Supplementary material ## Figure S1. Methodology to find LCSA-related papers The rationale behind selecting Scopus and Google Scholar as the main citation indexes is that both are the most common search engines used by researchers. First, we put the keywords "Life Cycle Sustainability Assessment" into the Scopus database, with the temporal limitation from the year 2007 to 2018. We included all types of documents, i.e., article, review, book chapter, conference paper, letter, and editorial. Among the 191 papers found, the second stage was done by screening and scrutinizing them thoroughly in their main body text (not in their abstract). We then excluded 83 papers that do not include analysis of LCA, LCC, or S-LCA in their body text, and had 108 papers remaining. In the third step, we similarly put the keywords "Life Cycle Sustainability Assessment" into Google Scholar, with the time range from 2007 to 2018. In the fourth step, we scrutinized closely the papers found in the first 200 papers in the first 20 pages of Google Scholar (one page includes 10 papers). We, again, excluded 133 papers that were not linked to LCA, LCC, or S-LCA in their main body article, and we had 67 papers remaining. Last, we combined the papers found from Scopus (83 papers) and Google Scholar (67 papers). At the end, we found that there were 51 intersecting LCSA-related publications from Scopus and Google Scholar, 57 publications solely from Scopus, and 16 solely from Google Scholar (see Figure 3 for the illustration). In total, we had 124 publications. These publications also include grey literature, such as reports and working group work from government or reputable organizations. Figure S1. Methodology to find LCSA-related papers Figure S2. Illustration of the inclusion of LCSA-related papers Figure S2. Illustration of the inclusion of LCSA-related papers (* similar papers found in both Google Scholar and Scopus) ## Table S1. Highlight of LCSA-related studies This supplementary material (Table S1) provides a summary of the literature review conducted for LCSA-related articles, including case studies and methodological ones. Each summary of the article contains information on the goal and scope of the study, life cycle inventory analysis (data collection sources), life cycle impact assessment, methodology, main results, and challenges addressed. | | | | | | | | | , | Γ'he s | scop | e co | nsic | dere | d | | | | Life | cycle inve | entory | | | | | | | |----|--|---|---|---|--|--------|------|----------------|--------|------------------|------|----------------------------------|------------|-------------------|-----|-----|--------------|--|-----------------------|-----------------------|---|---|---|---|--|---| | 44 | Artic- | A | 775.1 | Carl | Functional | Extrac | tion | Produc
tion | | ranspo
tation | or- | Const
-tion
Manu
-turir | ı/
ıfac | Use
Ope
tio | ra- | | d-of-
ife | | analysis
ollection | | | e cycle im
assessmer | | Madadala | Mala are to | Cl. II. | | # | les | Area | Title | Goal | Unit | Env | Soc | Env
Eco | Soc | Eco | | | J | Env | Soc | Env | Eco | Env | Eco | Soc | Env | Eco | Soc | Methodology | Main results | Challenges | | 1 | (Onat et
al. 2016) | Electric
vehicle
(case study) | Integration of
system dynamics
approach toward
deepening and
broadening the life
cycle sustainability
assessment
framework: A case
for electric vehicles | to quantitatively assess three sustainability dimensions of electric vehicles with various scenarios by considering macrolevel impacts and evaluating their dynamic relationships in sustainable transportation context | N broad functional unit taking into account the interactions between three aspects of sustainability | N N | Z | YYY | Y | N | Z | N | Z | Y | Y | Z | Z | US EPA,
LAVE-
trans
model,
Oak Ridge
National
Laboratory | TBL-LCA
model | US Social
Security | CO ₂ emission, particulate matter formation (PMF), photochemical oxidant formation (POF), etc. | vehicle ownership costs, contribution to GDP, etc. | Contribution to employment, human health impacts | Quantification of macro-
level sustainability aspects
was performed by using
causal loop diagram and
model formulation based
on the parameters in
transportation sector such
as average annual vehicle
miles traveled, the sales of
new vehicles, efficiency of
fuel, population, carbon
emissions from certain
life phases (vehicle
manufacturing and
operation, etc). | Many but the authors stressed the importance of capturing dynamic interactions among the sustainability indicators. | To increase accuracy and reduce the uncertainty, some model validation methods were used i.e., ANOVA, two-sample Kolmogorov-Smirnov, Shapiro-Wilk. | | 2 | (Gemech
u et al.
2017) | Electric
vehicle
(case study) | Geopolitical-
related supply risk
assessment as a
complement to
environmental
impact assessment:
the case of electric
vehicles | to integrate
resource criticality
evaluation into
LCA under the
LCSA framework | Y one electronic vehicle | Y | / Y | N N | N | N | Z | N N | Z | N | N | N | N N | US Geologic
Comtrade da
for WGI (W | itabase, World | | | related supply ris | k | The calculation method used was based on the equation of geopolitical-related supply risk or resource criticality called "GeoPolRisk". | Many but to name a few is the conventional metals depletion indicator. For instance, as employed by ReCiPe, it has weaknesses that is partially addressed by the GeoPolRisk approach. This result could perform better on the mapping critical material flows. | The geopolitical supply risk aggregated for a number of platinum group metals or rare earth elements is not examined at individual metal elements. | | 3 | (Ren,
Ren,
Liang,
Dong, et
al. 2016) | Energy
and
industrial
system
(case study) | Multi-actor multi-
criteria
sustainability
assessment
framework
for energy and
industrial systems
in life cycle
perspective
under
uncertainties. Part
1: weighting
method | to develop a novel
life cycle multi-
criteria
sustainability
assessment method
with central focus
on using an
improved interval
AHP to better
weight the criteria | Y 1 t of product produced by these six different energy and industrial systems | N N | N | N N | X | N | N | N N | Z | Z | X | Z | X | - | - | | PCOP,
GWP, AP,
etc. | investment cost (IC), net present value (NPV) and internal rate of return (IRR), etc. | added job (AJ), impact on local culture (ILC), etc. | A methodology for multi-
actor multi-criteria
sustainability assessment
of energy and industrial
options has been
developed in this study.
The traditional extension
theory has been modified
to address the uncertainty
issues. The proposed
method can rank the
alternative energy and
industrial systems with
the decision- making
matrix. | It can result more accurately the willingness and preferences of decision-makers. | This study does not address the methodology used for identifying the classical fields which seperate the sustainability into different levels. | | 4 | (Ren,
Ren,
Liang &
Dong
2016) | Energy
and
industrial
system
(case study) | Multi-actor multi-
criteria
sustainability
assessment
framework for
energy and
industrial systems
in life cycle
perspective under
uncertainties. Part
2: Improved
extension theory | to assess
sustainability of
industrial systems
and alternative
energy in life cycle
thinking by multi-
actor multi-criteria
sustainability
assessment to
address the
uncertainties | Y 1 t of product produced by these six different energy and industrial systems | N | J N | N N | N | N | N | N N | N | N N | N N | N | N N | | - | | Idem. | i | | | Multiple decision-
makers are not allowed
to take part in the
assessment process. Yet,
the method has the
capability to reach
sustainability assessment
under uncertainties.
| Idem. | | 5 | (Kempen
et al.
2016) | Kitchen
set (case
study) | Using life cycle
sustainability
assessment to
trade off sourcing
strategies for
humanitarian relief
items | to conduct LCSA
of sourcing
scenarios for a
core relief item in a
humanitarian
supply chain
including
management and
logistics (supply
chain
sustainability) | Y A kitchen
set enabling
the storing
and cooking
of food and
water | N | JN | Y Y | YY | Y | Y | N N | N | N N | J N | N | NN | interviews, c
databases | ompany record | s, and online | human
health,
ecosystem
diversity,
resource
availability
using
ReCiPe
method | transportati
on cost,
procure-
ment costs | working
condition,
health and
safety, etc. | UNEP-SETAC guideline was used as a guide. The results were analyzed using ReCiPe method. Two sourcing scenarios identified: one international and one local. | Many but the authors pointed out on the importance of the research on the humanitarian supply chain context and in the emerging economies. | Data quality reporting has bias due to the local suppliers who collected the data. The accuracy of the social analysis is subjective as data of different functional units are collected for the different subcategories. | | | | | | | | | | | Ί | he s | scop | oe co | onsi | ider | red | | | | | Life | e cycle | inve | ntorv | | | | | | | |----|--|---|---|---|--------------------|-----|--------|------|----------------|------------|------------------|-------|-------------|-------------------------------|-----|-----------------------|-----|-----------|------------|---|--------------------------|-----------|----------------|--|--|--|---|---|--| | # | Artic- | Area | Title | Goal | Functional
Unit | | ractio | on F | roduc-
tion | | ranspo
tation | | -tio
Man | struc
on/
nufac
ring | (| Use/
Opera
tion | ı- | End
Li | | | ana | lysis | ources) | | e cycle im
assessmer | | Methodology | Main results | Challenges | | | ics | | | | Ome | Env | Eco | Soc | Eco | Soc
Env | Eco | Soc | Env | Eco | Soc | Eco | Soc | Env | Eco
Soc | Env | E | ico | Soc | Env | Eco | Soc | | | | | 6 | (Sou et al. 2016) | Waste
manage-
ment (case
study) | Sustainability
assessment and
prioritisation of
bottom ash
management in
Macao | to conduct
sustainability
assessment on
bottom ash
management with
five different
scenarios | Y 1 tonne of MSW | N | N | N | N | N Y | Y | Y | N | N | V Y | Y | Y | Y | YY | on-site inverse references | 0 | | ious | climate
change,
ecosystem
quality,
human
health and
resources | cost and
benefit | integrity
and
acceptabi-
lity | Five different incinerator bottom ash management scenarios were applied. LCA was carried out with modified localised HRA. CBA was applied representing economic assessment. For social assessment, fuzzy set theory and AHP were conducted. | Many but the main point is that this approach try to give decision makers information to compare different management scenarios using tools and implement a localised approach. | - | | 7 | (Helbig et
al. 2016) | Carbon
fibers (case
study) | Extending the geopolitical supply risk indicator: Application of life cycle sustainability assessment to the petrochemical supply chain of polyacrylonitrile-based carbon fibers | to extend the
formulation of
geopolitical supply
risk indicator
including domestic
production multi-
stage supply
chains. | N - | Y | Y | Y | Y | Y N | Z | N | N | N | N N | N | N | N | NN | PCI report
Trade, Wo | | Vations C | Commodity | human
health,
ecosystem
service and
natural
resources | geopolitical
supply risk | geopolitical
supply risk | Quantification of geopolitical supply risk are applied on multi-stage supply chains for 54 countries. It is an extension of the previous work on Geopolitical Supply Risk methodology for assessing global production and trade patterns for different commodities. | Geopolitical Supply Risk
(GPSR) factors for 54
countries in six supply
chain scopes are
quantified. It provides
four different supply risk
patterns. | - | | 8 | (Azapagic
et al.
2016) | Energy
systems
(electricity
mix) (case
study) | Towards
sustainable
production and
consumption: A
novel DEcision-
Support
Framework
IntegRating
Economic,
Environmental
and Social
Sustainability
(DESIRES) | to assess
sustainability
performance in
sustainable
production and
consumption
scope | N - | Y | Y | Y | Y | Y | Y | Y | N | N | N N | Ν | N | N | 7 | Data repor
2014 | rted in Sta | mford an | nd Azapagic, | GWP,
depletion
of minerals
and metals,
ecotoxicity,
etc | fuel price,
levelised
costs | total
employ-
ment | Multi-attribute decision analysis using equal weighting were applied with different stakeholder preferences (expert stakeholder preferences and public preferences). A novel decision-support framework incorporating three domains of sustainability called DESIRES has been developed. | The approach allows stakeholders to understand their sustainability preferences and the opinions of others to help to reach a consensus. | - | | 9 | (Cihat,
Kucukvar
& Tatari
2016) | Electric
vehicles
(case study) | Uncertainty-
embedded
dynamic life cycle
sustainability
assessment
framework: An ex-
ante perspective
on the impacts of
alternative vehicle
options | to improve the body of knowledge at current sustainability assessment frameworks for alternative vehicle technologies | N - | N | | N N | N | NN | N | N | Y | YYY | YY | Y | Y | Y | Y | Various
data
(mostly
other
journal
articles) | Trans
tion d
book | | - | GHG
emission,
carbon
fossil fuel,
water
footprint,
hazardeous
waste, etc. | GDP,
foreign
purchase,
profit, etc. | Employ-
ment, tax,
injuries,
etc. | Two MCDM methods were utilized to rank different types of conventional and alternative passenger vehicles in the US, the Intuitionistic Fuzzy MCDM and the Technique for Order-Preference by Similarity to Ideal Solution or TOPSIS. Seven different vehicle types with respect to the US vehicle market were identified with an average and a 100% solar electricity generation mix scenario). | Many however this study primariliy is about the ranking of alternative vehicle technologies and the dominance/contribution analysis in the sustainability triangle. | Social indicators selected were macro-level social indicators. | | 10 | (Gumus
et al.
2016) | Wind
energy
(case study) | Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. | to assess
sustainability
performance of
wind energy by
using
environmentally
extended input-
output based life
cycle assessment
(EE-IO-LCA)
tools | N - | N | X | N N | N | N Y | Y | Y | Y | YY | Y | Y | Y | Y | YY | Data from
various
databases | Data
variou
databa | 18 | Expert opinion | GHG, land,
water and
energy, etc. | profit,
import, etc. | Employ-
ment, tax,
income,
etc. | EE-IO-LCA was carried out for off-shore wind turbine and a 9-step fuzzy MCDM tool was also performed. | The results were obtained, considering the weight of each identified criterion in each life cycle phase. | The uncertainties might come from errors in modeling and data gathering. | | | | | | | | | | T | he sc | ope c | onsi | derec | 1 | | | | Life | cycle inve | entory | | | | | | | |----|--|--|---|---|--|--------|------|-----------------|-------|--------------|---------------------------------|------------|-----------------------|-----|-------|----------------|---
--|---|---|--------------------------------------|--|--|--|---| | # | Artic- | Area | Title | Goal | Functional
Unit | Extrac | tion | Produc-
tion | | spor-
ion | Const
-tion
Manu
-turi | n/
ufac | Use/
Opera
tion | ı- | End-c | | | analysis | | | e cycle impassessmen | | Methodology | Main results | Challenges | | | les | | | | Omt | Env | Soc | Env | Env | Soc | Env | Soc | Env
Eco | Soc | Env | Soc | Env | Eco | Soc | Env | Eco | Soc | | | | | 11 | (Touceda
et al.
2016) | Housing retrofit (case study) | Modeling
socioeconomic
pathways to assess
sustainability: A
tailored
development for
housing retrofit. | to assess
sustainability
complex processes
in building retrofit
and to guide policy
making process in
house retrofitting | Y the housing unit (the entire building in this case), the household, and the ensemble of retrofitting works, repair and maintenance | Y | Y | YYY | Y | Y | Y | Y | YY | Y | Z , | \overline{Z} | EN 15804
(CEN
2012) and
EN 15978
(CEN
2011) | EN 15804
(CEN 2012)
and EN
16627
(2015) | SHBD,
EN 15804
(CEN
2012) and
EN 16309
(2014) | Climate change, human health, etc. | retrofit cost,
fuel cost | health of
workers,
contribu-
tion to
growth,
household
poverty,
etc. | Various methods were applied for assessing environmental, eonomic and social aspect. Some guidelines were also adopted, i.e. EN 15804 (CEN 2012), EN 16627 (2015) and EN 16309 (2014) | The results could show
the comparison between
generic hypotheses
which are frequently
used in policy making
studies and in household
situations. | This case study was only limited to certain housing stock and must be further compared to other typologies. More different variables need to considered the discount rate, price increase and remaining service life. | | 12 | (Pizzirani
et al.
2016) | Forestry
(case study) | The distinctive recognition of culture within LCSA: Realising the quadruple bottom line. | to capture cultural
aspects in LCSA | Y the three forestry scenarios (i.e. use of 1 ha of unmanaged land) | YY | Y | YYY | N | N | N N | J N | N N | N | N N | N | | a, publications,
t v3.1. database | reports and | GHG,
energy use,
etc. | profit,
production
cost, etc. | Employe-
ment | A LCSA case study was conducted participatoryly with a mixed methods approach. Cultural Indicator Matrix was also utilized. Research was performed in cooperation with main members of New Zealand indigenous community. | The method helps the participants to perform progressively towards representing culture in LCSA with transparent and distinct way. This study performs an inclusion of a cultural compliance process for the forestry activities the product's life cycle. | - | | 13 | (Luu &
Halog
2016) | Rice husk
bioelec-
tricity (case
study) | Life Cycle
Sustainability
Assessment: A
Holistic Evaluation
of Social,
Economic, and
Environmental
Impacts | to compare
sustainability
performance of
Vietnam rice husk
based electricity vs.
coal-fired | Y 1 MWh, and an economy wide scale of 9.46E+07 MWh which is equal to around 500 MW of installed capacity of bioelectricity | YY | Y | YYY | Y | Y | Y | / Y | YY | Y | X | X | ecoinvent,
the
Prosuite
Decision
Support
System
(DSS),
with
OpenLCA
software | the
Prosuite
Decision
Support
System
(DSS), with
OpenLCA
software | SHDB,
feasibility
reports of
power
plant and
other
pertinent
literature | human
health,
ecosystem
loss, etc. | benefit and cost | child labor,
total hours
of employ-
ment and
of
knowledge
intensive
jobs, etc | A LCSA for comparative
study of two types of
electricity were
performed. | The comparative results were presented between two types of electricity in different impact assessments. | | | 14 | (Cihat,
Kucukvar
, Tatari, et
al. 2016) | Passenger
cars (case
study) | Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S. | to improve current sustainability assessment framework for passenger vehicles by maximizing the optimal vehicle distribution based on the source of electric power supply and prime concerns of policy makers | | Y | Y | YYY | N | N N | YY | Y | YY | Y | Y | Y | Kucukvar an
2014d | d Tatari, 2013; | Onat et al., | GHG,
energy use,
etc. | foreign
purchase,
profit, etc. | GDP,
employ-
ment,
injury, etc. | A multi-objective optimization model was carried out to calculate the optimal distribution of passenger cars in the U.S It was performed by considering environmental and socioeconomic goals and their weights. | Many, however the authors pointed that this study shows the results by considering the macro-scale socio-economic impacts that many studies ignored to incorporate. | Incapability to capture global trade-links between trading partners and to include other uncertainties from temporal and spatial aspects (effects of behaviors on driving, fuel consumption, charging times and locations, performances of battery, regional TBL impact variations, etc.) | | 15 | (Clímaco
& Valle
2014) | Wind and
Thermo-
Electric
Power
Stations
(case study) | MCDA and LCSA | to test preference
aggregation of
S-LCA in LCSA of
power stations in
Brazil | N - | N N | IN | N N Y | N | N N | N N | N Y | N N | Y | N N | N | - | - | interviews,
on-site
observa-
tion and
secondary
sources
(compa-
nies'
sustaina-
bility
reports) | - | - | local
community
category
(except
indigenous
rights and
delocaliza-
tion &
migration) | S-LCA with impact
matrix and open
exchange interactive
multi-criteria software
was performed. | The potency of multi-
criteria approach
(the aggregation of
preferences) applied in
the complex problem
were presented and
discussed. | | | | | | | | | | | | | Ί | 'he | sco | pe c | cons | sideı | red | | | | | Life | cycle inv | ventory | | • • | | | | | | |----|--|---|---|---|---|---|------|--------|-----|----------------|-----|------------------------------|------|-----------|----------------------------|------------|------------------------|-----|----------------|-----|--|------------------------------|----------------|--|------------------------|--|---|--|---|---| | # | Artic- | Area | Title | Goal | | inctional
Unit | Extr | action | | roduc-
tion | . Т | l'rans _l
tatio | | -ti
Ma | nstruction/
nufactiring | C | Use/
Opera-
tion | | End-of
Life | | | analysi | s
sources | | | vcle imp
essment | | Methodology | Main results | Challenges | | | les | | | | | Omt | Env | Eco | Soc | Есо | Soc | Ero | Soc | Env | Eco | Soc
Env | Eco | Soc | Есо | Soc | Env | Eco | Soc | Env | | Eco | Soc | | | | | 16 | (Kalbar,
Birkved,
et al.
