 6 of 12 

 222 
Figure 2. Proposed architecture of long short-term memory (LSTM)-based deep learning. 223 

This week-wise stack of students forms a vector consisting of the appended weeks’ sequence, 224 
which was passed to the sequential model. Week-wise data were manipulated in such a way that for 225 
each ith week, the sequence vector was appended until ith weeks. These ith weeks ranged from the 226 
starting first week to the last 38th week in the course. Because the week-wise vector length depended 227 
on the ith week, therefore, the padding was implemented to enable an equal length of the vector. 228 
These padded values were masked before passing to the model. The masked values were ignored by 229 
the model, and the model did not learn its impact. Thus, LSTM layers were implemented with a 230 
flexible lookback window, enabling early prediction for each ith week. Multiple layers of the LSTM 231 
model were implemented in the architecture, depicted in Figure 2, assisting the model to learn 232 
complicated and intricate details of student engagement vector where each higher layer presented its 233 
output to its lower layers [39]. A layered architecture assisted the model in learning the inherent data 234 
representations more accurately. 235 

  
(a) (b) 

Figure 3. Week-wise learning metrics: accuracy and loss curves. (a): Learning accuracy of employed 236 
model across 60 epochs; (b): Loss value of employed model across 60 epochs. 237 

  238 

Figure 2. Proposed architecture of long short-term memory (LSTM)-based deep learning.

This week-wise stack of students forms a vector consisting of the appended weeks’ sequence,
which was passed to the sequential model. Week-wise data were manipulated in such a way that for
each ith week, the sequence vector was appended until ith weeks. These ith weeks ranged from the
starting first week to the last 38th week in the course. Because the week-wise vector length depended
on the ith week, therefore, the padding was implemented to enable an equal length of the vector. These
padded values were masked before passing to the model. The masked values were ignored by the
model, and the model did not learn its impact. Thus, LSTM layers were implemented with a flexible
lookback window, enabling early prediction for each ith week. Multiple layers of the LSTM model were
implemented in the architecture, depicted in Figure 2, assisting the model to learn complicated and
intricate details of student engagement vector where each higher layer presented its output to its lower
layers [39]. A layered architecture assisted the model in learning the inherent data representations
more accurately.

3.3. Experimentation and Evaluation

This section presents the experimental setup for the evaluation of the deployed deep LSTM
model. To early predict the students’ academic behavior, the problem was first converted to a binary
classification through the inclusion of ’fail’, ’distinction’, and ’pass’ categories. A total number of
22,437 instances were included, where the classes ’pass’ and ’distinction’ were formulated as ’pass’
class. Three layers were implemented in the deep LSTM architecture, and each layer constituted a
range of neurons, from 100 to 300 units. The dropout was implemented between the layers to reduce
the overfitting of the data. This also inhibited the inter-dependency between neurons and enabled the
model to learn more effectively and rigorously [40]. At each instant of time ti, data constituting of a
vector at particular instance ti was passed to the deep LSTM model. ADAM optimizer - an adaptive
learning rate optimization algorithm that’s been designed specifically for training deep neural networks
- was used as the optimizer with some hyper-parameter tuning, where the learning rate was set from
0.0 to 0.0001. To calculate the efficiency of the deployed model, in terms of the difference between the
actual and predicted values, binary cross-entropy was applied as the loss function. The problem of
students’ early prediction was constituted as a binary problem, with a student either passing or failing
a course. Therefore, this loss function produced optimal results. The equation for binary cross-entropy
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is provided in Equation (7) with pi representing the likelihood of the actual data and qi representing
the likelihood of the predicted data to pass or fail.

n∑
0

pi log
1
qi

(7)

The predictions of the deployed deep LSTM model tended to improve over the weeks, as illustrated
in Figures 3 and 4, where with additional weeks, the model gradually depicted the improvement
in the prediction of academic performance. The accuracy ranged from week 5 to week 38, showing
an increase in the predicted academic performance, as shown in Figure 3a. A particular behavior
of students could not be determined in the initial weeks. Therefore, the model was deployed on
the dataset of the 5th week and onwards. Results were displayed of selective weeks to depict the
refinement and improvement of the model. As previously mentioned, with additional history of
students’ interaction and their clickstream behavior, the model predicted the academic performance
for each student (pass/fail) with a confidence of 69.69% achieved in the 1st week, whereas 80.82%
was acquired in the 5th week, and 95.23% was acquired in the last week. Figure 3a also depicts an
increasing trend in the accuracy of the predictions after the initial 5th week, depicting the robustness
of the deployed deep LSTM performing better with accumulated clickstream data. From the 10th
week, the model can predict a student as passing or failing with reasonable accuracy of over 85%.
Therefore, this pattern of leaning is a vital determinant in the early prediction of students’ academic
performance. As accuracy increases with additional weeks, the loss values tend to decrease with
additional week-wise information, insinuating the robustness of the model, which increases as the
student behavior is determined with additional week-wise engagement patterns. Note that Figure 3b
shown the learning loss of the model.
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The precision and recall curves of the validation data are depicted in Figure 4 that tend to improve
with additional week-wise information. Precision was defined as the ratio of the at-risk students
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identified correctly from the total number of the students identified as at-risk by the model. The recall
was defined as the ratio of the students captured as at-risk by the model from the total number of
at-risk students in the actual data. As illustrated in Figure 4, the precision and recall curves tended to
significantly elevate after the 5th week, insinuating the significance of additional information in the
model. As the model was fed more information about students’ interaction and their engagement
activities, the model tended to learn their behavior and produce better results. Precision values tended
to improve from 59.36% achieved in the 1st week to 93.46% achieved in the last week. Similarly, recall
values improved from 60.99% achieved in the 1st week to 75.79% achieved in the last week. Moreover,
the learning accuracy and loss for all the weeks, from 1st to 38th, are depicted in Figure 5, illustrating
the improvement in the accuracy values with additional weeks and the week-wise degradation in the
loss values, implying the robustness of the predicted model. These values were obtained at the 60th
epoch of the trained model.
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3.4. Evaluation with Baseline

