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Abstract: This paper presents a geomorphological analysis of the Tormes River during the Quaternary.
The Tormes River formed in the center-west of the Iberian Peninsula in the province of Salamanca. It
runs along a Cenozoic basin with basement materials and through Varisco, and consists of mainly
granitic and metamorphic materials, leaving a wide stream of river terraces, both erosional and
depositional, that confirm its evolution throughout the Quaternary. Geomorphological analyses
using Geographic Information Systems tools, Digital terrain model high resolution (MDT05, LIDAR),
Orthophotos (scale 1:5000), and geological maps (1:50,000 Series Magna) have allowed different
morphologies and depositional terraces to be distinguished, namely, 19 levels of erosional terraces
and 3 levels of erosion surfaces. Based on these correlations, the levels of terraces in the Tormes
River between T1 (+140 m) and T7 (+75–80 m) are located in the Pleistocene, those between T8
(+58–64 m) and T14 (+18–23 m) in the Middle Pleistocene, those between T15 (+12–13 m) and T17
(+6–7 m) in the Upper Pleistocene, and those between T18 (+3 m) and T19 (+1.5 m) in the Holocene.
The erosion surfaces are divided into six levels: S6 (+145 m), S5 (+150 m), S4 (+160 m), S3 (+170 m), S2
(+180 m) and S1 (+190 m) located in the Lower Pleistocene, This work performs a geomorphological
mapping procedure applied to the evolutionary analysis of the landscape, so that it determines
different geomorphological units allowing the relief and morphology of the terrain in past times,
establishing a dynamic analysis of the landscapes.

Keywords: quaternary landscape; geomorphological analysis; depositional-erosional terraces;
incision-displacement rates; Tormes River

1. Introduction

The system of stepped terraces of the Tormes River is the most frequent in the rivers of the Iberian
Peninsula, with numerous examples noted: Pisuerga and Arlanzón-Duero Rivers, Arlanzón-Duero
River, Tagus River, Duero River, Ebro River, Lozoya-Tajo Rivers, and Tagus River, among many others.

A synthetic scheme (maintaining the heights to scale) of the terrace levels of the Tormes River, in
the sub-basin of Salamanca, where the heights relative to the thalweg have been indicated and as a
result, the heights of the different escarpments between terraces have been drawn up successive. From
the observation of these profiles, it is appreciated that there are a series of more significant escarpments,
and that they are maintained in the three selected rivers. The reason for the selection of Arlanzón
River (Duero Basin) and Tajo River (Tajo Basin), is that the first one has been mapped with several field
scampies since the year 1983, and subsequent chronological studies of the terraces with sampling were
carried out paleomagnetic and dating by ESR TL and OSL, being able to attribute to these escarpments

Sustainability 2019, 11, 7255; doi:10.3390/su11247255 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-2242-5192
http://dx.doi.org/10.3390/su11247255
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/11/24/7255?type=check_update&version=3


Sustainability 2019, 11, 7255 2 of 19

a more precise chronology when determining the boundaries between the lower, middle, and upper
Pleistocene and Holocene.

The second profile selected, Tajo River (Tajo Basin), downstream of Toledo, has been due to the
fact that this sequence has numerous deposits of fauna (Macro and microfauna.), and lithic industry,
which also allows the dating of terraces and their correlation; as an example, the level of +75 m is
clearly located in the lower Pleistocene (presence of Equus stenonis) and that of +60m in the middle
Pleistocene (southern Mammutus), so this type of correlation between escarpments can be used for
related. The Tormes River belongs to the Duero River network and is located in the central-western
basin of the Iberian Peninsula. This is the largest basin in the entire Iberian Peninsula, and it is called
the Duero Basin. It is located in the province of Salamanca. The Tormes River runs for 80 km along a
series of Cenozoic materials and through a Paleozoic basement, constituted primarily of granitic and
metamorphic materials. The area is characterized by little sharp reliefs with flat and elevated surfaces
and staggered plains in its central part. It is surrounded by a peripheral mountainous border with
heights between 600 and 800 m. The study area occupies an area of 3200 km2 in the Northeast part of
the Province of Salamanca (Figure 1)
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Figure 1. Location of the study area in the province of Salamanca (Spain).