2016) | Resource consumption (non-case study) | Weighting and
aggregation in life
cycle assessment:
do present
aggregated single
scores provide
correct decision | to perform and
answer a question:
do aggregated
single scores give
correct decision
support? | N | - | Ν | Z | N | Z | N N | I N | N | N | N | Z | N | N N | N | N | 1000 selecte | d data from I | Danish residen | ts ecosyster
human
health an
resources | d | | -
| A linear weighted sum (LWS) method was performed with distance-based approach. | A distance-based multiple attribute decision-making method for acquiring single scores were proposed. | The ReCiPe single-score calculation method does not quantify dominating alternatives (alternatives having high values across all endpoints) nor the mutuality of the aggregated indicators. | | 17 | (Galán-
martín et
al. 2016) | Electricity
technolog
ies (case
study) | Enhanced data
envelopment
analysis for
sustainability
assessment: A
novel methodology
and application to
electricity
technologies. | to enhance data
envelopment
analysis in the area
of electricity
technologies | N | - | Z | N | V N | Z | N N | N N | N | Y | YY | N | N | N | N | N | - | _ | - | GWP,
ozone
deple-
tion,
acidifica-
tion, etc. | op
and
nai | pital cost,
peration
d mainte-
nce cost
d fuel
st | Employ-
ment,
injury,
human
toxicity,
etc. | Data envelope analysis
for macro scale
assessment was
conducted. | This approach can
handle macro scale
sustainability aspect and
enable the ranking of
alternatives with
quantitative targets | Incapability to integrate the unit in the assessment. Efficiency scores are sensitive to the number of inputs, outputs, and size of sample. | | 18 | (Moslehi
&
Arababad
i 2016) | Energy
Systems
(case study) | Sustainability Assessment of Complex Energy Systems Using Life Cycle Approach- Case Study: Arizona State University Tempe Campus. | to assess
sustainability
performance of a
complex energy
systems | Y | Not clearly
mentioned | N | N | V | Y | YN | I N | N | Y | YY | Y | Y | Y | I N | N | site-specific of
systems perfoliterature | | | GHG
emissions
water
pollution
air
pollution
etc. | s, op
ma
, nar | tial,
erational,
ainte-
nce
sts, etc. | safety
assess-
ment,
system
accounta-
bility, etc. | Multi-criteria sustainability appraisal framework was conducted with two scenarios: Business as Usual (BAU) and Climate Neutrality Roadmap (CNR). Sustainability index calculation was also utilised. | System boundaries are significant to help stakeholders to comprehend consequences of a specific action. | - | | 19 | (Atilgan
&
Azapagic
2016) | Electricity
genera-
tion (case
study) | An integrated life
cycle sustainability
assessment of
electricity
generation in
Turkey | to assess
sustainability
performance of
electricity sector in
Turkey | Y | generation
of 1 kWh of
electricity in
Turkey | | | | Y | | | | | | | | | | | various
sources
and many
asssump-
tions were
made | Sener and
Aksoy
(2007) | OECD
data | abiotic
depletion
potential,
GWP, etc | ani
, cos
c. lev | pital and
nualised
sts,
velised
sts, etc. | Employ-
ment,
accident,
etc. | Multi-criteria decision
analysis was performed
with ranking and
weighting of different
options. | The ranking of the electricity options and the weights of importance placed on the sustainability aspects could help to understand the most sustainable option. | Data were limited. Complete data were needed for future works with more regionally- specific and recent ones. | | 20 | (Huang &
Mauerhof
er 2016) | Heat
pump
(case study) | Life cycle
sustainability
assessment of
ground source heat
pump in Shanghai,
China | to assess
sustainability
performance of
ground source heat
pump | Ν | Not clearly
mentioned | Y | YY | N | Y | Y N | I N | N | Y | Y Y | Y | Y | YY | Y | Y | literature rev | iew and site i | nvestigation | GWP, EI | be | st,
nefit, net
nefit | Employ-
ment | GaBi was used to performed the LCA. LCC and employment rate were also accounted. | An innovative sustainability method was proposed with its practicality | Information and data could not be gathered sufficiently. | | 21 | (Cihat,
Gumus,
Kucukvar
, et al.
2016) | Vehicle
techno-
logies (case
study) | Application of the
TOPSIS and
intuitionistic fuzzy
set approaches for
ranking the life
cycle sustainability
performance of
alternative vehicle
technologies | to assess
sustainability
performance using
TOPSIS and
intuitionistic fuzzy
set. | N | mentioned | | | | | | | | | | | | | | | (Kucukvar an
2014a) | | | energy,
water, etc | e. bu | reign
rchases,
siness
ofits,
DP, etc. | Employ-
ment, tax,
injury, etc. | Institutionistic fuzzy
MCDM and TOPSIS
were carried out for
LCSA with the Life Cycle
Sustainability Triangle
(LCST) for interpretation. | A combination of applying both LCSA and two MCDM methods (Intuitionistic Fuzzy MCDM and TOPSIS) were presented to give a rank the sustainability performance of different vehicle types in U.S. | Additional key social indicators were suggested for future studies, i.e. safety, air pollution health impact, employment levels by income and gender group, affordability, equity, etc. | | 22 | (Dong &
Ng 2016) | Building
(case study) | A modeling
framework to
evaluate
sustainability of
building
construction based
on LCSA. | to develop a LCSA
framework and
apply it for
building
construction
project | Y | Not clearly
mentioned | Y | Y | Y | Y | YY | Y | Y | Y | YY | Y | Y | Y | Y | | Question-
naire
survey to
the project
manager | HKHA
2005 | HKHA
2005 | Climate
change,
ozone
depletion
etc. | ma
ser | osts of
aterial and
rvice | child labor,
fair salary,
working
hours, etc. | Three different models were employed to perform LCSA: the environmental model of construction (EMoC) (Dong and Ng 2015a), cost model of construction (CMoC), and social-impact model of construction (SMoC) (Dong and Ng 2015b) representing each pillars of sustainability. | Material stage on the environmental and social aspects in building construction project gets less attention. | Data availability was a major concern affects the quality of assessment and the adoption of non-local LCI databases and national social statistics were questioned by stakeholders. | | | | | | | | | | | Т | he so | cope | con | side | red | | | | | Life | cycle inve | ntory | | | | | | | |----|---|--|--|--|---|-----|---------|-----|----------------|------------|-----------------|------------|------------------------------|-----|-------------------|-----|-------------|-----|--|---|---|---|---------------------------------------|--|--|--|---| | # | Artic- | Area | Title | Goal | Functional | | raction | n | roduc-
tion | | anspor
ation | M | onstruction/
anufacturing | с | Use,
Operation | a- | End-
Lit | | | analysis
ollection s | | | e cycle im
assessmer | | Methodology | Main results | Challenges | | # | les | Aica | True | Goai | Unit | Env | Eco | Soc | Есо | Soc
Env | Eco | Soc
Env | Eco | Soc | Env
Eco | Soc | Env | Soc | Env | Eco | Soc | Env | Eco | Soc | Methodology | Main lesuits | Chancinges | | 23 | (Genctur
k et al.
2016) | Building (case study) | Life cycle
sustainability
assessment of RC
buildings in
seismic regions | to quantify
sustainability
performance on
reinforced
concrete (RC)
buildings | Y The structural components of the entire building | 3 | Y | Y | Y | Y | Y | Y | Y | Y Y | Y | Y | Y | Y | various
sources
and
references | Building
cost
database,
RS Means
Database | ATC
(Applied
Techno-
logy
Council) | Environ-
mental
impact of
construc-
tion
through
EPS
(environ-
mental
perfor-
mance
score) | initial and
end-of-life
costs | deaths and injuries | LCSA combined with seismic and earthquake hazard assassment on comparisons of alternative designs. | The results showed that the cost, environmental and social impacts in the structural use stage could be highly lowered by applying a resilient plan. | Uncertainty has been found in repair cost, environmental impact and downtime values due to inavailability of data and the assumptions used in the definition of damage states. | | 24 | (Steen &
Palander
2016) | safeguard
subjects
(non-case
study) | A selection of safeguard subjects and state indicators for sustainability assessments. | to identify
safeguard subjects and suitable indicators for sustainability assessment using an interpretation of the Brundtland definition and to explore how indicators selected in this way differ from others. | N - | N | N | N N | NN | N N | N 1 | N N | N | N | N N | N | N N | X | - | - | - | energy,
mineral,
water, etc. | financial,
income | human
health,
jobs,
occupa-
tion,
knowledge,
peace,
social
security,
etc. | A top-down approach
was used for
identification of
indicators for LCSA. | The comparison between capital categories for assessing sustainable development by UNECE and safeguard subject in this work were presented as well as the comparison between UNEP/SETAC's impact subjects and state indicators in this work. | Some simplifications and also complications has been found in defining certain state indicators. | | 25 | (Gemech
u et al.
2017) | Raw
material
(case study) | Import-based Indicator for the Geopolitical Supply Risk of Raw Materials in Life Cycle Sustainability Assessments. | to enhance import-
based Indicator for
the Geopolitical
Supply Risk of
Raw Materials in
Life Cycle
Sustainability
Assessments using
the principle of
MFA | N - | N | N | N N | N | N N | N] | N N | N | N N | N N | N | N N | N | various
databases
(ecoinvent,
GaBi, etc) | UN
Comtrade | UN
Comtrade | | i Indicator for t
Supply Risk of I | | Various different
methods were used for
assessing the supply risk
of resources. | Many but the authors pointed out the importance of geopolitical and associated indicators to solve issue within the LCSA where the current impact assessment practice in LCA lack of the AoP (area of protection) of natural resources. | Data availability and lack
of different supply chain
levels are main challenges. | | 26 | (Wagner
et al.
2016) | Electronic
systems
(case study) | Evaluation of
Indicators
Supporting the
Sustainable Design
of Electronic
Systems. | to evaluate indicators for sustainable design of electronic systems. | Y relative energy consumption (relative indicator) the light output | Y | Y | YY | YY | Y Y | Y | YYY | Y | YY | Y | Y | YY | Y | GaBi
database | ProBas
online
database
(Prozesso-
rientierte
Basis
daten) | ProBas
online
database
(Prozesso-
rientierte
Basis
daten) | Cummulative energy demand, carbon emission, etc. | cost | - | Indicator matrix linking resource and emission impacts to three life cycle stages was used and case scenarios were also built for the hotspots analysis. | Many but the authors assessed the complex product structures and used ascertained data for transparency. | The main challenges is data availability and therefore lower the certainty for the inkterpretation. | | 27 | (Kalbar,
Karmakar
, et al.
2016) | Waste-
water
treatment
(case study) | Life cycle-based
decision support
tool for selection
of wastewater
treatment
alternatives. | to achieve life
cycle-based
decision-making
tool for selecting
wastewater
treatment | N - | Y | Y | Y Y | YY | N | N 1 | N Y | Y | Y | Y | Y | N N | N N | site
specific
WWTP,
various
statistics
and
databases | site specific
WWTP | site specific
WWTP | global
warming,
eutrophi-
cation, etc. | cost,
benefit, etc. | labor or
manpower | Decision support tools
(DSTs, TOPSIS, vector
normalization and
scenario selection were
utilized. | Many but the authors proposed that selecting correct wastewater treatment technologies is challenging task however this approach can robust computational platform that help significantly in the decision making process. | A participation of a large group of stakeholders might be difficult in real situation. More site-specific information is needed. There is also a risk of selecting an incorrect set of indicators that could lead to a biased decision. | | 28 | (Keller et al. 2015) | Biorefi-
neries
(case study) | Integrated life
cycle sustainability
assessment—A
practical approach
applied to
biorefineries. | to conduct LCSA
as ex-ante decision
support in
biorefineries | N - | Y | Y | YY | YY | Y | Y | YN | N | N Y | Y | Y | YY | Y | provided
by all
partners in
biorefinery
plants | provided by
all partners
in
biorefinery
plants | ILO
databases | climate
change,
resource
depletion,
energy, etc. | NPV, IRR, profit, etc. | rural
develop-
ment,
feedstok,
labor
condi-
tion, etc | LCSA was combined with
ex-ante decision support
model called integrated
life cycle sustainability
assessment (ILCSA) | A result from interim assessment methodologies for individual sustainability aspects was presented. | Comprehensive result was shown it was yet incapable of delivering simple answer. | | | | | | | | | | | Т | he so | cope | con | side | red | | | | | Life | cycle inve | entorv | | | | | | | |----|-------------------------------------|--|---|---|---|-----|---------|-----|----------------|------------|-----------------|------------|---------------------------------|-----|-----------------------|-----|-------------|-----|--------------------------------------|----------------------|----------------------|---|---|---|--|--|--| | # | Artic- | Area | Title | Goal | Function | | tractio | n | roduc-
tion | | nspor-
ition | 1
Ma | onstruction/
anufac
uring | | Use/
Opera
tion | ı- | End-
Lif | | | analysis | | | e cycle im
assessmer | | Methodology | Main results | Challenges | | | les | | | | Unit | Env | Eco | Soc | Есо | Soc
Env | Есо | Soc
Env | Eco | Soc | Епу | Soc | Env | Soc | Env | Eco | Soc | Env | Eco | Soc | | | S | | 29 | (De Luca
et al.
2015) | Citrus
farming
(case study) | Social life cycle
assessment and
participatory
approaches: A
methodological
proposal applied to
citrus farming in
Southern Italy | to integrate the results from previous work on LCA and LCC to conduct S-LCA as whole LCSA | Y One ha o clementin orchard | | Y | Y | Y | X | N | X | Ν | N | N | N | NN | 1 N | primary and | d secondary sour | ces | climate
change,
water, etc | various
costs | health and
safety, etc. | S-LCA was perfomed
with AHP and more
locally relevant criteria
was used. | The integration of LCC and LCA with S-LCA results could deliver a broader impact categories. | There is a risk for double counting considering various aspects considered. | | 30 | (Ren et al. 2015) | Bioetha-
nol (case
study) | Prioritization of
bioethanol
production
pathways in China
based on life cycle
sustainability
assessment and
multicriteria
decision-making | to verify the combination between MCDM model and LCSA for decision-making by exploring three alternative pathways for bioethanol production | Y 1 t bioethano | | N | N Y | YY | / Y | Y | Y N | N | N | I N | N | N N | N | statistics an | d surveys | | climate
change,
ozone
depletion
(OD),
human
toxicity,
etc. | capital,
feedstock,
production,
operation
and mainte-
nance costs. | working
condition,
cultural
heritage,
govern-
ment, etc. | LCSA was combined with
MCDM methodology, i.e.
(AHP) and the VIKOR
method. | Many but the authors proposed this approach could help to identify alternatives to select the most sustainable option. | Uneasiness for users to conduct the MCDM method. | | 31 | (Yu &
Halog
2015) | Solar
Photovol-
taic (case
study) | Solar Photovoltaic
Development in
Australia—A Life
Cycle Sustainability
Assessment Study. | to undertake the
sustainability
assessment of solar
photovoltaic in
UQ Australia | Y 1 kWh of
electricity
produced
by UQ
Solar | Y | Y | Y | YY | YY | Y | Y | Y | YY | Y | Y | YY | Y | European
database | various
databases | various
databases | climate
change,
abiotic
depletion,
acidifica-
tion, etc. | cost, tax,
discounted
cost, etc. | supplier
relation-
ship,
transpa-
raency, etc | Financial metrics were quantified using SAM, including LCOE, electricity cost per year and other economic parameters. | Many, however the authors intended to identify the sustainability performance of solar PV installations on the project level to better understand whether solar photovoltaic is desirable or not. | Expert review and stakeholder participation were suggested to better understand the issue. | | 32 | (Hossaini
et al.
2015) | Buildings
(case study) |
AHP based life cycle sustainability assessment (LCSA) framework: A case study of six storey wood frame and concrete frame buildings in Vancouver. | to perform LCSA
with combination
of AHP to identify
sustainability
performance of
building | N - | N | Z | N N | N | N N | N | N Y | Y | YYY | Y | Y | YY | 7 Y | database | survey | survey | global
warming
potential,
acidifica-
tion,
eutrophi-
cation
potential,
etc. | initial,
mainte-
nance costs,
etc. | occupant
comfort,
safety, and
afforda-
bility. | LCSA was combined with AHP to evaluate the sustainability performance of a building. | The results of life cycle impacts for each unit area of buildings were comparatively presented. Building alternatives have various impact level with regards to different (sub)criterias. | No agreed method has been found to ensure the relative importance of different impacts. Decison making based on AHP, in some cases, creates ambiguity and redundancy among different criteria. More advanced MCDM techniques was recommended by the authors. | | 33 | (Peukert
et al.