To evaluate the deployed deep LSTM model for the early prediction of at-risk students, several
machine learning algorithms were deployed as baselines. ANN, Support Vector Machine (SVM), and
Logistic Regression (LR) have been frequently adopted in the educational research community for
evaluating other proposed models [23]. Aggregated data were processed for the machine learning
algorithms, where each specific ith week data were aggregated until that ith week. A week-wise flat
vector was hence computed for each student and passed to the model. The results in comparison to
LSTM are illustrated in Figure 6, where W5, W10, W20, W30, W38, represent the 5th, 10th, 20th, 30th,
and 38th weeks, respectively. It can be observed that LSTM performed significantly better than other
baseline models in predicting at-risk students.

LSTM works sufficiently well for sequential data; hence, it efficiently analyzed the behavior of
students in a weekly manner and produced optimal results compared to baseline techniques. Because
the conventional non-sequential models worked with the aggregated data, which constituted the
entirety of information until that particular time, hence such models were unable to analyze the
behavior on a time granularity level. Due to the complete week-wise information aggregated into
values, the model was unable to learn this weekly behavior or predict the at-risk students from their
collective interactions aggregated into a vector. Such aggregation hindered the learning predictability of
the model; therefore, the sequential model, with a good fit, captured the learning behavior of students
and efficiently predicted the at-risk students on the basis of their interactions and engagement patterns.
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3.5. Implication of Results

This research presented the critical concern of the identification of students at risk of failure.
Different computation methods were deployed to predict the students at risk of a failure on the basis of
their behavior and engagement patterns with the VLE. Deep LSTM improved the predictability of
the students’ decisions and assisted the educational community to develop guidelines for helping the
at-risk students. Such behavioral models craft a path for the administrative authorities to contribute to
formulating policies and strategies to implement timely interventions, regulate the decision-making
process, and ultimately assist students through the provision of support systems. Moreover, such
settings will also help establish guidance committees and regular student counseling sessions for
maintaining a motivational infrastructure and tapping the behavior of students for data-driven
decision-making processes.

4. Concluding Remarks, Limitations, and Future Extensions

This study examined at-risk students by converting the problem into a sequential weekly format
and measuring the effectiveness of the deep sequential model versus the conventional machine learning
baseline models. We intended to deliver an understanding of the behavior of students at risk of failure,
contributing to the decision making policies to devise early intervention strategies to improve student
performance, enforcing student retention. The deep LSTM tended to monitor the sequential week-wise
pattern of students and their activities, performing better compared to conventional classifiers that
deal with students’ interactions in a collective and aggregated manner. Such early predictions will
facilitate institutions to timely intervene in the students at risk by providing them a support system
through counseling and alert emails. Such data-driven analysis will also assist the decision-makers to
formulate optimal policies for students’ success on the basis of their behavior and interaction patterns.
The deployed criteria to determine early on the risky students will assist the educational community
in capturing their activities and behavior for student retention by intervening on time, providing
pedagogical support in terms of the formulation of guidance committees and corrective strategies.

This study does not cater to the variation in the performances of the students who repeat their
courses. Therefore, analyzing their behavior is another dimension that requires sufficient data of
such students. Similarly, a course-level analysis is also required to capture the behavioral differences
of the same students in different courses and identify the influential elements to tap their academic
performance. Because the deployed dataset did not have sufficient course-level records, this is hence a
limitation of our study. Moreover, analyzing the behavior of repeating students in one course and
examining the differences in their first and second attempts is another crucial area of research. In the
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future, we plan to enrich our model prediction by including students’ assessment scores, analyzing the
association between their assessment submission pattern and performance.

Furthermore, we also seek to investigate activities having an influential impact on the
performance by mining textual data [41–43] of students’ feedback by employing deep advance
learning [44] and natural language processing techniques [45]. A framework catering to the
prominent attributes—extrinsic and intrinsic—associated with students’ performance may enable the
learning analytics community to adhere towards more effective decision-making systems. Moreover,
analyzing students’ behavior on a day-to-day basis is another dimension of interest that will assist
the educational community in identifying the most influential phase where the students tend to
demonstrate positive performance
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