The objective of this work was the realization of a detailed geomorphological cartography that
allows different morphologies to be identified, and establishes the succession of depositional terraces
of the Tormes River to determine the relationships among the different terraces and the time periods
in which they were deposited [1–4]. From longitudinal and cross-sectional profiles, the different
terraces of the same basin (Duero Basin) and similarly behaving basins (Tagus Basin) were altimetrically
correlated. With these data, the incision and displacement rates of the Tormes River in the Salamanca
sub-account were calculated by correlating them with the terraced sequences of the Arlanza River
(Duero Basin) and the Tagus River (south of Toledo). Different three-dimensional geological models of
the different stages of the Quaternary (Lower Pleistocene, Middle Pleistocene, Upper Pleistocene, and
Holocene) were generated by analyzing the paleogeographic evolution of this sub-basin.
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1.1. Geological Context

Geologically, this river belongs to the Central Iberian Zone [5], where sediments of the
Cambrian-Ordovician age are deposited on the Varisc basement, and materials of the final Mesozoic
and Cenozoic age are recognized as filling the Duero basin (Figure 2). The oldest known materials are
from the Precambrian-Cambrian era and were formed by gneisses associated with slate and sandstone
belonging to the so-called Greywacke Shale Complex. Particularly, in the study area, they are grouped
into two formations: The Monterrubio Formation and the Aldeatejada Formation [6]. The Ordovician
rocks include sandstone, black and gray slate, and the quartzite "Armoricana Quartzite", which are
located within the Iberian Massif that is located discordantly in the nuclei of the synclines. For the
Carboniferous and Devonian eras, there is hardly any sedimentary record, but igneous rocks, granites,
aplites, and pegmatites emerge [7].
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Figure 2. Geological and Lithological map of the study area. Classification according to the materials
and their corresponding chronostratigraphic periods. It can be observed that the Tormes River changes
from harder materials belonging to older ages (Varisc substrate) to softer materials belonging to the
Neogene and Paleogene Duero basin, and then returns to the former.

At the end of the Mesozoic, a distensive stage occurred, generating a dismantling in the raised
reliefs and producing wide alluvial fans in the NE direction that gave rise to siliceous sandstones
(Salamanca Sandstone Formation) composed of thick sands and gravels at the base and formed sand
roofs, silt, and clays.
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Cenozoic materials belong to the South-West part of the Duero Basin. During the filling, horst and
grabens reliefs were produced, representing two stages: One exorheic during the Paleogene and one
endorheic during the Neogen. The Paleogene stage is characterized by yellowish white sandstones,
microconglomerates, silt and white-yellow shales, and siliceous sandstones. They correspond to river
sediments formed by canal and avenue deposits, and above them are those of the flood plain. In the
Neogen, the arc, sandstones, conglomerates, and red silts stand out, as does the Red Unit of the Neogen,
which formed during the endorheic stage of the basin. This is of conglomeric character with sand and
clay intercalations. In the Quaternary, the sedimentary record is linked to the activity of the Tormes
River and the development of its valley. Its initiation is linked to an exorheic stage due to the clogging
of the basin in the previous phase.

1.2. Geomorphological Context

At the geomorphological level, a series of deposits located on the rooves of ancient alluvial fans
that correspond to the onset of the river inset stand out (Figure 3 and Table 1). Embedded in these,
the most important forms in the area are the quaternary erosive and depositional terraces, formed
by accumulations of gravel, conglomerates, sand, and sometimes clays (sometimes crusted) with flat,
stepped morphologies that are associated with the main rivers of the area, highlighting those of the
Tormes river [8,9]. The valley funds are formed by deposits of sand, gravel, and scarce silty matrix.
Alluvial fans and alluvial cones are formed in opening areas of secondary valleys that pour into the
main river, causing the sedimentation of sands, silts, and gravels. With a conical shape, the most
important ones are located on the low terraces. Pediments (glacis) are observed, which are siliciclastic
sediments of streams formed by sands, silts, and gravels that give rise to relatively flat surfaces with
less extension than terraces. Within the gravitational domain are colluvions (hillside deposits) that
appear to be associated with the escarpments. Both rivers and structural components stand out, being
abundant in the NE of the study area. Finally, within the endorheic domain, semiendorheic areas that
form in carbonate rock dissolution environments stand out and are structures that generate temporary
lagoons due to the waterproofing of their materials or the proximity of the water table [10].