2015) | Modular
machine
(case study) | Addressing
Sustainability and
Flexibility in
Manufacturing Via
Smart Modular
Machine Tool
Frames to Support
Sustainable Value
Creation. | to perform LCSA to understand sustainability performance in manufacturing via smart modular machine tool frames | N - | N | N | NY | Y | N | N | NN | N | N | I N | N | N | X | database | database | SHBD | carbon
footprint | Manufacturing cost | salary | LCSA was undertaken
with emergy-based
assessment and AHP
analysis. GaBi software
was used with CML
characterisation factor. | Production phase accounts the highest contribution for carbon footprint while fair wage assessment have been found more significant for the sensor nodes (electronic components). A sustainability footprint as a result of carbon footprint, fair wage and manufacturing cost assessment was presented. | More indicators need to
be included in the
assessment. Difficulties
on comprehending the
results since in-depth
ecological knowledge is
required. | | 34 | (Stamford
&
Azapagic
2014) | Electricity
(case study) | Life cycle
sustainability
assessment of UK
electricity scenarios
to 2070 | to evaluate the life
cycle sustainability
of various
electricity scenarios
for the UK | electricity
generated | f Y | Y | YY | YY | Y | Y | YN | Z | N N | N | N | N N | JN | Stamford
and
Azapagic,
2014 | survey | survey | GWP, AP,
EP, ODP,
etc | capital,
operational,
fuel and
total costs | salary,
employ-
ment,
worker
injuries,
etc. | Varying scenarios and
sub-scenarios on
electricity mix and
national target were
undertaken in the
assessment. | Overall, the sustainability impacts of the five electricity scenarios were compared and presented. | The challenges are related to the lack of data on the technologies that are not commercially available yet and the uncertainty on the technological development. | | | | | | | | | | | The | esco | pe c | cons | ide | red | | | | | Life | cycle inve | entory | | | | | | | |----|--|--|---|--|--|-------|-------|-------------|-----|---------------|------|-----------|---------------------------------|------------|-----------------------|-----|-----------------|-----|---|---|--|--|---|--|---|---|--| | # | Artic- | Area | Title | Goal | Functional | Extra | ction | Prod
tio | | Trans
tati | | -ti
Ma | nstruc
on/
nufac
iring | 0 | Jse/
pera-
tion | | End-of-
Life | - | | analysis
ollection s | | | e cycle im
assessmer | | Methodology | Main results | Challenges | | | les | | | | Unit | Env | Eco | Env | Soc | Env | Soc | Env | Есо | Soc
Env | Eco | Soc | Есо | Soc | Env | Eco | Soc | Env | Eco | Soc | | | | | 35 | (Akhtar et
al. 2015) | Sewer pipe material (case study) | Life cycle
sustainability
assessment (LCSA)
for selection of
sewer pipe
materials. | to perform LCSA
to select best sewer
pipe materials
based on their
sustainability
performance | Y the 3 m
length and
400 mm
diameter of
sewer pipes
of different
materials
with the
same design
life of 100
years. | Y | YN | YY | N | Y | Χ | Y | Y | J Y | Y | N | Y | | emergy
database,
SimaPro
7.1
inventory
data | various
sources | various
sources | global
warming,
NOx
emission
and SOx
emission,
etc | initial,
mainte-
nance,
repair and
replacement
cost | - | LCA and LCC were
performed and then
combined with AHP
analysis. | Environmental and economic assessment result on four types of sewer materials were presented along with each pros and cons. | The challenges are linked to the subjectivity of the evaluation and limited researches on documenting the uncertainties in emergy-based LCA. | | 36 | (Martínez
-Blanco et
al. 2014) | Fertilizers (agricul- ture) (case study) | Application
challenges for the
social Life Cycle
Assessment of
fertilizers within
life cycle
sustainability
assessment. | to face application
challenge of
S-LCA within
LCSA through
case study in
fertilizers. | Y 1 ton of tomato (henceforth, 1 ton of fertilized tomato) | Y | YY | YY | Y | YY | Y | Z | N 1 | N N | N | N N | J N | | ecoinvent,
ELCD,
national
databases,
etc. | ecoinvent,
ELCD,
national
databases,
etc. | SHBD | GWP,
ODP,
human
toxicity,
etc. | fertilizer
market
price, price
of transpor-
tation, extra
application
costs | various
impact
assessment
from
SHDB | E-LCA, LCC and S-LCA
was carried out.
Additionally, SHDB was
performed for S-LCA. | Many but to sum up, the results of E-LCA, LCC and S-LCA in a integrated fashion were presented using LCSD. | The primary challenge is related to the uncertainty in data collection since several indicators in SHDB are not filled with real but extrapolative data and few sector data are available for most of issues, sectors and countries. Challenges are also dealt in the integration of the scopes of the three tools. | | 37 | (Kucukva
r, Gumus,
et al.
2014) | Pavement
(case study) | Ranking the
sustainability
performance of
pavements: An
intuitionistic fuzzy
decision making
method. | to quantify
sustainability
performance with
an intuitionistic
fuzzy decision
making method | N - | Y | Y | YY | Y | Y | Y | Y | Y | N | N | N | I N | N | various datal | Dases | | carbon
emission,
water
footprint,
energy
consump-
tion, etc. | import, tax, income, etc. | injuries | TOPSIS method based
on intuitionistic fuzzy
entropy was performed to
select the most
appropriate asphalt. | The results of decision making method applied in MCDM problem were presented in order to weight the best of the pavement alternatives. | The uncertainty will increase when EIO model use the aggregated sector data where several subsectors are evaluated under the same main sector. The subjectivity of expert judgment for sustainability indicators also affects the uncertainty | | 38 | (Lu et al.
2014) | Waste
Electrical
and
Electronic
Equip-
ment
(WEEE)
(case study) | Reusability based
on Life Cycle
Sustainability
Assessment: case
study on WEEE | to assess
sustainability
performance and
reusability of
WEEE | Y the typical
components
of 100
waste
mobile
phones | N | N N | N N | JN | YY | Y | Z | N I | V N | N | N | Y | | practical
field
investi-
gation,
RCEES,
and other
databases | practical
field
investiga-
tion | practical
field
investiga-
tion | climate
change,
acidifica-
tion,
ecotoxicity,
etc | Costs | Employ-
ment,
housing,
and
education | LCSA was used to assess
the reusability of waste
mobile phone. Three
assessments were
conducted, environmental
reusability assessment,
economic reusability
assessment and social
reusability
assessment. | Many but overall the results show the comparison of the two systems of telephone end of life treatment: (a) components reuse (b) materials recovery mode. | The definition on what is good or bad and what is positif and negative impact in the case of whether job creation is more important than the health risk or not is the challenge faced. More other macro or micro factors need to be concern i.e. reusability time range, physical condition and technology innovation speed. Improvements is needed in the integration methods of three sustainability pillars. | | 39 | (N. C.
Onat et
al. 2014) | Buildings
(case study) | Integrating triple
bottom line input-
output analysis
into life cycle
sustainability
assessment
framework: The
case for US
buildings. | to integrate triple
bottom line input-
output analysis
into LCSA
framework. | N - | N | N N | N | I N | N | N | Y | Y | Y | Y | Y | Y | | Environ-
mental
Protection
Agency
(EPA), the
US
Depart-
ment of
Energy
(DOE) | Bureau of
Economic
Analysis
(BEA), the
Federal
Highway
Adminis-
tration
(FHWA), | the US
Energy
Informa-
tion
Adminis-
tration
(EIA) | GHG,
water,
energy, etc. | GDP,
import,
business
profit | injury,
income,
govern-
ment tax,
etc. | Triple Bottom Line (TBL) LCA, a type of input-output based LCA model was used to incorporate the environmental impacts and financial flow as well as the social state. | Many but overall results
show the various TBL
impacts of residential
and commercial
buildings. | Limited data are available for certain indicators. Aggregated sector data that contain many other less-relevant sub-sectors are used thus increases the uncertainty. Certain impacts are assumed to happen in domestic level thus a global view of those impacts are highly reccommended for the future study. | | | | | | | | | | | 7 | The s | scope | e con | side | red | | | | | I ifa | cycle inve | entory | | | | | | | |----|--|--|--|---|---|-----|--------|-----|----------------|-------|------------------|--------------|------------------------------------|------------|------------------------|-----|---------------|-----|---|--------------------------------------|----------------------|---|---|--|--|--|---| | # | Artic- | Area | Title | Goal | Functional
Unit | | ractio | n | roduc-
tion | . Tı | ranspo
tation | Co
r
M | onstru
tion/
anufa
turing | c (| Use/
Opera-
tion | - | End-o
Life | | | analysis | | | e cycle im | | Methodology | Main results | Challenges | | | les | | | | Oint | Env | Eco | Soc | Eco | Soc | Есо | Soc | Eco | Soc
Env | Eco | Soc | Env
Eco | Soc | Env | Eco | Soc | Env | Eco | Soc | | | | | 40 | (N. Onat
et al.
2014) | Passenger
vehicle
(case study) | Towards Life
Cycle Sustainability
Assessment of
Alternative
Passenger
Vehicles. | to perform LCSA
of alternative
vehicle
technologies in
macro-level | Y 1 mile of
vehicle
travel | Y | Y | Y | Y | Y | Y | Y | Υ | Y | Y | Y | 7 Y | Y | various data | pases | | GHG,
water,
energy, etc. | GDP,
profit,
import, etc. | Employ-
ment,
human
health,
injury, etc. | TBL indicators were used to measure the sustainability performance of passenger vehicles with two scenarios: when no additional infrastructure requirement exists and when electricity to power BEVs and PHEVs are produced. | The quantified results
on economic, social, and
environmental impacts
are presented based on
each life cycle phase and
two scenarios
considered. | Limited number of processes considered could be a drawback of this approach. The selection of processes to be included is also quite subjective thus could increase the uncertainty. | | 41 | (Kucukva
r, Noori,
et al.
2014) | Pavement
(case study) | Stochastic decision
modeling for
sustainable
pavement designs. | to address the
direct and indirect
environmental,
economic, and
social impacts
(Triple-Bottom-
Line (TBL)) in
assessing
sustainability
performance | Y one-km
pavement
using
sustainabili
y weights
ranging
between 0
and 1 | | N | N | Y | YY | Y | Y | Υ | YN | N | N | J N | N | National
renewable
energy
database
and others | WIOD,
GTAP,
BEA
database | various
databases | GHG,
water | GDP,
import, tax,
etc. | Employ-
ment,
injury, etc. | A hybrid TBL-LCA was
performed and combined
with MCDA for hot- and
warm-mix asphalt. | Varying results on macro-level environmental and socio-economic assessment were presented in each life cycle stage. At last, the optimal percentages of each alternatives were presented. | The variability of input parameters need to be considered since it affects the certainty. | | 42 | (Valdivia
et al.
2013) | Marble
slab (case
study) | A UNEP/SETAC approach towards a life cycle sustainability assessment—our contribution to Rio+20 | How to perform
sustainability
performance
considering all the
possibility of
technique in
LCSA? | Y 1 m3 of
marble
types A, B,
C and D | | N | NY | Y | YY | Y | YY | Y | Y N | N | N N | N | N | | ed specifically (
data were used) | | CO ₂ , N ₂ O,
water, etc | wage cost,
material
cost, etc | Employ-
ment,
working
hours,
presence of
child
working,
etc | LCSD methodology was
used to compare
sustainability performance
of product systems where
expert and non-expert
stakeholders were
involved. | Many but in general
LCSD marble slab
results and scores were
presented based on the
types and and overall
index. | Data unavailability is a major issue. Linkages of the indicators to some techniques need to be regarded. | | 43 | (Pesonen
& Horn
2013) | Biodiesel
(non-case
study) | Evaluating the
Sustainability
SWOT as a
streamlined tool
for life cycle
sustainability
assessment. | to evaluate
sustainability
performance by
using SWOT
analysis | N - | Y | Y | Y | Y | YY | Y | Y | Υ | YY | Y | Y | J N | N | readymade c
specific data | atabases, surve | y or case- | GHG, raw
materials,
NOx, SOx | various
costs | social
welfare and
incomes | SWOT was used to have
more streamlined
assessment. | The results of the analyses on the usability of SWOT in both business and LCSA framework have positive remarks. | Even though this approach is adapted to the logic sense of the business stakeholders but it does not follow strictly the impact assessment guideline. The inclusion of uncertainty in this approach should be streamlined | | 44 | (Wood &
Hertwich
2013) | Economic
(case study) | Economic
modeling and
indicators in life
cycle sustainability
assessment | to model economic indicators in life cycle sustainability assessment and answer a question of whether the methods applicable to consequential and attributional LCSA | Y 1 GWh of electricity | N | N | N | N | N N | Z | N | Υ | YY | Y | Y | V N | N | - | EXIOPOL
database | - | - | cost (labor
and capital),
taxes, etc. | _ | Economic modeling and calculation using Taylor series expansion of the Leontief inverse with the representation of variables in a hybrid IO LCA model was performed for macroscale economic formulation. | The cost of indicator results was presented as well as indicator results on productivity measurements. This appoach is believed could be used for consequential approach of LCC in LCSA. | The uncertainty found in this study is not methodological but rather the availability of relevant data. | | 45 | (Osterme
yer et al.
2013) | Building
refurbish-
ment (case
study) | Multidimensional
Pareto
optimization as an
approach for site-
specific building
refurbishment
solutions
applicable for life
cycle sustainability
assessment | to perform
sustainability
performance with
multidimensional
Pareto
optimization | N - | N | Z | N Y | Y | YY | Y | Y | Y | Y | Y | Y | Y Y | Y | ReCiPe
ecoinvent
database,
IPCC 100,
CED | - | - | | - | - | This method used was a multidimensional Pareto optimization combined with LCC, LCA and the first stages of a social assessment. | The performance of 729
normalized results were presented from 6 measurements and 3 possible options for LCC and ReCiPe indicators in site in Paris/France. Single technology measurements for the marked concepts were also deliberated. | Technologies and measurements considered in the approach were limited. Some that are not considered in the approach might create a gap and thus could miss the suitable options. The results were presented with relative values (percentages). The calculation used was the static values. No dynamic approach scenarios was involved. The social aspect was also left out of the formulation. | | | | | | | | | | | , | The | scor | oe co | nsic | lere | d | | | | I ifa | cycle inve | entors | | | | | | | |----|---|--|---|---|---|---------|---------|------|----------------|-----|------------------|------------|-----------------------------------|-------------------|-------------------|-----|-----------|-----|---------------------------|------------------|---|---|--|---|--|--|--| | # | Artic- | Area | Title | Goal | Functiona | | tractio | on] | Produc
tion | | Fransp
tation | or-
1] | Construction -tion Manu -turir | ruc
1/
Ifac | Use
Ope
tio | ra- | End
Li | | | analysis | | | e cycle im
assessmer | | Methodology | Main results | Challenges | | " | les | Tirca | Tide | Goar | Unit | Env | Есо | Soc | Eco | Soc | Env
Eco | Soc | Env | Soc | Env | Soc | Env | Eco | Env | Eco | Soc | Env | Eco | Soc | Methodology | Mani Teguns | Chancinges | | 46 | (Foolmau
n &
Ramjeaw
on 2013) | PET bottles (case study) | Life cycle
sustainability
assessments
(LCSA) of four
disposal scenarios
for used
polyethylene
terephthalate
(PET) bottles in
Mauritius | to understand
sustainability
performance of
different disposal
scenarios for
reused PET bottles | Y 1 tonne of post-consumer PET bottl | | N | Z | J N | N | N N | N | N | N | N | N | Y | Y | not
mentioned | not
mentioned | surveys,
site-
specific
data and
other
databases | climate
change,
ecotoxicity,
ozone
depletion,
etc. | operating
and mainte-
nance costs | almost all
S-L.CA
indicators
(UNEP)
were
covered. | LCA+LCC+S-LCA was performed with combination of AHP and was applied in four different four disposal scenarios. | The summary of results for the three disposal facilities and final ranking were presented. Sensitivity analysis was also shown. | - | | 47 | (Vinyes et
al. 2013) | Cooking
oil waste
manage-
ment (case
study) | Application of
LCSA to used
cooking oil waste
management. | to perform LCSA
in cooking oil
waste management | Y the UCO generated a neighbour hood of 10,000 inhabitant for 1 year the city of Barcelona | s
in | N | N | J N | N | Y | Y | NN | N | Y Y | Y | Y | Y | ecoinvent
database | not
mentioned | entities and
organisa-
tions | GWP,
ODP,
abiotic
depletion,
etc. | personnel
cost,
transpor-
tation cost,
collection
and storage
cost, etc. | Employ-
ment,
equality,
public
commit-
ments to
sustaina-
bility
issues, etc. | LCA, LCC and S-LCA
were carried out. | Many but the authors emphasized on the selection of UCO collection system that performs best in the three assessments. | The uncertainty exists in the weighting of each indicators within each and among three sustainability dimensions. Second uncertainty is linked to the connection of social indicators and its finetuning to the functional unit. | | 48 | (Manzard
o et al.
2012) | Hydrogen
technolo-
gies (case
study) | A grey-based
group decision-
making
methodology for
the selection of
hydrogen
technologies in life
cycle sustainability
perspective | to carry out a grey-
based group
decision-making
methodology for
the
selectiohydrogen
technologies | N - | N | N | N | Y | Y | N N | N | NN | N | N N | N | N | N N | not
mentioned | not
mentioned | survey to
stakehol-
ders | water | costs | job
creation,
working
condition,
social
influences,
etc. | LCA, LCC and S-LCA
were performed with
stakeholder involvement
on the decision-making
group. Twelve scenarios
on the hydrogen
technology development
were considered. | The result of twelve different scenarios of hydrogen technologies was presented for selecting the most suitable hydrogen production as well as for delivering the interpretation for decison-makers. | Uncertainty and availability of data & models are the big chunk. The subjectivity in the qualitative evaluation also play part increasing the uncertainty. | | 49 | (Stamford
&
Azapagic
2012) | Electricity
option
(case study) | Life cycle
sustainability
assessment of
electricity options
for the UK | to perform LCSA
to assess electricity
options for the UK | N - | Y | Y | Y | YY | Y | ZZ | NY | YY | Y | Y Y | Y | Y | Y | various data | i
bases | | GWP,
marine
ecotoxicity
potential,
etc. | fuel price,
levelised
costs, etc. | Employ-
ment,
injuries,
accidents,
human
toxicity,
etc. | Methodological
framework used was a
life-cycle approach to
assess techno-economic,
environmental and social
sustainability on various
electricity options in the
UK. | Many however the results were presented in each aspect such as techno-econoomic, environmental, and social sustainaibility and were divided based on the higher and lower value preferred. | - | | 50 | (Traverso,
Finkbeine
r, et al.