The most significant tectonic effects are neotectonics, which are associated with large reactivated
varisc fractures that affect the geomorphology of the study area. The main direction of major faults
such as Alba-Villoria is NNE–SSW, which causes a relevant morphological scarp as a result of its recent
activity, affecting Neogenic deposits by tilting them towards the NE, resulting in an asymmetry of the
river valleys of the Tormes and its tributaries (Almar, Gamo, and Margañán). This causes sequences
of terraces on the left banks of the rivers and escarpments on the right banks (Tormes River, Almar,
Regamon, Trabancos, Zapardiel, etc.) due to the general balancing of the Sierra de Béjar towards the
NE. In addition to this mega-structure, there are numerous modifications of river courses in the area,
following the NEN–WSW (Torremencías, south of Mozárbez, La Vellés, etc.), NW–SE (Almar, Gamo
and Margañán), EW (Tormes River in Cabrerizos, east of Salamanca), and WNW–ESE (Tormes River
northwest of Salamanca) directions.
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Table 1. Summary table of the Morphogenetic System (M.S.) present in the area.

Domain Landforms Description Age
M

or
ph

og
en

et
ic

Fl
uv

ia
lS

ys
te

m

Fluvial Domain

Fluvial terraces

There are flat surfaces in the area with small
slopes that mark the position of the flatness of

ancient floods that developed in the river
located on its current course.

Holocene
Upper Pleistocene
Middle Pleistocene
Lower Pleistocene

Flood plain Surface of the flat land adjacent to a main river
formed by alluvium deposited by the river. Holocene

Valley wallpapers
They are the result of the silting up of valleys
by fluvial processes although they may also

occur beside colluvions.
Holocene

Alluvial fans

Deposits of sediment—gravel, sand, and finer
sediments—that accumulate in the flattest part
where the relief is wide and reduces the slope

of a river or stream.

Holocene
Pleistocene

Pediment
(glacis)

Surfaces with a flat slope rooted to a mountain
slope to link to a valley bottom or depression. Lower Pleistocene

M
.S

.D
ep

os
it

io
na

l

Hillside Deposits Colluvion Slope deposits associated with the combined
action of running water and gravity in sheds.

Holocene
Upper Pleistocene

M
.S

.P
ol

yg
en

ic

Polygenic Surface
Forms Erosion surfaces Eroded surfaces that have been excavated well

on alluvial deposits or on bedrock.
Holocene

Pleistocene

M
.S

.M
ar

sh
y

Endorheic Forms Endorheic areas Areas with poor drainage and therefore with
temporary waterlogging. Holocene

2. Materials and Methods

To elaborate the geomorphological cartography, the following stages were carried out:
Firstly, an analysis of the geological cartography was carried out. The geomorphological

cartography was elaborated on the same scale, and once the base maps were elaborated, the
interpretation of different sectors was carried out by means of photointerpretation and verification in
the field, assigning the new chronology of terraces with deposits and erosives for this central sector of
the Tormes River sub-basin.

The geomorphological cartography was completed with the differentiation of the different
morphogenetic systems (Table 1), highlighting, above all, the river system, and within this, the sequences
of erosive and depositional terraces. These cartographies were subsequently geo-referenced and
digitized with GIS (ArcGis), which integrated them with the topographic cartography of the National
Topographic Map at a scale of 1:50,000, and with the orthophotos (years 1956 and 2018) of the national
plan of aerial orthophotography at a scale of 1:10,000.