2012) | Natural
hard floor
covering
(case study) | Life Cycle
Sustainability
Dashboard | to present LCSA
result effectively
and
communicatively | Y cubic mete
of slab | er Y | Y | Y | Y | Y | Y | Y | ΥΥ | Y | N N | N | Y | Y | not
mentioned | not
mentioned | social data
from each
province
with
stakeholder
involve-
ment | energy,
GWP,
HTP, PO,
acidifi-
cation,
eutrophi-
cation, etc. | extraction,
manufac-
turing,
finishing,
waste
disposal,
electricity
costs and
revenues | salary,
employ-
ment,
injury and
accident,
equality
and social
benefits. | LCA+LCC+S-LCA was
undertaken. Various
indicators in each aspects
were used. | Many however the authors emphasized on the application of LCSD as a tool to present the interpretation results of sustainability performance of a product. | The unavailability of data was a major challenge. | | 51 | (Traverso,
Asdrubali,
et al.
2012) | Photovol-
taic
modules
(case study) | Towards life cycle
sustainability
assessment: An
implementation to
photovoltaic
modules. | to carry out
sustainability
assessment of the
assembly and
production of
photovoltaic (PV)
modules. | Y 1 m2 of modules | Y | Y | YY | Y | YY | Y | Y | YY | Y | YY | Y | Y | Y | Ecoindi-
cator | not
mentioned | interview
and
question-
naires | GWP,
ecotoxicity,
acidifica-
tion, land
use, etc. | cost | working
hours,
benefits,
wage, etc. | LCSA was carried out and
the results were presented
using LCSD. | LCSA and LCSD ere
used as tools to assess
sustainability
performance and
present the results to
policy makers in order
to support decison
making process
effectively. | The overall objective in each aspect is a main challenge. LCA was used clearly for minimizing environmental impacts. For the other two, it depends on the perspectives. | | 52 | (Menikpu
ra et al.
2012) | Solid
waste
manage-
ment
systems
(case study) | Framework for life
cycle sustainability
assessment of
municipal solid
waste management
systems with an
application to a
case study in
Thailand. | to assess
sustainability
performance of
municipal solid
waste treatments in
Thailand. | Y Manage-
ment of or
tonne of
generated
MSW in
Nthaburi
within the
integrated
system. | | N | N | NN | N N | N N | N | NN | N | N N | I N | Y | Y | ecoinvent
and
BUWAL | not
mentioned | not
mentioned | CO2, CH4,
N2O, CO,
NH3, H2S,
Nox, Sox,
VOCs,
land, etc. | income and cost | labor force,
community
participa-
tion, living
standards | Integrated systems of
LCA, LCC and S-LCA
was undertaken with
different formula and
theoretical concept. | Results on the
damage
to ecosystem & abiotic
resources, net LCC of
the technologies and
income & job creation
were presented. | Certains informations could be lost when data is aggregated was the primary challenge. | | | | | | | | | | | Ί | he s | cop | e coi | nsid | erec | 1 | | | | Life | cycle invo | entory | T • 6 | | | | | | |----|--------------------------------|---|---|--|---|--------|---------|------|-----------------|------------|-----------------|----------|-----------------|---------|---------------------|-----|-----------|-----|-----------------------------------|------------------------------------|---------------|---|--|--|--|---|--| | | Artic- | | | | Functional | | tractio | on] | Produc-
tion | | anspo
tation | or-
N | -tion/
Manuf | /
ac | Use
Oper
tion | ra- | End
Li | | | analysis | | | e cycle im
assessmen | | | | | | # | les | Area | Title | Goal | Unit | | | | | | | | -turin | | 7 | | , | | | | | | | | Methodology | Main results | Challenges | | | | | | | | Env | Есс | Soc | Eco | Soc
Env | Ecc | Soc | Ecc | Soc | Em | Soc | En | Soc | Env | Eco | Soc | Env | Eco | Soc | | | | | 53 | (Nzila et
al. 2012) | Biogas
produc-
tion (case
study) | Multi criteria
sustainability
assessment of
biogas production
in Kenya. | to perform
sustainability
assessment on
biogas production | Y 1 m3 of
biogas | N | N | Z | N | N N | Z | NY | Y | Y | Y | Y | Y | YY | various data
interview | abases and | - | CED,
GHG,
energy | total
investment
cost, labor
cost | - | Multi criteria
sustainability assessment
characterisation was
carried out with
environmental,
technological and
economic sustainability
evaluation. | Multi-criteria
sustainability assessment
spider-gram comparing
the performances with
respect to the unit
square of area used in
biogas production was
presented. | - | | 54 | (Schau et
al. 2011) | Remanu-
factured
alterna-
tors (case
study) | Life Cycle Costing
in Sustainability
Assessment—A
Case Study of
Remanufactured
Alternators | To answer a main question: how is the application of LCC as part of a broader sustainability assessment where S-LCA and LCA are also combined. | Y 100,000 km | | | | | | | | | | | | | | | ILO
databases
and others | | - | cost for
warranties,
transport
cost, labor
cost, cost of
energy, etc. | - | LCA-type LCC method was applied. The main focus of method is rather about the complex parameters need to consider in the remanufactured alternators. | The results were presented based on the remanufacturer perspective and from the user perspective. | The uncertainties found are linked to the ambiguity of cost (positive or negativea) and the economic grwoth (rather a mean or an end). The AoP for economic assessment is needed. | | 55 | (Moriizu
mi et al.
2010) | Plantation
on waste-
lands (case
study) | Simplified life
cycle sustainability
assessment of
mangrove
management: a
case of plantation
on wastelands in
Thailand | to conduct
streamlined LCSA
of mangrove
management | Y the plantation area of 1000 ha would be divided into 10 plots and mangroves would be planted on one plot every year |)
e | X | N | N | N Y | Y | Y | I N | Z | Y Y | Y | N | N | | formation of pla
five provinces | antation were | carbon
emission | cash flow | Employ-
ment | Assessment on the sustainability aspects were conducted by looking at the net carbon sequestration, employment, and cash flow. | The results were presented based on the site-specific investigation and sensitivity analysis were also undertaken. | Data availability is the biggest challenge in this study. | | 56 | (Zhou
2007) | Fuel (case
study) | Life cycle
sustainability
assessment of
fuels. | to apply multi-
criteria assessment
on fuels based on
sustainability
approach. | N - | Y | Y | N Y | Y | NY | Y | N Y | Y | N | YY | N | N I | N N | various
databases | various
databases | - | GWP,
energy and
non-
renewable
resources | costs | - | Multi-criteria analysis was
performed based on
sustainability indicators
(environment, economy,
energy and renewability
indicators) in six cases. | Many but the authors
highlighted the
interpretation of
sustainability index and
evaluation of the cases. | Macro-indicators used to
assess the fuel
performance could lower
the scientific
value of the assessment. | | 57 | (Wulf et
al. 2017) | Rare Earth Permanent Magnets (case study) | Lessons Learned
from a Life Cycle
Sustainability
Assessment of
Rare Earth
Permanent
Magnets | to address certain
methodological
challenges of
LCSA application. | Y 1 kilogram
(kg) of
magnet | Y | Y | YY | Y | Y N | N | N N | N | Z | N N | X | N | N | many
sources
and
reports | many
sources and
reports | SHDB | fossil fuel
depletion,
climate
change,
ozone
depletion | OPEC,
CAPEX
indicators | forced
labor,
wages,
employ-
ment and
other risks
based on
SHDB | LCSA was applied with
different normalization,
aggregation methods, and
weighing factors. | The results of the comparison of the three magnet production systems were shown with different normalization and weighting methods. | Insufficient of data and methodological documentation increases the uncertainty. What the future sustainable trend should go in certain impact categories could be problematic, for instance, "does a high risk of unemployment imply the need to invest in that country to improve the situation or does it suggest that a country with a lower risk should be sought". | | 58 | (Benedict 2017) | Energy
alterna-
tives (case
study) | Understanding Full
Life-cycle
Sustainability
Impacts of Energy
Alternatives | to understand and
emphasize on life-
cycle sustainability
impacts of energy
alternatives | N - | N | N | N | N | N N | N | N N | JN | N | N N | N | N I | NN | - | - | - | - | - | | It is a comparative study
of LCSA applied in
energy alternative sector. | A suggestion for future work was made that coupling life cycle sustainability with scenario planning will be beneficial for energy-related policy making. | - | | 59 | (Mehmeti
et al.
2016) | solid
oxide fuel
cells (case
study) | Life cycle
sustainability of
solid oxide fuel
cells: From
methodological
aspects to system
implications | to review the status
of LCA and LCC
of solid oxide fuel
cells and apply the
methods under
LCSA | Y - | N | N | Z | N | N N | Z | N N | JN | N | N N | N | N N | N N | - | - | - | - | - | - | Literature review was
done focusing on the
system boundary, impact
assessment & method and
economic aspect. | The results show about
the status of each stage
of LCA in solid oxide
fuel cells application
along with eco-efficiency
and impact assessment. | Lack of methodological consistency was one of the main points where the attention needs to be paid to. | | | | | | | | | | | | The | e sco | pe co | onsic | lerec | 1 | | | | Life | cycle inve | entory | | | | | | | |----|--------------------------------|---|--|---|---|-----------------------|--------|------------|-------------|-----|---------------|-------|---------------------------------|-----------|----------------------|-----|------------|-----|--|-----------------------|--|--|---|---|--
--|---| | 44 | Artic- | | Tital | 6.1 | Function | | Extrac | ction | Prod
tio | | Trans
tati | por- | Const
-tion
Manu
-turi | ı/
fac | Use,
Oper
tion | a- | End-o | | | analysis
ollection | | | e cycle im
assessmer | | M d 11 | X | Ci. " | | # | les | Area | Title | Goal | Uni | | Env | Eco
Soc | Env | Soc | Env | Soc | | | Env | Soc | Env
Eco | Soc | Env | Eco | Soc | Env | Eco | Soc | Methodology | Main results | Challenges | | 60 | (Kamali
et al.
2016) | soybean
farming
systems
(case study) | Evaluation of the
environmental,
economic, and
social performance
of soybean farming
systems in
southern Brazil | to evaluate
sustainability
performance of
soybean farming
systems with
stochastic model | Y 1 ton
GM,
GM,
organ
soybe | , Non-
, or
nic | N I | Ň | YY | Y | YY | Y | N | N | YY | Y | N N | N | ecoinvent
database | survey, site
visit | various
databases | GWP, land
occupation
and energy
use | profitability | Employ-
ment | Environmental, economic and social life cycle assessment were done with stochastic model using Monte-carlo simulation. | The results of the simulated sustainability performance for the three soybean farming systems were presented based on the performance indicators. The cumulative distribution function was also shown. | Data limitation is the biggest issue. | | 61 | (Li et al.
2017a) | Solar
Photovol-
taic (ease
study) | A Regional Life
Cycle Sustainability
Assessment
Approach and its
Application on
Solar Photovoltaic | to assess
sustainability
performance of
regional solar
photovoltaic
deployment | : : : | eration
kWh | Y | YY | Y Y | Y | N N | N | Y | Y | YY | Y | YY | Y | ecoinvent
database | not
mentioned | survey and
stakeholder
consulta-
tion | GWP,
energy, AP,
HTP, EP | reliability
and
profitability | land use,
local
community
and fuel
poverty | A framework for assessing three dimensions of sustainability were proposed. The indicators used were selected basing on some criteria, i.e. no double counting, the indicators must be quantifiable, applicability and easiness to understand. | Sustainability performance results were presented in lower and higher value preferred. | - | | 62 | (Schaubro
eck 2017) | Theoretical article (non-case study) | A Revision of
What Life Cycle
Sustainability
Assessment
Should Entail
Towards Modeling
the Net Impact on
Human Well-Being | to revisit again on
how to evaluate
the sustainability
properly | N - | | N P | X X | N N | N | N N | N | X | N | N | X | N N | | - | - | | - | - | | - | A roadmap on what we need to focus to enhance the LCSA. (1) how to frame which areas should be sustained (2) how to account for the interconnectedness among AoPs (e.g., the interconnectedness between ecosystems and human well-being); and (3) how to assess both benefit and damage to | - | | 63 | (Tarne et al. 2017) | Review article (non-case study) | Review of Life Cycle Sustainability Assessment and Potential for Its Adoption at an Automotive Company | to review LCSA
and the
opportunity to
adopt it in
automative
company | N - | | N 1 | Z | N N | Z | N N | Z | N | N | N N | N | N N | N | - | - | - | - | - | - | - | the AoPs properly. Current state of LCSA in automotive industry was presented as well as bibliometric study. | The inconsistency of the execution in three methods, the low maturity of S-LCA, different way of result interpretation were the challenges found in this study. | | 64 | (Wang et
al. 2017) | Concrete
structure
(case study) | Life cycle
sustainability
assessment of fly
ash concrete
structures | to assess
sustainability
performance of fly
ash concrete | | luction
m3 FA | Y | YY | YY | Y | YY | Y | Y | Y | N N | N | N N | N | various
databases,
ICE,
ecoinvent,
CLCD,
etc. | Yu et al. | stakeholder
survey | climate
change,
respiratory
effect,
terrestrial
acidifica-
tion, etc | cost of
material,
transporta-
tion and
energy
consump-
tion | living
condition,
health,
education,
culture and
necessities | Many calculation model was used in each stage, i.e. impact assessment, durability analysis, single-objective optimization. Also, quantitative calculation process of SLCA of FA concrete was performed. | Overall environmental and economic results were presented with characterization, weighting results, and social life cycle impact of concrete with different substitutions. | Two suggestions were made: 1. Uncertainty modeling for future work is needed. 2. A number of a key factors of sustainability should be added. | | 65 | (Hapuwat
te et al.
2016) | Manufactured product (case study) | Total life cycle
sustainability
analysis of
additively
manufactured
products. | to assess economic, environmental and social performance of manufacturing product using product sustainability index. | N - | | N | N N | YY | Y | N N | N | N N | N | N N | Z | YY | Y | not
mentioned | not
mentioned | not
mentioned | Environ-
ment sub-
index score | economy
sub-index
score | social sub-
index score | Product sustainability index method was performed with normalization and weighting. | The results were presented in various sub-index scores for each components for each sustainability dimensions. | The subjectivity of the weighting and normalization and the relativity to its components make the analysis incomparable to each other. The inability of this approach to take the quantity of production as a factor that affect sustainability was a drawback. | | | | | | | | | | | 1 | he s | scop | e co | nsio | dere | d | | | | Life | cycle inve | entory | | | | | | | |----|---|--|--|---|--|------|--------|-----|--------|------|--------|------|---------------|------|------------|-----|----|-------|--|--------------------|----------------------------------|--|--|---|--|--|---| | | | | | | | Extr | action | | roduc- | Т | 'ransp | or- | Const | n/ | Use
Ope | | | d-of- | | analysis | | | fe cycle im
assessmei | | | | | | # | Artic- | Area | Title | Goal | Functional | LAU | action | | tion | | tation | 1] | Manu
-turi | | tio | | I | ife | (data c | ollection : | sources) | | | | Methodology | Main results | Challenges | | | les | | | | Unit | N | 0 | c & | 0 | c c | . 0 | ၁ | ۶ ۵ | | Σ | . o | V | 0 | ບ _ | _ | _ | _ | _ | | | | S | | | | | | | | En | Ec | So | Ec | So | Ec | Soc | H
H
Y | So | En | So | En | Ec | Env | Eco | Soc | Env | Eco | Soc | | | | | 66 | (Hake et
al. 2017) | Alkaline
Water
Electro-
lysis (case
study) | Towards a Life
Cycle Sustainability
Assessment of
Alkaline Water
Electrolysis | to assess the
sustainability
performance of
alkaline water
electrolysis | Y The production of 1 kg H2 (33 bar, 40 °C, 99.8% purity) | N | N | N N | Z | N N | Z | N | YY | Y | Y Y | Y | Y | YY | data from
project
and
ecoinvent
database | EU Energy | SHDB | climate
change,
ozone
depletion,
terrestrial
acidifica-
tion, etc. | investment
cost,
levelised
cost,
electricity
cost, etc. | labor, risk
of
excessive
working
time, wage,
right of
strike, etc. | LCSA was performed
with additional step of
normalization, weighting
and aggregation | Performance matrix was shown comparing the results in three different countries in three aspects of sustainability. | - | | 67 | (Li et al.
2017b) | Photovol-
taic power
genera-
tion (case
study) | Life cycle
sustainability
assessment of grid-
connected
photovoltaic
power generation:
A case study of
Northeast England | to evaluate the
sustainability
performance
of
photovoltaic
power generation | Y one unit of electricity produced by the selected solar PV system | | | | | | | | | | | | | | GaBi
profession
al v6.115
and
Ecoinvent
3.1 | various
sources | stakeholder
consulta-
tion | material
circularity,
energy
payback,
GWP, AP,
EP, ODP | cost,
financial
feasibility | fuel
poverty,
employ-
ment
provision | LCSA was undertaken with 17 indicators selected, 7 addressed techno-economic aspects, 6 examined environmental aspects and 4 assessed social aspects | Results on various indicators were presented in different stages and at the end sustainability ranking of solar PV systems was given. | Some bias-factors existed
due to the sensitivity
analysis carried out and
the cross-validation
method need to be
employed for future
works. | | 68 | (Nguyen
et al.