In a second stage, a digital terrain model with LiDAR data (spatial resolution: 1 m) was generated to
recognize the different morphologies present in 3D, as well as to calculate the different levels of interest.
From the digital terrain model, auxiliary maps were made to show the location, drainage, elevation,
orientation, and slope (intervals selected according to the geomorphological characteristics of the area),
in addition to an auxiliary geological–lithological map showing where the materials (conglomerates,
gravels, sands, etc.) that constitute the deposits of the terraces came from, the pre-quaternary materials
found, and a map of erosive surfaces (terraces) in the southern sector of the study area (Figure 4).
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In a third stage, the enlistment (incision) and river displacement rates were calculated, taking into
account the relative height of each group of erosive and depositional terraces with respect to the river
thalweg and the age at which they were deposited, grouping them into four eras: Lower Pleistocene,
Middle Pleistocene, Upper Pleistocene, and Holocene; so the fitting rate is the ratio between the meters
of incision or displacement and the elapsed time. The displacement rates of the main channel of
the Tormes River were also calculated in relation to the times indicated for the incision, in meters of
displacement per 1000 years. Two transversal profiles of the entire sequence of terraces and nineteen
longitudinal profiles were generated crossing each terrace.

Finally, paleogeographic reconstruction of the area was carried out using a technique that is
currently being developed and is used to model the relief and the processes that occurred in the
past [11,12]. To do this, a small area with the most complete sequence of depositional terraces was
located. To obtain the different models, the altimetry of the area was determined in the form of
dimensions (points), the height of each terrace in meters, and the incision suffered by them at each
time. The width of the channel was estimated by an approximate average (Equation (1)):
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Riverbed =

∑
x1 + xn

no. points
(1)

where “x1” and “xn” are the distances between each of the terrace levels of each era, divided by the
number of points, that is, the total number of terrace levels there are. Based on this estimate and once
the data was obtained, the digital terrain model was constructed, and the necessary knowledge was
applied in terms of color techniques, shading, exposure to light, etc., to give a better view, and 3D
views were generated with the ArcScene module.

3. Results

Based on the cartography, the different morphologies present were grouped into domains
associated with different active processes. The main morphologies that stand out in the area are the
sequence of terraces deposited by the river itself arranged in a staggered way dating back to the
Quaternary. It is important to highlight another type of terrace at higher levels, in this case, erosive,
which is associated with a set of river processes constituting coatings of low thickness [13]. This type
of terrace is presented in the same way and forms flat, inclined, and variable inclined lengths. A total
of six levels were classified (S1 to S6), within which there were other sub-levels, highlighting that these
surfaces are above the highest depositional terrace level (T1).

3.1. Sequence of River Terraces

A group of 19 river terraces with deposit (T1 to T19) in the northern sector and six previous
erosive levels in the southern sector (S1 to S6) that formed during the Quaternary (Table 2) were
differentiated. They were classified according to their relative heights with respect to the elevation of
the thalweg of the Tormes River, and they were assigned a relative chronology corresponding to the
time in which they were deposited. Most of them were found to be arranged in elongated bands in the
WNW–ESE direction in the north and NE–SW in the south. It is important to note that the continuity
of the terraces (from T6) is affected by the narrowing of the Tormes River valley in the Tejares area,
downstream of Salamanca, where the Tormes River fits into the Varisc basement, causing a coining of
them. Sedimentologically, the levels belonging to the Lower Pleistocene are characterized by siliceous
ridges, gravels, and arcosic sands, presenting a white-greenish clay matrix. The immediately higher
levels belonging to the Middle Pleistocene are constituted of siliceous conglomerates, sands, and red
silts, presenting tabular bodies of erosive bases and flat roofs. Those belonging to the Upper Pleistocene
have siliceous conglomerates, sand, and ocher limos. Lastly, the ones closest to the current riverbed,
attributed to the Holocene, contain deposits of sand, silt, and ridges. However, it should be noted
that level T18 presents a morphology in the form of bars, and T19 corresponds to nearest terrace and
next to the flood plain of the current river. The number of levels of river terraces present in the valleys
will depend, in general, on the age and importance of the drainage basin, and in some cases, on the
neotectonic activity.
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Table 2. Sequence of depositional terraces belonging to the Tormes River.