2017) | Biodiesel
(case study) | Inclusive impact
assessment for the
sustainability of
vegetable oil-based
biodiesel e Part I:
Linkage between
inclusive impact
index and life cycle
sustainability
assessment | to assess the trade-
off between
benefit and
disadvantages of
the biodiesel
system | N - | Y | Y | YY | Y | Y Y | Y | Y | N N | I N | YY | Y | Y | Y | various sour | ces | | embodied
energy,
GWP,
HTP, AP,
EP,
ADP,TEP | extraction,
manufactu-
ring,
finishing,
waste
disposal,
electricity
costs and
revenues | salary,
employ-
ment,
accident,
discrimi-
nation,
social
benefit | Inclusive impact index was undertaken to assess sustainability performance of biodiesel along with LCA, LCC and S-LCA. | No result was presented since it is the first part of work that only covers goal and scope definition and life cycle inventory analysis stage. | The absence of social issues in the method is part of the limitation found in this study. The model used also face uncertainties due to the choices, model, parameter, spatical variability, etc. | | 69 | (Wu
2017) | green
building
(case study) | Agent-Based
Modeling of
Temporal and
Spatial Dynamics
in Life Cycle
Sustainability
Assessment | to address the temporal, spatial, and behavioral dynamics in LCSA by using agent based modeling. | Y construction of 100 new buildings | N | N | N N | N | N | N | N | YY | Y | YY | Y | Y | Y | 1 21 | example with a | | waste | cost | incentive | Hypothetical example was applied and ABM was incorporated in the LCSA model. | Annual LCSA results on waste, cost and incentive from all of scenarios applied were presented. Spatial distribution of green building development in various scenarios for certain years was also shown. | This study does not specify the type of the building and stakeholders involved. The unoccupied cells were also considered available to be developed. The oversimplification of the variety of cost difference that is related to building types, geographical location, green building technology applied, infrastructure and policy. | | 70 | (Martín-
gamboa
et al.
2017) | energy
system
(non-case
study) | A review of life-
cycle approaches
coupled with data
envelopment
analysis (DEA)
within multi-
criteria decision
analysis for
sustainability
assessment of
energy systems | to review the
application of
LCSA with DEA
in energy system | N - | N | N | N N | N | N N | N | N I | N N | I N | N N | Z | N | N | 1 - | - | - | - | - | - | review on the 62 articles in the topic of sustainability assessment and MCDA of energy systems were conducted. | The growing role of MCDA in energy policy and the increasing number of the LC+DEA application make LCSA methodological framework is highly needed. | - | | 71 | (Smetana,
Sergiy;
Tamasy,
Christine;
Mathys,
Alexander
; Heinz
2016) | food
industry
(case study) | Regionalized Input-Output Life Cycle Sustainability Assessment: Food Production Case Study | to perform Regionalised LCSA with regionalised environmental, economic and social data for LCSA in few regions in Germany | N - | N | N | N Y | Y | Y N | N | NI | N N | N | N N | X | N | NN | official statis | tical sources. | | biotic
resources | monetized
value | - | Regional Sustainability
Assessment Methodology
(RSAM) with input
output analysis was
performed | Biotic resources,
absolute and monetized
value comparison of
food industry for certain
regions in Germany
were shown. | The detail data is reccommended for the future work to expand RSAM method to become more holistic. The dynamic time series application is also needed to have more precise result. | | | | | | | | | | | Tł | ie sc | cope | e co | nsic | lere | d | | | | | Life c | ycle inv | entory | | • • | 1 | | | | | |----|---|---|---|--|---|------|--------|-----|-------|-------|--------|------|----------------|------|-----------|------------|-----|-------|--------|-----------------------------------|------------------|-----------------|--|-------|---|---|--|--|--| | | | | | | | F . | | Pro | oduc- | Tra | inspoi | | Const | | Us | | En | d-of- | | | analysis | 3 | | | cycle imp
sessment | | | | | | ш | Artic- | | 771.1 | C 1 | Functional | Extr | action | t | ion | ta | ation | | Manu
-turir | | Op
tie | era-
on | | ife | (| (data co | llection | sources |) | | 000111011 | | 36 (1 1 1 | 36 1 | C1 11 | | # | les | Area | Title | Goal | Unit | | | | | | | | | 0 | | | | | | | | | | | | | Methodology | Main results | Challenges | | | | | | | | Env | Eco | Env | Eco | Env | Есо | Soc | Env | Soc | Env | Eco | Env | Eco | 200 | Env | Eco | Soc | Env | | Eco | Soc | | | | | 72 | (Ya-Ju
Chang,
Sabrina
Neugebau
er et al.
2017) | Manufacturing (non-case study) | Life Cycle
Sustainability
Assessment
Approaches for
Manufacturing | to formulate the
LCSA framework
with the tiered
approach. | N - | N | N N | I N | N | X | N | N | N | Z | N | Z | N | N | | | - | - | - | _ | - | - | Literature review and research needs were presented at LCA, LCC, S-LCA and LCSA as a whole. | The authors emphazised on the importance of LCA for the identification of product and process hotspots for decision making in production development. Tiered approach was also reccommended to be applied. | - | | 73 | (Sánchez
Berriel et
al. 2018) | Cement (case study) | Introducing Low
Carbon Cement in
Cuba - A Life
Cycle Sustainability
Assessment Study | to carry out LCSA
for assessing
sustainability
assessment of low
carbon cement | Y The production of one ton of cement | N | Z | Y | Y | N | N | N | N N | N | N | N N | N | N N | 1 | | not
mentioned | not
mentione | climate change, ozone depletion human toxicity, etc. | c | monetary,
direct, labor
cost, etc. | hours of
work,
health &
safety,
cultural
heritage,
local
employ-
ment, etc. | The adapted LCSA combining LCA, EcLCA and S-CA was conducted. | The results of sustainability performance of three types of cement (Portland cement, blended cement and low carbon cement) were presented. | - | | 74 | (Irene et
al. 2017) | olive
growing
system
(case study) | Evaluation of
sustainable
innovations in
olive growing
systems: A Life
Cycle Sustainability
Assessment case
study in southern
Italy | to conduct LCSA
with the
combination of
multicriterial and
participative
method, the AHP. | Y 1 hectare of
cultivated
surface | Y | YY | Y | Y | Y | Y | Y | N | N | N] | N N | Y | YY | | oecific in-field
o farmers and | , | questionnaire | climate
change,
toxicity,
land use | i | profitability,
costs,
investment
feasibility | social
health, job
opportu-
nities,
contribu-
tion to
national
welfare | LCSA was conducted
with AHP weighting and
sensitivity analysis | Integrated sustainability
performance of olive
growing scenarios was
shown. AHP weights of
each sustainability
dimensions and of each
impact categories were
also presented. | The uncertainty is related to the assumption of data invariance. | | 75 | (Chen &
Holden
2018) | grazing
dairy (case
study) | Tiered life cycle
sustainability
assessment applied
to a grazing dairy
farm | to assess
sustainability
performance in
dairy sector | Y 1 kg of fat
and protein
corrected
milk
(FPCM)
delivered at
the farm
gate | Y | YY | Y | YYY | Y | Y | YN | N N | N | N | N N | N | N | | ational Farm
ources | a Survey 2014 | and other | GWP, Al
EP, mine
extraction
water use
land
occupation
etc. | ral c | production
cost | health and
safety,
producti-
vity of
land
and labor,
work time,
fair wage | Tiered LCSA
(Neugebauer 2015) was
performed and coupled
with MCDA. | Mid-point results of impacts and triangle of sustainability to illustrate the iterpretation for each tier was presented. | Uncertainty occurs due to data quality and number of indicators applied in this study. | | 76 | (Xu et al. 2017) | Chemical process (case study) | Life cycle
sustainability
assessment of
chemical process: a
vector-based three-
dimensional
algorithm coupled
with AHP | to propose 3D
methodology of
vector-based three-
dimensional
approach for
LCSA in chemical
process | N - | N | N N | I Y | Y | N | N | N N | N. N. | N | N | N N | N | N N | N lite | terature and | LCA databas | es | GWP, AI
HT, AP,
EP | C | costs, NPV,
discounted
cash flow | health & safety, social responsibility, political applicability, etc. | LCSA with MCDA was conducted on three alternatives of chemical process | Comparison matrix for scoring the criterion and vector-based results in three alternatives were presented. | The inconsistency of data collected and the subjectivity and vagueness of the expert's judgement were the main challenges found. | | 77 | (Grubert 2017) | Methodo-
logical
article
(non-case
study) | The Need for a
Preference-Based
Multicriteria
Prioritization
Framework in Life
Cycle Sustainability
Assessment | to involve the subjectivity of the information needed for identifying the parameters of a decision such as prospects to decide, uncertainty, risk attitudes, and preferences | N - | | - | | | | - | | | | - | | | | | | - | - | - | | | - | Participatory decision
making including survey
and interview was done to
see the proof of concept | Aggregated and cluster preference rank values based on the survey were presented. In this LCSA approach, the main aim lies on where different fields of science and inquiry can best contribute. | - | | -11 | Artic- | | | 6.1 | Functional | Extrac | ction | Prod
tio | luc- | Tran | ope | Co
- | onstrution/ | /
ac | Use
Oper | ra- | | d-of-
ife | | | cycle inve
analysis
ollection s | | | e cycle imp
assessmen | | W 4 - 1.1 | W | Cl. II | |-----|--------------------------------|--|--|--|--|--------|-------|-------------|------|------|-----|---------|-------------|---------|-------------|----------|-----|--------------|-----|---------------------------------|---------------------------------------|--------------------------------|---|---|---|--|--|---| | # | les | Area | Title | Goal | Unit | Env | Eco | Env | Soc | Env | Eco | | | | Env | Soc | Env | Eco | Soc | Env | Eco | Soc | Env | Eco | Soc | Methodology | Main results | Challenges | | 78 | (Albertí et
al. 2017) | Review article (non-case study) | Towards life cycle
sustainability
assessent of cities.
A review of
background
knowledge | to analyse how life
cycle approach and
sustainability
assessment has
been applied in city | N - | | | _ | | - | | | | | _ | | | | | - | - | - | - | - | - | This review article explored at the background knowledge of sustainability assessment in the entire life cycle phase as well as at the different scope from construction product up to urban region. | This review article concludes that current sustainability assessment in building missed out the holistic point of view while in urban region missed out the proper guidelines. | Many. One of them is for future work, comparison of the results among different cities or urban regions would be very beneficial for policy or decision makers. Consensus on how to conduct sustainability assessment in urban region is also reccommended. | | 79 | (Akber et
al. 2017) | Electricity (case study) | Life cycle
sustainability
assessment of
electricity
generation in
Pakistan: Policy
regime for a
sustainable energy
mix | to carry out LCSA
of the electricity
sector in order to
strengthen policy-
making and
optimization of the
future energy
mixes in Pakistan | Y The generation of 1 KWh of electricity and | Y | YYY | YY | Y | Y | YYY | Y Y | Y | Y | YY | Y | Y | YY | 7 d | databases | site-specific
interview | site-
specific
interview | abiotic
resource
depletion,
GWP, AP,
EP, etc. | capital,
O&M, fuel,
annualized
and
levelized
costs | Employ-
ment,
imported
fossil fuel
avoided,
diversity of
fuel supply
mix | LCSA was conducted and 20 out of 161 indicators were chosen. These indicators represent indicators related to electricity sector. A scenario for future energy mix was also applied. | The impacts of three pillars of sustainability per functional unit were shown. Besides, the score of sustainability with equal weight to all dimensions was presented along with the score of proposed future electricity mixes. | Scope limitations and data constraints could impose uncertainty. The equal weigthing process of three pillars of sustainability could also affect the uncertainty for policy-making. | | 80 | (Iacovido
u et al.
2017) | food
waste (case
study) | A Parameter
Selection
Framework for
Sustainability
Assessment | to structure the concept of the resource recovery system using PESTEL (political, economic, social, technological, environmental and legal) analysis | N - | N | N N | NN | X | N | N N | Z | N | N | N N | <i>N</i> | Y | Y | | not
mentioned | not
mentioned | not
mentioned | GWP,
ozone
depletion,
photoche-
mical
oxidation,
AP, EP,
HTP, etc. | acquisition cost, operational cost, mainte- nance cost, EoL disposal cost, environ- mental cost | impacts on
worker,
consumer,
local
commu-
nity,
society and
value chain | LCSA combined with PESTEL was performed. | The identification of PESTEL parameters related to food waste management system were presented along with relevance ranking and uncertainties from low to high level. | The lack of an MFA to see the the flow of food waste and the subjectivity of ranking process could impose the uncertainty. The links between different value domain were forgotten due to analysis that is done at each domain individually. The transfer of parameters of political, technological and legal into the LCSA domains of sustainability pillars/impacts is uncertain. | | 81 | (Aziz et
al. 2016) | Agricultu-
ral waste
(case study) | Life cycle
sustainability
assessment of
community
composting of
agricultural and
agro industrial
waste | to understand the sustainability performance of community composting of waste of agriculture and agro-industry by performing a LCSA. | Y The treatment of one ton of waste | N | N | N | N N | Y | YY | N | Z | N | N N | N | Y | YY | | field observat
interview and | ion, laboratory
literatures | analysis, | AP, EP,
GWP,
HTP, POP | capital,
operational,
mainte-
nance, wage
and damage
costs | child labor,
fair salary,
employ-
ment,
accident,
health and
safety | LCA, LCC and S-LCA was performed using SimaPro software 7.3.3. Two alternatives of composting sytems were considered: powder compost system (PCS) and granular compost system (GCS). | LCSA impact
assessment result of PCS
and GCS were presented
and compared along
with normalization and
sensitivity results. | LCA, LCC and S-LCA was performed using SimaPro software 7.3.3. Two alternatives of composting sytems were considered: powder compost system (PCS) and granular compost system (GCS). | | 82 | (Boer et
al. 2011) | Review
article
(non-case
study) | Greenhouse gas
mitigation in
animal
production:
towards an
integrated life cycle
sustainability
assessment | to review
alternatives to
mitigate GHG
emissions in supply
chain of animal
production | N - | | | | | | | - | | | - | | - | | | - | - | - | - | - | - | - | This review showed that most studies captured production systems in developed countries and on a single indicator, i.e. GHG. They do not taking into account the interconnected effects on other GHGs or with other aspects of sustainability, i.e. economic and social aspect | Consequential setting has never been discussed before and to tackle sustainability challenges in food industry consequential approach is highly reccommended. | | | | | | | | | | | The | e sc | ope | con | sid | ered | 1 | | | | Life | cycle inve |
entory | | | | | | | |----|--|---|---|--|------------|-------|------------|-------|-----|------|--------|------------|------------------------------------|------|---------------------|-----|-----------|-----|------|------------------------|--------|-----|--------------------------|-----|---|---|---| | # | Artic- | Area | Title | Goal | Functional | Extra | ction | Produ | | | ispor- | M | onstru
tion/
anufa
turing | ıc | Use
Oper
tion | a- | End
Li | | | analysis
collection | | | e cycle imp
assessmen | | Methodology | Main results | Challenges | | | les | | | | Unit | Env | Eco
Soc | Env | Soc | Env | Eco | soc
Env | Есо | Soc | Env
Eco | Soc | Env | Eco | Env | Eco | Soc | Env | Eco | Soc | 8. | | 0 | | 83 | (Halog &
Manik
2011) | Review article (non-case study) | Advancing Integrated Systems Modeling Framework for Life Cycle Sustainability Assessment | to improve integrated methodology by highlighting the strengths of different tools used in sustainability area. | N - | | _ | _ | | | | | - | | | _ | | - | - | - | | - | | - | Different methods were compared and the strengths of each then was analysed to see the opportunity of its use in supporting sustainability decision making. | Integrated sustainability
frameworks were
provided along with
their conceptual,
theoretical, empirical
and computational
background. | The data availability and how to incorporate stakeholder's interest were two main challenges considered in this approach. | | 84 | (Ciroth et al. 2011) | Methodo-
logical
article
(non-case
study) | Towards a Life
Cycle Sustainability
Assessment | to introduce the concept of LCSA and acknowledge the previous foundations by leveraging the assessment beyond the environmental aspect only. | N - | | | - | - | | | - | - | - | | _ | - | _ | _ | | - | - | - | - | LCA, LCC and S-LCA
was suggested to be
carried out together in the
same system boundary
under the similar
functional unit. | Some suggestions on
how to perform LCSA
and some real examples
are provided. | Some challenges
addressed are the
harmonization of
database management
system, strengthening the
application, developing
more streamlined
approaches, etc. | | 85 | (Heijungs
et al.
2010) | Methodo-
logical
article
(non-case
study) | Life cycle
assessment and
sustainability
analysis of
products, materials
and technologies.
Toward a scientific
framework for
sustainability life
cycle analysis. | to review the development of frameworks that revolving around LCSA. | N - | | | - | | | | - | | | | | | _ | - | - | - | - | - | - | The review was carried out by addressing the sustainability concept and then life cycle analysis. | Two elements of
sustainability and LCA
then are combined and
general modeling
framework was
suggested. | LCA, LCC and S-LCA
have different satellite
accounts to extract
indicators thus makes the
integration not easy. | | 86 | (Finkbein
er et al.
2010) | Methodo-
logical
article
(non-case
study) | Towards life cycle sustainability assessment | to explore the recent status of LCSA for products and processes | N - | | | | | - | | | - | | | | | _ | _ | - | _ | - | - | - | Three aspects of sustainability were explored in terms of approachs and methods. | For environmental aspect, well structured LCA is available but not for the other two aspects. Robust methods are needed to measure individual sustainability dimensions. | Comprehensive and undertsandable interpretation and presentation are disirable. | | 87 | (Kloepffe
r 2008) | Theoretical article (non-case study) | Life cycle
sustainability
assessment of
products | to explore the approaches on how to assess sustainability pillars properly and in balance if new product design or improvement of the existing one takes place | N - | | | | - | | | | | | | | | - | - | | - | - | - | - | The analysis was conducted thoroughly for LCA, LCC and S-LCA. | The development was much needed for S-LCA, compared to the other siblings, LCA and LCC. | The biggest challenges lie on the S-LCA method, i.e. how to relate qualitative impacts to the functional unit and how to manage plenty of indicators on social impact. | | 88 | (Jeroen B.
Guinee;
et al.
2011) | Review
article
(non-case
study) | Life Cycle
Assessment: Past,
Present, and
Future | to explore the
history and
development and
current status of
LCA | N - | | | - | | - | - | _ | - | - | | | - | - | _ | | - | - | - | - | The analysis of the recent, current and future development of LCA as an assessment tool. | In the future, LCSA will
be tha major assessment
that will be used for
assessing sustainability
of a product or policy.