Terraces Relative Heigth (m) Absolut Heigth (m)

Holocene
T19 + 1.5 787.5

T18 + 3 789

Upper Pleistocene

T17 + 6–7 792–793

T16 + 8–10 794–796

T15 + 12–13 798–799

Middle Pleistocene

T14 + 18–23 804–809

T13 + 28–34 814–820

T12 + 38–42 824–828

T11 + 43 829

T10 + 50 836

T9 + 53 839

T8 + 58–64 844–850

Lower Pleistocene

T7 + 75–80 861–866

T6 + 84 870

T5 + 94 880

T4 + 102 888

T3 + 109 895

T2 + 122 908

T1 + 140 926

South Sector–Erosive Terraces

S6 + 145 931

S5 150 936

S4 + 160 946

S3 + 170 956

S2 + 180 966

S1 + 190 976

3.2. Longitudinal and Transversal Profiles

These two types of profile were made to study their arrangement according to their altitude.
Of the 25 longitudinal profiles corresponding to each terrace, the most significant nine were chosen
(Figure 5). As general characteristics, we can highlight the low slope, the little separation between
the terraces, and the divergence when leaving the Paleozoic materials, which converges again when
leaving the basin when fitting in the same materials.
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The trend that they would follow can be observed. It can be seen that for the most modern terraces,
those that are closer to the riverbed tend to come together. (B) Lower-cross-sectional profile in the
central area of the study. The staggering of the terraces and their extension can be observed.

A cross-sectional profile was also selected (Figure 5), cutting off most of the sequence of possible
terraces where a difference in the heights of the steps shown in each of the terrace levels with respect to
the previous one is observed due to climatic and/or neotectonic variations and the disparity in surface
morphology as a result of erosion and depositional processes. The staggering is greater in the central
zone than at the edges due to the hardness of the materials that the river has to erode, in one case,
the soft (arc) materials of the Neogen, and in another case, the hard materials of the Paleozoic.

As for the extension they present, the most extensive terrace levels are T7, T10, T13, and T17, and
the least extensive are T2, T6, T11, and T16. The staggering is also variable and can be correlated with
terraces dated to other river valleys.
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A synthetic scheme (maintaining the heights to scale) of the terrace levels of the Tormes River
in the sub-basin of Salamanca (Figure 6) indicates the heights relative to the thalweg and, as a
result, the heights of the escarpments between successive terraces. We start with the hypothesis
that the formation of the river terraces of the Spanish rivers originated, in general, in cold times
(glacial and/or seasonal times), and the endangered species and edaphic levels originated in warm
moments (interglacial and/or interstate). This was deduced on the basis of numerous existing dates
(OSL, paleomagnetism, ESR...) and the presence of cold geomorphological features on the different
deposits (cryoclasty, cryoturbations, ice wedges, etc.) and cold fauna associations of vertebrates and
microvertebrates of terraced deposits.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 19 
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Figure 6. (A) Neogen Substrate: River sediments blushed with intense process of gleyzation processes
and above river terraces. (B) River terrace of deposit + 140 m on the river thalweg with thick edges of
slate fragments. (C) River terrace of + 10 m in the town of Francos, with graves of river channels on an
alluvial fan of the Lower Pleistocene. (D) River terrace at +5 m interspersed with red soil and gleysols.

If we evaluate the escarpments between successive terraces, different values can be seen that
indicate variations in the climatic conditions of each moment because the interglacial periods did not
have the same intensity or duration. Observing the escarpments of the Tormes River in the sequence
shown, there are significant differences of more than 15 m between them (18 m T1–T2 and 2.5 m
T15–T16). This allowed us to select the most important sequences to use as correlation elements in the
river sequences of the same basin and basins with similar characteristics (Duero and Tagus Basins).
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In this case, the escarpments were selected between terraces T7 and T8 (16.5 m), T13 and T14 (10.5 m),
and T16 and T17 (3 m).

Taking the sequence of the Arlanzón River as a reference for the correlation, within the same
Duero basin when presenting paleomagnetic sampling and dating by ESR and TL [2,14–16], we can
attribute these escarpments to a more precise chronology by being able to determine the boundaries
between the lower, middle, and upper Pleistocene and Holocene. This type of correlation between
escarpments can be used for related basins (Tagus Basin) (Figure 7).