LCSA itself is seen as an
approach rather a
model. | The main challenge is how to structure, select, and achieve and channel the practicality of the various disciplinary models to different life cycle sustainability questions | | 89 | (Burchart
-korol
2011) | Review
article
(non-case
study) | Application of Life
Cycle Sustainability
Assessment and
Socio-Eco-
Efficiency Analysis
in Comprehensive
Evaluation of
Sustainable
Development | to review the current state of frameworks in sustainability assessment. | N - | | | - | _ | - | | | | | | | | | - | - | - | - | - | - | The analysis of current state and methods used in the LCSA was conducted. | A comprehensive and integrative assessment is needed for strengthen the method in order to assess the complexity of sustainability issue. | How to integrate three
methods in LCSA
remains a significant
challenge | | | | | | | | | | 1 | he s | cope | e con | side | ered | | | | | Life | cycle inve | entory | | | | | | | |----|---|---|---|--|-----------------|--------|-------|-----------------|------------|------------------|------------|--------------------------------------|------|-----------------------|-----|------|-----|-----------------|-----------------------|-------------|--|---|--|--|---|--| | # | Artic- | Area | Title | Goal | Functional | Extrac | ction | Produc-
tion | | anspor
tation | r
M | onstru
-tion/
lanufa
turing | ac | Use,
Oper-
tion | a- | End- | | | analysis
ollection | | | fe cycle im
assessme | | - Methodology | Main results | Challenges | | | les | | | | Unit | Env | Soc | Env
Eco | Soc
Env | Есо | Soc
Env | Есо | Soc | Env
Eco | Soc | Env | Soc | Env | Eco | Soc | Env | Eco | Soc | 8. | | 8 | | 90 | (Traverso,
Finkbeine
r, et al.
2012) | Natural
hard floor
covering
(case study) | Life Cycle
Sustainability
Dashboard | to communicate
the LCSA results
with direct but
comprehensive
presentations | N Not mentioned | Y | Y | YY | Y - | _ | - | | | | | | | site-specific o | lata and variou | s databases | Embodied
energy,
GWP,
HTP, POP,
AP, EP | Extraction costs, manufacturing costs, finishing costs, waste disposal costs, electricity costs, revenues | Employ-
ment,
number of
accidents
percentage
of child
labor labor
hours per
week | The LCSA was performed and LCSD was tested through a case study. | LCSD is used to present
an innovative, applicable
and practicable
comparison
methodology for
assessing sustainability
performance | The LCSA was performed and LCSD was tested through a case study. | | 91 | (Zamagni
et al.
2013) | Theoretical article (non-case study) | From LCA to Life
Cycle Sustainability
Assessment:
concept, practice
and future
directions | to present the
current
state of
sustainability
assessment, the
concept and
practice | - | | | | | | | | | | | | - | - | - | - | - | - | - | The current state of each
methods in LCSA was
discussed and analysed | The development of concept, practice and future directions of LCSA was presented. Some key points are: - The normativity elements in LCSA and the aspects of inter- and intra-generational equity; - The assessment scale - The time horizon - The stakeholders involvement | LCSA was criticized due to the fact that it prevents a complete understanding of the mutual interdependencies of the three domains of sustainability. | | 92 | (Sala et al. 2013) | Theoretical article (non-case study) | Progress in
sustainability
science: lessons
learnt from current
methodologies for
sustainability
assessment: Part 1 | to identify the
characteristics of
methods in the
sustainability
assessment | - | | | | _ | - | | | | | | | | - | - | - | - | - | - | The review lies on the ontological, epistemological and methodological aspects of sustainability in the science context. A metareview of recent studies on sustainability assessment was also conducted. | Some key features for
the improvement of
robust sustainability
assessment were
presented. | Positive impacts should
be more promoted by the
life cycle-based
methodologies so they
will not only focus on
alternative comparison
and avoiding negative
impacts. | | 93 | (Cinelli et
al. 2013) | Theoretical article (non-case study) | Workshop on life
cycle sustainability
assessment: the
state of the art and
research needs -
November 26,
2012, Copenhagen,
Denmark | to analyse the
different schools
of thoughts on
LCSA and frame
an agenda for
LCSA
improvement. | - | - | | | | | | | | | | | _ | - | - | - | - | - | - | The review happened around the state of the art, the summary of workshop, and research needs on LCSA. | The main results of the workshops presented were about the farmework, the operationalising of LCSA, sustainability assessment of technologies and ontology, epistemology and methodology of LCSA. | How to effectively present the LCSA result, how to apply LCSA into real application and how to involve stakeholders in the process are the primary challenges discussed in the workshop. | | 94 | (Zamagni
2012) | Theoretical article (non-case study) | Life cycle
sustainability
assessment | to addreess shortly
the important
developments in
LCSA | | - | | | | | | | - | | _ | | - | - | - | - | - | - | - | It was short address of
editor of IJLCA on the
recent developments of
LCSA | The growing interest of sustainability issue, approach, inherent transdisciplinary nature of sustainability science, and the importance of integration between methods are the main idea addressed. | How to deal with different level of maturity between three methods, with scenario modeling, with consistent integration and with normative positions (values) and empirical knowledge within LCSA are the main challenges mentioned. | | 95 | (Klöpffer
& Birgit
2014) | Theoretical article (non-case study) | From LCA to
Sustainability
Assessment | to discuss about
the state of the art
of LCA, LCC and
S-LCA and their
combination in
LCSA | | - | | | _ | - | | | | | | | | - | - | - | - | - | - | Three methods representing three pillars of sustainability was carefully analysed in terms of its state of the art and current development and its potency to integrate in one assessment such LCSA. | The capability of LCA to quantify environmental impacts must be supplemented by economic (LCC) and social (S-LCA) aspects. | How to keep the balance
between the desired
scientific accuracy and
practical feasibility
remains a main challenge. | | | | | | | | | | | 7 | l'he | scop | e coi | nsid | lered | | | | | Life | cycle inve | ntory | т: | C1- : | | | | | |-----|------------------------------------|--|---|--|-------------------------|------|--------|-----|---------------|------|------------------|-------|---|-------|---------------|-----|------------|-----|------|-------------------------|-------|-----|--------------------------|-----|---|--|--| | | A | | | | T . 1 | Extr | ractio | n P | roduc
tion | | ranspo
tation | or- | Constr
-tion
Manu | / | Use/
Opera | a- | End-c | | | analysis
ollection s | | | fe cycle im
assessmen | | | | | | # | Artic-
les | Area | Title | Goal | Functional
Unit | | | | | | | | -turin | ıg | tion | | | | | | | | | | Methodology | Main results | Challenges | | | | | | | | Env | Eco | Soc | Eco | Soc | Есо | Soc | Env | Soc | Eco | Soc | Env
Eco | Soc | Env | Eco | Soc | Env | Eco | Soc | | | | | 96 | (Pizzirani
et al.
2014) | Theoretical article (non-case study) | Is there a place for culture in life cycle sustainability assessment? | to analyse and
discuss the
possibility to
consider culture in
the LCSA | | | | | | | - | | *************************************** | | | | | | - | - | - | - | - | - | A literature review on the definition of culture and culture involvement in LCA, LCSA and S-LCA as well as some key points to address when assessing the integration of culture in LCA, S-LCA and LCSA was conducted. | A positive benefit of considering culture within LCSA has been seen as a greater resonance of LCSA results with stakeholders. The integration of culture in LCSA could potentially help to protect communities and their diversity. | The main challenges are the lack of recognition in decision-making processes due to culture is often seen as intangible norm, understanding when 'culture' should be differentiate from 'social' also remains, the data gathering, and the diversity of cultures between stakeholders at different scales from local community, regional, to nation. | | 97 | (Sonnema
nn et al.
2015) | Theoretical article (non-case study) | From a critical
review to a
conceptual
framework for
integrating the
criticality of
resources into Life
Cycle Sustainability
Assessment | to review on the
possibility of
integrating
criticality of
resources in LCSA | | | | | | | - | - | | - | | | | | - | - | - | - | - | - | Review was done by looking at the resource as an area of protection (AoP) in sustainability study. This article also reviewed all of recent criticality assessment studies. | LCA does not capture sufficiently resource criticality assessment even if it is highly important in sustainability aspect. An approach by Graedel et al. (2012) was proposed to evaluate the criticality of resources. | The main challenges lie on a need of a competition factor to evaluate resource depletion by involving resource recycling, substitutability and user adaptation to depletion. The geopolitical supply distribution aspect of resources criticality also need to be considered in LCSA framework. | | 98 | (van Der
Giesen et
al. 2013) | Methodological article (non-case study) | Towards
application of life
cycle sustainability
analysis Revue de
Métallurgie
Towards
application of life
cycle sustainability | to apply LCSA
framework by
evaluating the
sustainability
performance of
solar fuels by
implementing first
step which is
system
descriptions | - Not clearly mentioned | N | N | N Y | Y | Y | Z | N Y | Y | Y | N | N | N N | N | - | - | - | - | - | - | The methodology proposed was consisted of five steps: system description, scenarios, indicators and tools, application of tools, and interpretation of results. This study focuses on the first step: system description. | A general scheme and themes of the system concerned in an LCSA study that need to be addressed were presented. Also, practical approach to conduct and illustrate system description was presented. | - | | 99 | (Finkbein
er et al.
2015) | Methodological article (non-case study) | Enhancing the practical implementation of life cycle sustainability assessment e proposal of a Tiered approach | to propose and develop an indicator hierarchy and a stepwise application concept based on the practicality, relevance and method robustness. | - Not clearly mentioned | N | N | NY | Y | Y | N | N Y | Y | YN | N | N | N | N | - | - | - | - | - | - | Tiered approach was develop to enhance the implementation of indicators and to robust the indicator selection process. | The structure for the tiered approach was presented from sustainability footprint, best practice and comprehensive assessment in order to to improve sustainability assessment towards a more holistic approach away from single aspect assessments. | The new method proposed still does not solve the challenge in
the interpretation stage. | | 100 | (Hall
2015) | Review
article
(non-case
study) | A transdisciplinary
review of the role
of economics in
life cycle
sustainability
assessment | to review the application of economic values in LCA and the possibility for environmental LCC as the 'economic pillar' in LCSA | | | | | | | - | - | - | | | | - | _ | - | - | | - | - | - | The review covered the transdisciplinary framework of sustainability assessment, the role of economic values in LCA and economic concepts in ecological economics. A two-stage approach for economic values application in LCSA was proposed. | This paper questioned the reliance of LCA on utilitarianism and valuation using willingness to pay. It also questioned the claim of ELCC as the economic dimension of LCSA. | The current definition of environmental LCC addresses some of the challenges in ontological and epistemological aspect. Existing monetisation and the values of the policy maker need to be accounted to confirm its suitability with sustainability. | | | | | | | | | | | The | scop | e co | nsic | lerec | il | | | | I | Life c | ycle inve | ntorv | | | | | | | |-----|------------------------|---|---|---|------------|-------|-------|---------------|------|------------------|---------|------------------------|------------|---------------------|-----|-----------|------------|----|--------|------------------------|-------|-----|--------------------------|-----|---|---|--| | | Artic- | | | | Functional | Extra | ction | Produ
tion | с- Т | ranspo
tation | r-
l | Const
-tion
Manu | ı/
ıfac | Use
Oper
tion | ra- | Enc
Li | | | | analysis
llection s | | | e cycle imp
issessmen | | | | | | # | les | Area | Title | Goal | Unit | Env | Eco | Env
Eco | Soc | Eco | | -turii
Au
E | | Env | Soc | Env | Eco
Soc | En | ıv | Eco | Soc | Env | Eco | Soc | Methodology | Main results | Challenges | | 101 | (Guinee 2016) | Review article (non-case study) | Life Cycle
Sustainability
Assessment: What
Is It and What Are
Its Challenges? | to address a
significant
question: what and
how is LCSA
practitioners
actually applying in
real practice | | | | | | - | | | | | | - | | | | | | | - | | This study reviews on two main questions: which definition(s) do researchers in the academia adopt and what challenges do they experience | The review on the case or methodological study was presented. The references were categorised on three groups: study on broadening the impacts, broadening the analysis and deepening the analysis. | The lack of (proper and quantitative) S-LCA indicators, the need for practical (case study) examples, dynamic approach and scenario evaluations, how to interpret LCSA results, how to address uncertainties as well as with value choices, the subjectivity (weighting methods), how to deal with benefits in S-LCA, how to avoid double counting, and how to incorporate different perspectives (producer, customer, societal) on costs in LCC, etc. | | 102 | (Onat et
al. 2017) | Review
article
(non-case
study) | Systems Thinking
for Life Cycle
Sustainability
Assessment | to discuss the role
of systems thinking
to deliver tools,
methods and
disciplines | | | | | | - | | - | | | | | | | | - | | - | - | - | Bibliometric analysis was carried out in LCSA studies from 2000 to 2017 based on the broadening indicators category, the broadening scope category and the deepening category. The role of system thinking was also discussed. | The results pointed out that LCSA framework could be advanced in these areas (1) regional and global level LCSA models using multiregion input-output analysis (2) dealing with uncertainties in MCDA indicators weighting; and (3) integration of system dynamics modeling to deal with causal relationships of the indicators. | Envisaging the sustainability mechanisms, understanding further parts of the complex systems, and the links to intended sustainability goals were the main challenges mentioned. | | 103 | (Irene et
al. 2017) | Review
article
(non-case
study) | Life cycle tools
combined with
multi-criteria and
participatorymetho
ds for agricultural
sustainability:
Insights from a
systematic and
critical review | to highlight the
combination of life
cycle approaches
with MCDA in
agricultural
sustainability
context | | - | | | - | - | | | | | | | _ | - | | - | - | - | - | - | A systematic and review was done for these parameters: which multicriterial and/or participatory methods have been linked with LC tools; how is the methodological relationships; how is the involvement of stakeholders; and which synergies have been reached by integrating the methods. | Results of the critical review of the state of the art on LC studies integrating MCDA in agricultural sustainability was presented along with their methodological issues and participative purposes. The discussion lies on the advantages of approaches combination. | The future research proposed was should LCSA is needed to be apply in seperate LC assessement or not considering the communicability of results, usability of specific specialized expertise and use of separate data. | | 104 | (Gloria
2017) | Editorial
article
(non-case
study) | Charting the
Future of Life
Cycle
Sustainability
Assessment | To address questions: (1) what form should the integrated concept take to include technological, economic, and social assessment of systems? (2) what are the precise classifications of application? Can LCSA be applied at the organizational level or the economy- | N - | | | | - | - | | | | | _ | | | - | | - | - | - | - | - | - | Some issues were mentioned, i.e.,: - challenges on broadening of impacts while keeping a comprehensive approach - the communication of LCSA results to policy makers applying weighting concept and addressing the value choices - the incorpartion of technological, economic, and political mechanisms at different levels of analysis by | Some priorities must be given to advance LCSA, i.e. which areas should be identified as main priority to be maintained and how to address the interrelationships of those and furthermore how to integrate both impacts and benefits within LCSA (Schaubroeck and Rugani 2017). To this date, the trend seems to be focus on the prioritization of impacts versus broadening of impacts. | | | | | | | | | | | T | he so | cope | con | side | ered | 1 | | | | I ifa | cycle inve | antory | | | | | | | |-----|--|---|---|---|--|------|---------|------------|---|------------|------------------|------------|--------------------------------------|--------|---------------------|-----|-----|--------------|---|---|--|--|--|--|---
---|---| | # | Artic- | Area | Title | Goal | Functional | Extr | raction | 1 | oduc-
tion | Tra | anspor-
ation | Co
- M | onstru
-tion/
lanufa
turing | c
c | Use
Oper
tion | ra- | | d-of-
ife | | analysis | | | e cycle impassessmen | | Methodology | Main results | Challenges | | | les | | | | Unit | Env | Eco | Soc
Env | Eco | Soc
Env | Eco | Soc
Env | Eco | Soc | Env | Soc | Env | Eco | So Env | Eco | Soc | Env | Eco | Soc | | | | | | | | | wide level? (3) is it possible for LSCA to adapt and adopt methods related to the SDGs to measure progress toward sustainability? (4) will this expansion of E-LCA to LCSA enhance our ability to apply life cycle thinking | | | | | *************************************** | | | | | | | | | | | | | | | | | integrating LCA with
other types of models
- the development of
appropriate, quantitative
and practical approaches
for S-LCA | | | 105 | (Fokaides
&
Christofo
rou 2016) | Review
article
(non-case
study) | Life cycle
sustainability
assessment of
biofuels | to present the key issues of LCA biofuel production along with the challenges of sustainable biofuel production | N - | - | | | | | | | | | | - | | | - | | | | | | | The main results deliberate the considerations when applying LCA in biomass to biofuel conversion routes in first-, second-, third- and fourth-generation biofuels as well as address key findings of LCA studies in biofuel production, i.e., on energy corps, solid biofuels upgrade, biofuel thermochemical pretreatment or overall impact of biofuel production | The main challenges presented were mainly main challenges for biofuel sustainability, not challenges related to LCSA application. | | 106 | (Ren &
Toniolo
2018) | Hydrogen
produc-
tion (case
study) | Life cycle
sustainability
decision-support
framework for
ranking of
hydrogen
production
pathways under
uncertainties: An
interval
multi-criteria
decision making
approach | to develop a life
cycle sustainability
decision-support
framework for
ranking hydrogen
production
pathways by
combining LCSA
and interval
MCDM method | N - | _ | | | | - | | | | | | | | | - | | - | GWP, AP | Production cost | Social
acceptabi-
lity,
maturity | LCSA was combined with MCDM called improved decision-making trial and evaluation laboratory (DEMATEL). The updated version of DEMATEL method was used to identify the weights of the criteria. The interval of EDAS (Evaluation based on Distance from Average Solution) was also developed for ranking the alternatives for hydrogen production. | The comparison matrix for identifying the relative influences of maturity, energy efficiency, and exergy efficiency on production cost was presented. The average solution of each indicator, the sum weighted positive & negative distance and the integrated priorities of the four alternative pathways for hydrogen production were elaborated. | The recommended multi-
criteria decision making
method does not provide
numerous actors to
takepart in identifying and
ranking the alternatives. | | 107 | (Hannouf
& Assefa
2017) | High-
density
polyethy-
lene
(HDPE)
(case study) | Life Cycle
Sustainability
Assessment for
Sustainability
Improvements: A
Case Study of
High-Density
Polyethylene
Production in
Alberta, Canada | To assess the sustainability performance of the HDPE life cycle by Dow Chemical Canada facility in Alberta, Canada | Y the production of 1,000 kg of HDPE at Dow Chemical Canada facility | Y | Y | YY | Y | Y | Y | YY | Y | Y | Z | N | N | N N | Fore-
ground:
company's
LCI report
Back-
ground:
US LCI
database | The prices of materials are obtained from online sources, such as Natural Resources Canada; Natural Gas Exchange INC while labour cost is from Alberta Government | Results
were taken
form
Hannouf
and Assefa
2017 | GHG
emission
(carbon
dioxyde
and
methane) | Costs based
on the raw
material,
energy and
labour | Results
were taken
from
Hannouf
and Assefa
2017 | the strong sustainability
model and the Driver–
Pressure–State–Impact–
Response (DPSIR)
framework were
employed | interestingly by from three different perspectives (NG producer, petroleum producer and HDPE producer) and by cost category. Interpretation LCSA results were also presented along with the integrated solution-oriented approach. The latter includes developing sustainability improvement proposals for the background and foreground processes | Interpreting the interdependences between the three assessment results is a challenge, particularly moving from comparative assessment approach to solution-oriented approach | | | | | | | | | | | T | he sc | cope | cor | ısid | erec | il | | | | I ife | cycle inve | entory | | | | | | | |-----|-----------------------------|--|--|--|---|------|----------|------------|---------------|------------|-------|-------------|--|------|-------------------|-----|-----|----------------|--|--|----------------------------------|---|--|---|---|--|---| | # | Artic- | Area | Title | Goal | Functional
Unit | Extr | raction | | oduc-
tion | Tra | nspor | C
-
M | onstron/
-tion/
Ianufa
-turin | ac | Use
Ope
tio | ra- | | id-of-
life | | analysis | | | e cycle im
assessmer | | Methodology | Main results | Challenges | | | 105 | | | | Omt | Env | Eco | Soc
Env | Eco | Soc
Env | Есо | Soc | Eco | Soc | Env | Soc | Env | Eco | Env | Eco | Soc | Env | Eco | Soc | | | | | 108 | (Ekener
et al.
2018) | Transportation fuel (case study) | Developing Life
Cycle Sustainability
Assessment
methodology by
applying values-
based sustainability
weighting - tested
on biomass based
and fossil
transportation
fuels | To verify the methodology for assessing the sustainability performance of product using different stakeholder views in MCDA | N - | Y | <u>N</u> | N Y | Y | Y | Y | | Z | | Z | | Z | N | N Various
literatures
and
databases
(mostly
from
ecoinvent) | Literature review | SHDB,
SDGs | GWP,
water and
non-
renewable
energy
consump-
tion | Production
and
transport-
tation cost | Direct and indirect job | E-LCA was done from well-to-tank and tank-to-wheel while S-LCA consdiered both positive and negative impacts. | The LCSA was weighted based on the sustainability pillars that are focused differently from the values of the stakeholder (Egalitarian, Hierarchist, and Individualist) | The interpretation of LCC results to sustainable development concept remain a challenge. For S-LCA, uncertainty, quality and reability of data used are still questionable because database used in this study is typically slefreported. For LCA, a challenge to include indirect effect (i.e. indirect land use change) remains exist | | 109 | (Ren &
Manzardo
2018) | Industrial
systems
or
chemical
industry
(non-case
study) | Multiactor
multicriteria
decision making
for life cycle
sustainability
assessment under
uncertainties | developing a
generic multiactor
multicriteria
decision making
(MAMCDM)
method for life
cycle
sustainability
assessment (LCSA)
of industrial
systems under
uncertainties | N - | N | N | N N | N N | I N | N | N | N | N | N N | N | N | N N | V - | - | - | - | - | - | A method was
recommended for ranking the industrial processes under uncertainties in LCSA using a multi-actor multi-criteria decision-making methodology called TODIM with an extended interval | The sustainability decision-making matrix with integrated superiorities of the five electricity scenarios was presented. | There are some interrelationships and interactions among the criteria for sustainability assessment that are usually neglected. The proposed method cannot match with matrix of decision-making with hybrid types. | | 110 | (Zajáros
et al.
2018) | Waste
water (case
study) | Life Cycle
Sustainability
Assessment
of DMSO Solvent
Recovery from
Hazardous Waste
Water | Compare the open
and closed
technology | Y 1 m³
absorbent | N | N | N Y | YY | N | N | N | N | N | N | Z | N | N | N Database
and
literature | Database
and
literature | Database
and
literature | ADP,
GWP,
ODP, AP,
EP, HT,
POP | Cost | the
number of
employees | The database used was ecoivent, the software used were Simapro 7.2 and Gabi 4.0 | LCSA could be used for highlight the sustainability performance, especially, in this case, to know the amount of hazardous waste water and water used in the manufacturing process thus some improvements can be achieved. | _ | | 111 | (Wulf et
al. 2018) | Electroly-
tic
hydrogen
produc-
tion (case
study) | Sustainable Development Goals as a Guideline for Indicator Selection in Life Cycle Sustainability Assessment | To select
indicators based on
overall goals and
SDG indicators | Y 1 kg of
hydrogen
produced | N | N | N N | N N | 1 N | N | N | \overline{N} | N | Y | Y | X | N N | V - | - | PSILCA
database | ADP,
GWP, AP,
EP, HT,
POP | Levelized
cost, net
present
value,
profitability
index,
marginal
cost | Association and bargaining rights, child labour, corruption, Drinking water coverage, education, fair salary | SDGs are tuned into LCSA indicators and then assigned to LCA, LCC and S-LCA | SDG goal-based
indicators are more
suitable to be applied in
LCSA than SDG
indicator based ones | SDGs focus on national
level while LCSA are
conducted on micro level.
This created unjust
justification | | 112 | (Opher 2018) | Waste
treatment
(case study) | Comparative life
cycle sustainability
assessment of
urban water reuse
at various
centralization
scales | To compare
sustainability
performance of
four different
approaches of
urban water reuse
waste water
treatment | Y the annual supply, reclamation, and reuse of water consumed by a hypothetical city of 200,000 inhabitants | N | N | N | N | 1 N | N | Z | Y | X | Y | Y | Z | N | N Local data
for fore-
ground
processes
and
ecoinvent
(v2.2) for
back-
ground
processes | Data from governmental institutions, engineering and civil works companies, and operators of wastewater treatment plants, manufacturers, | Interview
and AHP
analysis | ODP,
HTP, PM,
POP.
Ionizing
radiation,
CC, ADP,
land use,
water
resource,
etc. | initial
investment,
operation
and mainte-
nance | Public (water saving, equity), Community (community engage- ment, local employ- ment, urban landscape) Consumer (health | MCDA is conducted to
weight sustainability
criteria with judgement
from 20 experts | Two alternatives have better sustainability performance in most impact categories | Weighting is problematic due to the subjectivity | | | | | | | | | | | | 7 | he s | scop | oe co | onsi | ider | ed | | | | | Life | cycle inve | entory | | | | | | | |-----|--|--|--|--|----|--|-----|---------|-----|-----------------|-------|-----------------|------------|-------------|-------------------------------|------------|-----------------------|-----|---------------|----|-----------------------------|--|---|--|--|---|--|---|--| | | Artic- | | | | Fı | unctional | Ext | raction | 1 | Produc-
tion | | ransp
tation | | -tio
Man | struc
on/
oufac
ring | 0 | Jse/
pera-
tion | | End-o
Life | | | analysis
ollection | | | e cycle im
assessmer | | | | G: " | | # | les | Area | Title | Goal | | Unit | va | 00 |)C | Eco |)C | 00 | ગ લ | | 0 | × vi | 00 | ၁င | nv
co | ၁င | Env | Eco | Soc | Env | Eco | Soc | Methodology | Main results | Challenges | | | | | | | | | E | Ec | ž Š | Ē | S. F. | ĕ | Sc | Eı | Ă À | б <u>Б</u> | E | Sc | ā ă | Sc | Env | Eco | Soc | Env | Eco | 500 | distributors,
and
service
providers | | | | concern,
financecon
venience) | | | | | 113 | (Tarne
2018) | Automotive industry (case study) | Introducing
weights to life
cycle sustainability
assessment
how do decision-
makers weight
sustainability
dimensions? | To apply a method to interpret multi-
criteria assessment and emerging trade-offs to support sustainability decision-making | N | - | N | N | N | Y | Y N | N | N | N | N N | Z | Z | N | Z | N | Interview | Interview | Interview | GWP | Cost | Risk of
social
violation | Limit conjoint analysis is carried out to rank the the sustainability performance of a vehicle component. | All sustainability
pillars were considered
in an equal important | Sample size and geographical scope should be expanded. Weighting of indicators within sustainability dimensions and the drivers that influence personal decisionmaking in regard to weighting sustainability dimensions is needed. | | 114 | (Martin
2018) | Bio-based
product
(non-case
study) | Life Cycle
Sustainability
Evaluations of
Bio-based Value
Chains: Reviewing
the Indicators
from a Swedish
Perspective | To identify the importance of sustainability indicators in LCSA, LCA, LCC and S-LCA studies on bio-based products | N | - | - | | | | | | | | - | | | _ | | | - | - | - | - | - | - | - | There is differing opinion between what the authors found to be important indicators with the indicators that are firmly used in studies, i.e. water depletion, indirect land use change, and impacts on ecosystem quality and biological diversity | - | | 115 | (Koulou
mpis &
Azapagic
2018) | Electricity
techno-
logies (case
study) | Integrated life
cycle sustainability
assessment using
fuzzy inference: A
novel FELICITA
model | To apply fuzzy evaluation model called "FELICITA" in the integration of LCA, LCC and S-LCA of 5 electricity technologies | N | - | N | N I | N | Y | YN | N | N | N | N N | N | Z | N 1 | N N | N | Data are gat
Azapagie 20 | hered from (Sta
12) | imford & | GWP,
ODP, AP,
EP, POCP | Capital cost,
operating
and
maintenan-
ce cost, fuel
cost | Work
injuries,
accident
fatalities,
direct
employ-
ment | Fuzzy inference is used to facilitate assessing sustainability performance of different alternatives. Various methods are used, i.e. Triangular and Gaussian membership functions, different rule bases and defuzzification methods. | Overall LCSA indicator
and ranking of
alternatives are
presented along with
sensitivity analysis. | Challenge found are linked to the challenge of the fuzzy inference system in general, i.e. careful definition of the rule and membership function is needed. | | 116 | (Mahbub
et al.
2018) | Diesel
additive
(case study) | A life cycle
sustainability
assessment (LCSA)
of oxymethylene
ether (OME) as a
diesel additive
produced from
forest biomass | To develop LCSA
model for
oxymethylene
ether production | Y | 1 MJ of heat
produced
from OME | Y | Y | Y | Y | Y | Y | Y | Y | YY | Y | Y | Y | 7 Y | Y | Most data g
from variou | athered are seco | ndary data | GHG
emissions,
soot
emission,
water
depletion | Capital cost,
operational
cost and
total cost | Employ-
ment
potential,
wage and
benefits | LCA, LCC and S-LCA
are performed with
MCDA, alternative
ranking method called
PROMETHEE ans
sensitivity analysis | Overall results show that forest residue pathway shows better sustainability performance than whole tree pathway | - | | 117 | (Barros et
al. 2018) | Truck tire
(case study) | Propagating Uncertainty in Life Cycle Sustainability Assessment into Decision-Making Problems: A Multiple
Criteria Decision Aid Approach | To perform LCSA
with MCDA
approach to rank
the potential
scenarios | Y | providing tires for truck transport with a payload of 32 metric tons over 600,000 km in Brazil in 2012 and managing used tires | N | N | Z | N | N | N | N | N | N | Y | Y | Y | Y Y | Y | Not
mentioned | Not
mentioned | Databse
from
SHDB and
interview
with
decision-
makers | Environ-
mental
human
health,
ecosystem
quality,
resources | Economic
life cycle
cost | Labour
rights and
decent
work,
health and
security,
human
rights,
gover-
nance | LCSA was performed followed by MCDA, uncertainty analysis and ranking analysis.MCDA models used are weighted sum, Prométhée II and Topsis. Two scenarios are applied; assessment with and without retreading | The LCSA performances for each indicator considered under two scenarios are presented | - | | | | | | | | | | | T | he s | cop | e co | onsi | dere | ed | | | | | Life | cycle inve | entory | T : C | ala : | | | | | |-----|---------------------------------|---|--|--|--|------|---------|-----|----------------|------|-----------------|------|---------------------|-------------|-----|-------------------|------------|----------------|-----|---|--|---|---|---|---|--|---|--| | щ | Artic- | A | TVA. | Carl | Functional | Extr | raction | 1 | roduc-
tion | | anspo
tation | or- | -tio
Man
-tur | on/
ufac | | se/
era-
on | | nd-of-
Life | | | analysis
ollection | | | e cycle imp
assessmen | | Madadala | Material In | Challana | | # | les | Area | Title | Goal | Unit | Env | Eco | Soc | Eco | Soc | Есо | Soc | | J | Env | Есо | Soc
Env | Есо | Soc | Env | Eco | Soc | Env | Eco | Soc | Methodology | Main results | Challenges | | 118 | (Gbededo
et al.
2018) | Review article (non case study) | Towards a Life
Cycle Sustainability
Analysis: A
systematic review
of approaches to
sustainable
manufacturing | To review
sustainable
manufacturing
methods and
approaches to
support LCSA | | | | _ | | | | - | | | | - | | | - | - | - | - | - | - | - | Literature review is carried out with structured approach that is systematic, transparent, methodical and reproducible. | Most approaches used in publications lack of holistic view. | Challenge found based on review is that aggregating and translating social aspects from qualitative to quantitative values and their influence on and interdependencies with other pillars of sustainability | | 119 | (Zhou et
al. 2019) | Waste
managem
ent (case
study) | Model development of sustainability assessment from a life cycle perspective: A case study on waste management systems in China | To perform LCSA for comparing four waste management systems | Y one t-MSW | N | N 1 | N M | N N | I Y | Y | Y | N | YN | N | N r | N Y | Y | | Site
specific
survey.
Backgroun
d data is
from Gabi | Site specific
survey and
reports | Site
specific
survey and
reports | GWP, AP,
EP, POCP,
FAETP,
HTP and
TETP | Investment cost, operating cost, decommissi oning cost, and projected revenue | Working conditions, Health and safety, Access to material resources, Delocalizat ion and migration, Public commitme nts to sustainabili ty issue, | The assessment is conducted on four aspect: environment, energy, economic and society. LCA, LCC and S-LCA was performed with MCDM using AHP and entropy weight method. Sensitivity analysis was also performed | Incineration with fluidized bed furnace is better choice than incineration with moving grate furnace, landfill with and without energy recovery | - | | 120 | (Tighnava
rd et al.
2018) | Hybrid
timber
structure
(case study) | Sustainability choice of different hybrid timber structure for low medium cost single-story residential building : Environmental, economic and social assessment | To assess
sustainability
performance of
five different
hybrid timber
structure | Y Whole
structure
scheme of
single story
residential
building
over 50
years of its
life span | Y | Y | N Y | Y | Y | Y | N | Y | YYY | N | N I | N Y | Y | - | Various
sources
(i.e.
Malaysia
Life Cycle
Inventory
Database) | Malaysian
Statistic
Databases | Site
interview
with
different
stake-
holders | GWP,
HTP, EP,
FDP, AP | Cost,
present
value | etc.
Wage, job
creation | LCA, LCC and S-LCA was performed to five types of timber structure from cradle to grave. Sensitivity analysis was also carried out on electricity usage | LCA results of five types of timber structure are presented along with contribution analysis in five categories in each type of timber. LCC and S-LCA (salary status and job creation are also presented) | | | 121 | (Hannouf
& Assefa
2018) | Methodo-
logical
article
(non-case
study) | A Life Cycle
Sustainability
Assessment-Based
Decision-Analysis
Framework | To propose LCSA-
based decision
making framework | N - | - | | | | | | - | | | - | | | | | - | - | - | - | - | - | To make decision and avoid trade-offs based on LCSA results, the authors propose five steps: problem definition, objective identification, potential sustainability solutions' generation, evaluation of potential sustainability solutions and trade-off analysis | Many but overall result is to show the interrelationships between the interdisciplinary LCSA and propose sustainability improvements | Finding potential yet specific solutions is challenging. To solve it, the authors propose to use primary data and perform uncertainty analysis. | | 122 | (Wang et al. 2018) | Waste
manage-
ment
(case study) | Development of
an Ex-Ante
Sustainability
Assessment
Methodology for
Municipal Solid
Waste
Management
Innovations | To assess
sustainability
performance of
municipal solid
waste management
of Bandung city
based on LCSA
and SDGs | Y the amount
of MSWM
generated in
Bandung
City per
year | N | N | N N | N N | Y | N | N I | N 1 | N N | N | N I | N Y | Y | | site-specific statistics, loc
international
Bank and Wa | ected from mai
ttudy, local MS
al academic res
statistics on wa
aste Atlas), exp
stakeholder in | WM sector
earch,
aste (World
ert | Climate,
Terrestrial
ecosystem,
Aquatic
system,
Abiotic
resource
depletion | Poverty,
energy
supply and
efficiency,
job and
employment | Health,
education
& skill
develop-
ment,
egalitarian
society | SDGs are used as macro
goal identification. Gabi
was used for LCA. S-LCA
was done mostly by
quantitative data and
interview | The results are presented by score of impact (-1 to +1) for each category. | Main challenge is regarding to equal-weighting of life cycle phases that cause problematic issue of overinterpretation or underinterpretation of the impact | | | | | | | | | | | Th | ie sc | ope | | | | | : | | | Life | cycle inve | | Life | e cycle im | nact | _ | | _ | |-----|--|---|---|---|------------|--------|-------|-------------|-----|-------|-----------------|------------|--------------------------------------|-----|---------------------|-----|-----------|-----|--|-------------------------------------|--|--|--|---|--
---|---| | # | Artic- | Area | Title | Goal | Functional | Extrac | ction | Prod
tio | | | nspor-
ition | M | onstru
-tion/
lanufa
turing | ıc | Use
Oper
tion | a- | End
Li | | (data c | analysis
ollection | | | assessmer | | Methodology | Main results | Challenges | | | les | | | | Unit | Env | Eco | Env | Soc | Env | Eco | Soc
Env | Eco | Soc | Env
Eco | Soc | Env | Eco | Env | Eco | Soc | Env | Eco | Soc | | | g | | 123 | (Ren
2018) | Electricity
genera-
tion
(non-case
study) | Life cycle
aggregated
sustainability index
for the
prioritization of
industrial systems
under data
uncertainties | To develop and
enhance method to
measure and
prioritize
sustainability of
industrial systems
under uncertainties | N - | | | | | | - | | | | - | | | | | e collected fron
d Azapagic (201 | | GWP,
ODP, PO,
AP, HT | Rate of
return, net
present
value | Health and safety, social acceptabilit y and benefits | Method to rank sustainability performance of four electricity generations in UK is performed. | Results show comparison matrices determining the weights of the three pillars of sustainability and the local and global weights of the criteria. | | | 124 | (Millward
-hopkins
et al.