3.3. Paleogeographic Reconstruction: Incision and Displacement Rates

The concept of paleogeographic reconstruction or reconstruction of past reliefs includes a series of
techniques based on the study of the physical environment, from the manual extension of the tendency
of the morphology in a profile to more complex models, such as the reconstruction of paleo concrete
surfaces [17–23]. Since the surface to be reconstructed was a basin in this study, the TIN triangulation
algorithm was chosen [24].

From the Lower Pleistocene to the Holocene, the relief gradually evolved so that, during the
Lower Pleistocene, the Tormes River was located at a distance of about 8600 m with respect to the
position currently occupied in the NE direction. During the Middle Pleistocene, it traveled 3700 m,
and during the Upper Pleistocene, 500 m. At the same time that the displacement of the river in the
NE direction was generated, the different levels of terraces caused by the river incision of the river
were deposited, which corresponded to a displacement of the course of the river caused by neotectonic
changes in an area south of the sierra (Sierra de Béjar), which tilted towards the NE and caused the
river to move in the same direction (Figure 8).

Two types of rates were used in this work: The incision rate related to the river fit and the general
survey of the area, and that of lateral displacement related to the evolution of the river valley and its
main channel due to the neotectonic activity.

We used a height of +190 m as the approximate age for the S1 level 2.35 million years (m.y.) ago
(Gelasian age), considering this level is more recent than the deposits of the alluvial fan type "raña"
that we considered with the age of onset of the Quaternary (2.58 m). The beginning of the Calabriense
(1.8 m.y.) corresponds to the T1 height (+140 m), constituting the first terrace with a basin deposit,
coinciding with the data indicated by [2]. The beginning of the Middle Pleistocene (0.78 m) corresponds
to the T8 height (+58–64 m), constituting the first positive value of the paleomagnetic scale (Brunhes)
according to [11]. The beginning of the Upper Pleistocene (0.130 m) was place on T15 with a height of
+12–13 m from the date of the T11 terrace of the Almanzor River with a value of 0.140 m.y. at a river
height of +12–14 m [14].

In general, during the Lower Pleistocene, the incision rate was 0.0821 m/ka (meter/thousand year),
while in the Middle Pleistocene, it was 0.0623 m/ka. Table 3 shows that in the study area, the incision
decreased from the Lower Pleistocene to the Middle, increasing again in the Upper Pleistocene, and
then increasing much more during the Holocene.
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The greatest fittings of the Tormes River occurred in the Holocene and the Upper Pleistocene,
reducing towards the Lower Pleistocene and the Middle. The average incision rates for the entire
Quaternary amounted to 0.0808 m/ka, considering not only the depositional terraces but also the
erosive terraces belonging to the Gelasian (Lower Pleistocene), in which the height difference between
the oldest and first T1 (Calabrian) was found to be 50 m with an age difference of 500 ka, so the fitting
rate was 0.0909 m/ka. The rates for the Upper Pleistocene were found to be similar to those of the same
time period in the Arlazón River (Duero Basin) [14].

The displacement rates were relatively high and variable as we took steps perpendicular to the
riverbed from T1 to T19. Very high displacement was found in the Upper Pleistocene and Holocene
(12.89 m/ka and 31.11 m/ka), and when we analyzed Diagonal distances, the displacement increased
considerably (44.58 m/ka and 64.10 m/ka). These data indicate the existence of a general movement of
neotectonic origin due to the readjustments of the Central System (Sierra de Béjar) that swung during
the Quaternary, especially from the Upper Pleistocene.

Figure 9 shows the evolution of the Tormes River during the Quaternary. The thalweg at the end
of the Lower Pleistocene was located in the central area of the valley with considerable engagement
(0.0821 m/ka) 129 m from T1 that progressively decreased (0.0623 m/ka) to 48.5 m during the Middle
Pleistocene, rectifying its direction (initial section SN, middle section SSE–NNE and final section EW)
during the Upper Pleistocene (9.5 m with an incision rate of 0.859 m/ka) to reach higher values in the
Holocene (0.25 m/ka).

Table 3. Incision rate and displacement during the Quaternary (in m/Ka).

Incision Rate Displacement

Quaternary
0.0808 0.0808 Maximum diagonal 6.19 Perpendicular 6.06

Lower Pleistocene
0.0822

Gelasian 0.0909 5.37 m/ka 5.43
Calabrian 0.0774

Middle Pleistocene
0.0746 0.0746 4.63 m/ka 6.85

Upper Pleistocene
0.0803 0.0803 44.58 m/ka 12.70

Holocene
0.2564 0.2564 64.10 29.57

A dismantling of the relief occurred as time passed, as did an increase in the incision in the Upper
Pleistocene, while the river changed direction from ESE–WNW to E–W. The movement of the channel
decreased from the Lower Pleistocene to the Middle Pleistocene, and significantly increased in the
Upper Pleistocene. From the Middle Pleistocene, the tilting of S to N at the regional level accelerated
the displacement of the river.
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Figure 9. Reconstruction of the Quaternary landscape and paleogeographic evolution using the
triangulation algorithm TIN (A), and ArcMap and ArcScene (B): (a) Situation of the Tormes River
during the Lower Pleistocene; (b) situation of the Tormes River during the Middle Pleistocene;
(c) situation of the Tormes River during the Upper Pleistocene; (d) situation of the Tormes River during
the Holocene.
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4. Discussion

The geomorphological mapping generated with GIS techniques from Lidar data with 1 m spatial
resolution allowed differentiation of the different geomorphological systems and the spatial delimitation
of erosive and depositional river terraces. Georeferenced auxiliary maps such as the geological and
lithological map complement the general information of the geomorphological map.

From the general sequence of terraces and the support of the longitudinal and transverse profiles
of the terrain, it can be seen that although the sequence is staggered, when the river enters the Neogene
basin, the (oldest) terraces diverge, while at the exit, the terraces (more modern) converge. This is due
to the difference in the competition or resistance of the Paleozoic materials (more resistant entrances
and exits) and the Cenozoic formed by basin filling materials (less resistant materials).

The cartography presents more developed terraces on the ground floor (T4, T7, T10, T13, and
T17) and fittings of greater importance (T1–T2 18 m, T2–T3 13 m, T7–T8 16.5 m, T13–T14 10.5 m).
These developed escarpments allow correlations between sequences of river terraces between rivers of
the same basin and similar basins where climatic and neotectonic conditions are similar (Duero and
Tajo Basin).

The incision rates for the Tormes River in the surroundings of the city of Salamanca decrease
from the Middle Pleistocene (0.0821 to 0.0746 m/ka) and increase in the Upper Pleistocene (0.0746 to
0.0859 m/ka), presenting values higher than those of the Tagus River (0.2 m/ka) [2], somewhat larger
than those of the Arlanzon River (0.081 m/ka, Benito et al., 2018), and much lower than those of the
Duero River in the Arribes del Duero, where the last 100 ka have values of 2–3 m/ka [25].

5. Conclusions

The morphogenetical and chronological evolution is then established based on the relative age of
the lithological units and the geomorphologic domains, as well as their spatial distribution. The analysis
of the generators of the relief and their actions allows knowledge of the morphodynamics of the different
geoforms, being able to know the different landscapes that have been developed in each region and to
establish their relative evolution in time from the relative or absolute morphochronology. The analysis
of the landscape from precise morphogenetic systems has allowed reconstructions paleoclimatic and
paleogeographical, which identify the evolutionary phases of the relief with the time.

As for the rates of engagement, they are very high for the same periods of time, with a "rest"
occurring for the Middle Pleistocene, and a large increase occurring for the Upper Pleistocene. This is
related to regional neotectonics and affects the large active faults (Fault of Alba-Villoria), which delimit
the area by the East, and the tilting of the Sierra de Béjar towards the NE, which forces the rivers to
travel in the same direction.

The detail and precision of this geomorphological cartography allows the paleogeographic
characterization of the area by showing the paleoreliefs through 3D models during the Quaternary,
visually evaluating both the incisions and the fitting of the Tormes River, and studying its
paleolandscapes and the evolutionary territorial morphology of the paleo channels and paleovalleys.
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