2018) | Waste
recovery
(case study) | Fully integrated modelling for sustainability assessment of resource recovery from waste | To develop
multidimensional
model for
assessing social,
environmental,
technical and
economic aspect of
resource recovery
systems | N - | N 1 | N N | YY | Y | Y | YY | Y Y | Y | Y | YYY | Y | Y | YYY | From
various
sources
(i.e. UK
Databases) | From
various
sources | From
various
sources
(i.e. from
landfilling
site) | Embodied
carbon
emissions,
ODP, HTP | Prices,
wages | Working hours, noise pollution, social acceptance | LCA is integrated with
MFA to evaluate s
environmental, social,
economic and technical
do- mains | The results of illustrative case study are shown according to scenarios applied (i.e. carbon emissions (both in the low-and high-carbon cases); total fatalities (in the domestic production and imported ash scenarios); and UK profits aggregated over the EP, CCI, and disposal sectors) | Intensive data are required. Uncertainty analysis needs to be performed for future study. How to value fixed capital (i.e. long plan, infrastructure), to choose proper matrics, to integrate results across aspect are also main challenges. | ## Reference - Akber, M.Z., Thaheem, M.J. & Arshad, H., 2017. Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix. *Energy Policy*, 111(September), pp.111–126. - Akhtar, S., Reza, B. & Hewage, K., 2015. Life cycle sustainability assessment (LCSA) for selection of sewer pipe materials. *Clean Technologies and Environmental Policy*, 17(4), pp.973–992. - Albertí, J. et al., 2017. Science of the Total Environment Towards life cycle sustainability assessent of cities. A review of background knowledge. *Science of the Total Environment*, 609, pp.1049–1063. - Atilgan, B. & Azapagic, A., 2016. An integrated life cycle sustainability assessment of electricity generation in Turkey. *Energy Policy*, 93, pp.168–186. - Azapagic, A. et al., 2016. Towards sustainable production and consumption: A novel DEcision-Support Framework IntegRating Economic, Environmental and Social Sustainability (DESIRES). *Computers and Chemical Engineering*, 91, pp.93–103. - Aziz, R., Chevakidagarn, P. & Danteravanich, S., 2016. Life Cycle Sustainability Assessment of Community Composting of Agricultural and Agro Industrial Wastes. *Journal of Sustainability Science and Management*, 11(2), pp.57–69. - Barros, B. et al., 2018. Propagating Uncertainty in Life Cycle Sustainability Assessment into Decision-Making Problems: A Multiple Criteria Decision Aid Approach., (July). - Benedict, B.A., 2017. Understanding Full Life-cycle Sustainability Impacts of Energy Alternatives. *Energy Procedia*, 107(September 2016), pp.309–313. - Boer, I.J.M. De et al., 2011. Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment. *Current Opinion in Environmental Sustainability*, 3(5), pp.423–431. - Burchart-korol, D., 2011. Application of Life Cycle Sustainability Assessment and Socio-Eco-Efficiency Analysis in Comprehensive Evaluation of Sustainable Development. *Journal of Ecology and Health*, 15(3), pp.107–110. - Chen, W. & Holden, N.M., 2018. Tiered life cycle sustainability assessment applied to a grazing dairy farm. *Journal of Cleaner Production*, 172, pp.1169–1179. - Cihat, N., Gumus, S., Kucukvar, M., et al., 2016. Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. *Sustainable Production and Consumption*, 6(September 2015), pp.12–25. - Cihat, N., Kucukvar, M., Tatari, O., et al., 2016. Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U. S. the International Council on Clean Transportation. *Journal of Cleaner Production*, 112, pp.291–307. - Cihat, N., Kucukvar, M. & Tatari, O., 2016. Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options. *Energy*, 112, pp.715–728. - Cinelli, M. et al., 2013. Workshop on life cycle sustainability assessment: the state of the art and research needs November 26, 2012, . The International Journal of Life Cycle Assessment, - Ciroth, A. (GreenDeltaTC) et al., 2011. Towards a Life Cycle Sustainability Assessment: Making informed choices on products 1st ed. J. H. Sonia Valdivia, Cássia Maria Lie Ugaya, Guido Sonnemann, ed., UNEP/SETAC. - Clímaco, J.C.N. & Valle, R., 2014. MCDA and LCSA—A Note on the Aggregation of Preferences. In J. Kacprzyk, ed. *Knowledge, Information and Creativity Support Systems*. Switzerland: Springer International AG Switzerland, pp. 105–116. - Dong, Y.H. & Ng, S.T., 2016. Life Cycle Sustainability Assessment A modeling framework to evaluate sustainability of building construction based on LCSA. *The International Journal of Life Cycle Assessment*, pp.555–568. - Ekener, E. et al., 2018. Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting Tested on biomass based and fossil transportation fuels. *Journal of Cleaner Production*, 181, pp.337–351. - Finkbeiner, M. et al., 2010. Towards life cycle sustainability assessment. *Sustainability*, 2(10), pp.3309–3322. - Finkbeiner, M., Neugebauer, S. & Martinez-blanco, J., 2015. Enhancing the practical implementation of life cycle sustainability assessment e proposal of a Tiered approach. *Journal of Cleaner Production journal*, 102. - Fokaides, P.A. & Christoforou, E., 2016. Life cycle sustainability assessment of biofuels. In R. Luque et al., eds. *Handbook of Biofuels Production*. Kidlington, UK: Elsevier, pp. 41–56. - Foolmaun, R.K. & Ramjeawon, T., 2013. Life cycle sustainability assessments (LCSA) of four disposal scenarios for used polyethylene terephthalate., pp.783–806. - Galán-martín, Á., Guillén-gosálbez, G. & Stamford, L., 2016. Enhanced data envelopment analysis for sustainability assessment: A novel methodology and application to electricity technologies. *Computers and Chemical Engineering*, 90, pp.188–200. - Gbededo, M.A., Liyanage, K. & Garza-reyes, J.A., 2018. Towards a Life Cycle Sustainability Analysis: A systematic review of approaches to sustainable manufacturing. *Journal of Cleaner Production*, 184, pp.1002–1015. - Gemechu, E.D., Sonnemann, G. & Young, S.B., 2017. Geopolitical-related supply risk assessment as a complement to environmental impact assessment: the case of electric vehicles. *The International Journal of Life Cycle Assessment*, pp.31–39. - Gencturk, B., Hossain, K. & Lahourpour, S., 2016. Life cycle sustainability assessment of RC buildings in seismic regions. *Engineering Structures*, 110, pp.347–362. - van Der Giesen, C. et al., 2013. Towards application of life cycle sustainability analysis. Revue de Metallurgie, 110, pp.31–38. - Gloria, T., 2017. Charting the Future of Life Cycle Sustainability Assessment A Special Issue. *Journal of Industrial Ecology*, 21(6), pp.1449–1453. - Grubert, E., 2017. The Need for a Preference-Based Multicriteria Prioritization Framework in Life Cycle Sustainability Assessment. *Journal of Industrial Ecology*, 21(6), pp.1–14. - Guinee, J. (CML), 2016. Life Cycle Sustainability Assessment What is it and What is its challenges. In *Taking Stock of Industrial Ecology*. pp. 45–68. - Gumus, S., Kucukvar, M. & Tatari, O., 2016. Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U. S. wind energy. *Sustainable Production and Consumption*, 8(December 2015), pp.78–92. - Hake, J. et al., 2017. Towards a Life Cycle Sustainability Assessment of Alkaline Water Electrolysis. *Energy Procedia*, 105, pp.3403–3410. - Hall, M.R., 2015. Environmental LCC A transdisciplinary review of the role of economics in life cycle sustainability assessment. *Journal of Cleaner Production journal*, pp.1625–1639. - Halog, A. & Manik, Y., 2011. Advancing
Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment. *Sustainability*, pp.469–499. - Hannouf, M. & Assefa, G., 2018. A Life Cycle Sustainability Assessment-Based Decision-Analysis Framework. *Sustainability*, 10, p.3863. - Hannouf, M. & Assefa, G., 2017. Life Cycle Sustainability Assessment for Sustainability Improvements: A Case Study of High-Density Polyethylene Production in Alberta, Canada. *Sustainability*, 9(12), p.2332. - Hapuwatte, B. et al., 2016. Total Life Cycle Sustainability Analysis of Additively Manufactured Products. In *Procedia CIRP*. Elsevier, pp. 376–381. - Heijungs, R., Huppes, G. & Guinée, J.B., 2010. Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. *Polymer Degradation and Stability*, 95(3), pp.422–428. - Helbig, C. et al., 2016. Extending the geopolitical supply risk indicator: Application of life cycle sustainability assessment to the petrochemical supply chain of polyacrylonitrile-based carbon fibers. *Journal of Cleaner Production*, 137, pp.1170–1178. - Hossaini, N. et al., 2015. AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver. *Journal of Environmental Planning and Management*, 58(7), pp.1217–1241. - Huang, B. & Mauerhofer, V., 2016. Life cycle sustainability assessment of ground source heat pump in Shanghai, China. *Journal of Cleaner Production*, 119, pp.207–214. - Iacovidou, E. et al., 2017. A Parameter Selection Framework for Sustainability Assessment. *Sustainability*, 9(9), pp.1–18. - Irene, A. et al., 2017. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. *Science of the Total Environment journal*, 595, pp.352–370. - Jeroen B. Guinee; et al., 2011. Life Cycle Assessment: Past, Present, and Future. *Environmental science & technology*, 45(1), pp.90–96. - Kalbar, P.P., Birkved, M., et al., 2016. Weighting and Aggregation in Life Do Present Aggregated Single Scores Provide Correct Decision Support? *Journal of Industrial Ecology*, 00(0), pp.1–10. - Kalbar, P.P., Karmakar, S. & Asolekar, S.R., 2016. Life cycle-based decision support tool for selection of wastewater treatment alternatives. *Journal of Cleaner Production*, 117, pp.64–72. - Kamali, F.P. et al., 2016. Evaluation of the environmental, economic, and social performance of soybean farming systems in southern Brazil. *Journal of Cleaner Production*, (August). - Keller, H., Rettenmaier, N. & Reinhardt, G.A., 2015. Integrated life cycle sustainability - assessment A practical approach applied to biorefineries q. *Applied Energy*, 154, pp.1072–1081. - Kempen, E.A. Van et al., 2016. Using life cycle sustainability assessment to trade off sourcing strategies for humanitarian relief items. In *The International Journal of Life Cycle Assessment*. The International Journal of Life Cycle Assessment. - Kloepffer, W., 2008. Life Cycle Sustainability Assessment of Products (with Comments by Helias A. Udo de Haes, p. 95). *International Journal Life Cycle Assessment*, 13(2), pp.89–95. - Klöpffer, W. & Birgit, G., 2014. From LCA to Sustainability Assessment. In *Life Cycle Assessment* (LCA): A Guide to Best Practice. pp. 357–374. - Kouloumpis, V. & Azapagic, A., 2018. Integrated life cycle sustainability assessment using fuzzy inference: A novel FELICITA model. *Sustainable Production and Consumption*, 15, pp.25–34. - Kucukvar, M., Gumus, S., et al., 2014. Automation in Construction Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method. *Automation in Construction*, 40, pp.33–43. - Kucukvar, M., Noori, M. & Egilmez, G., 2014. Stochastic decision modeling for sustainable pavement designs. *The International Journal of Life Cycle Assessment*, pp.1185–1199. - Li, T., Roskilly, A.P. & Wang, Y., 2017a. A Regional Life Cycle Sustainability Assessment Approach and its Application on Solar Photovoltaic. *Energy Procedia*, 105, pp.3320–3325. - Li, T., Roskilly, A.P. & Wang, Y., 2017b. Life cycle sustainability assessment of grid-connected photovoltaic power generation: A case study of Northeast England. *Applied Energy*, 227, pp.465–479. - Lu, B. et al., 2014. Reusability based on Life Cycle Sustainability Assessment: case study on WEEE. *Procedia CIRP*, 15, pp.473–478. - De Luca, A.I. rene et al., 2015. Social life cycle assessment and participatory approaches: A methodological proposal applied to citrus farming in Southern Italy. *Integrated environmental assessment and management*, 11(3), pp.383–396. - Luu, L.Q. & Halog, A., 2016. Life Cycle Sustainability Assessment: A Holistic Evaluation of Social, Economic, and Environmental Impacts. In G. Ruiz-Mercado & H. Cabezas, eds. *Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes*. Cambridge: Elsevier, pp. 327–352. - Mahbub, N. et al., 2018. LIFE CYCLE SUSTAINABILITY ASSESSMENT A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass. - Manzardo, A. et al., 2012. A grey-based group decision-making methodology for the selection of hydrogen technologies in life cycle sustainability perspective. *International Journal of Hydrogen Energy*, 37(23), pp.17663–17670. - Martín-gamboa, M. et al., 2017. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. *Journal of Cleaner Production*, 150, pp.164–174. - Martin, M., 2018. Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective. *Sustainability*, 10(2), p.547. - Martínez-Blanco, J. et al., 2014. Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. *Journal of Cleaner Production*, 69, pp.34–48. - Mehmeti, A. et al., 2016. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications. *Journal of Power Sources*, 325, pp.772–785. - Menikpura, S., Gheewala, S.H. & Bonnet, S., 2012. Framework for life cycle sustainability assessment of municipal solid waste management systems with an application to a case study in Thailand. *Waste Management & Research*, 30(7), pp.708–19. - Millward-hopkins, J. et al., 2018. Science of the Total Environment Fully integrated modelling for sustainability assessment of resource recovery from waste. *Science of the Total Environment*, 612, pp.613–624. - Moriizumi, Y., Matsui, N. & Hondo, H., 2010. Simplified life cycle sustainability assessment of mangrove management: a case of plantation on wastelands in Thailand. *Journal of Cleaner Production*, 18(16–17), pp.1629–1638. - Moslehi, S. & Arababadi, R., 2016. Sustainability Assessment of Complex Energy Systems Using Life Cycle Approach- Case Study: Arizona State University Tempe Campus. *Procedia Engineering*, 145, pp.1096–1103. - Nguyen, T.A., Kuroda, K. & Otsuka, K., 2017. Inclusive impact assessment for the sustainability of vegetable oil-based biodiesel e Part I: Linkage between inclusive impact index and life cycle sustainability assessment. *Journal of Cleaner Production*, 166, pp.1415–1427. - Nzila, C. et al., 2012. Multi criteria sustainability assessment of biogas production in Kenya. *Applied Energy*, 93, pp.496–506. - Onat, N., Kucukvar, M. & Tatari, O., 2014. Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles. *Sustainability*, 6(12), pp.9305–9342. - Onat, N.C. et al., 2016. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles. *The International Journal of Life Cycle Assessment*, pp.1009–1034. - Onat, N.C. et al., 2017. Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives. *Sustainability*, (1), pp.1–25. - Onat, N.C., Kucukvar, M. & Tatari, O., 2014. Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings. *International Journal of Life Cycle Assessment*, 19(8), pp.1488–1505. - Opher, T., 2018. Comparative life cycle sustainability assessment of urban water reuse at various centralization scales. *The International Journal of Life Cycle Assessment*. - Ostermeyer, Y., Wallbaum, H. & Reuter, F., 2013. Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment. *The International Journal of Life Cycle Assessment*, pp.1762–1779. - Pesonen, H. & Horn, S., 2013. Evaluating the Sustainability SWOT as a streamlined tool for life cycle sustainability assessment. *The International Journal of Life Cycle Assessment*, pp.1780–1792. - Peukert, B. et al., 2015. Addressing sustainability and flexibility in manufacturing via smart modular machine tool frames to support sustainable value creation. *Procedia CIRP*, 29, pp.514–519. - Pizzirani, S. et al., 2016. The distinctive recognition of culture within LCSA: realising the quadruple bottom line. *The International Journal of Life Cycle Assessment*, 23(3), pp.663–682. - Pizzirani, S., Mclaren, S.J. & Seadon, J.K., 2014. Is there a place for culture in life cycle sustainability assessment? *The International Journal of Life Cycle Assessment*, pp.1316–1330. - Ren, J., 2018. Life cycle aggregated sustainability index for the prioritization of industrial systems under data uncertainties. , 113, pp.253–263. - Ren, J., Ren, X., Liang, H., Dong, L., et al., 2016. Multi-actor multi-criteria sustainability assessment framework for energy and industrial systems in life cycle perspective under uncertainties. Part 1: weighting
method. *The International Journal of Life Cycle Assessment*, 22(9), pp.1397–1405. - Ren, J., Ren, X., Liang, H. & Dong, L., 2016. Multi-actor multi-criteria sustainability assessment framework for energy and industrial systems in life cycle perspective under uncertainties. Part 2: improved extension theory. *The International Journal of Life Cycle Assessment*, 22(9), pp.1406–1417. - Ren, J. et al., 2015. Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. *The International Journal of Life Cycle Assessment*, 20(6), pp.842–853. - Ren, J. & Manzardo, A., 2018. Multiactor Multicriteria Decision Making for Life Cycle Sustainability Assessment Under Uncertainties. *Process Systems Engineering*, 64(6), pp.2103–2112. - Ren, J. & Toniolo, S., 2018. Life cycle sustainability decision-support framework for ranking of hydrogen production pathways under uncertainties: An interval multi-criteria decision making approach. *Journal of Cleaner Production*, 175, pp.222–236. - Sala, S., Farioli, F. & Zamagni, A., 2013. Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: Part 1. *The International Journal of Life Cycle Assessment*, pp.1653–1672. - Sánchez Berriel, S.. et al., 2018. Introducing Low Carbon Cement in Cuba A Life Cycle Sustainability Assessment Study. In *Calcined Clays for Sustainable Concrete*. Dordrecht, The Netherlands: Springer Netherlands, pp. 415–421. - Schau, E.M. et al., 2011. Life Cycle Costing in Sustainability Assessment—A Case Study of Remanufactured Alternators. *Sustainability*, pp.2268–2288. - Schaubroeck, T., 2017. A Revision of What Life Cycle Sustainability Assessment Should Entail Towards Modeling the Net Impact on Human Well-Being. *Journal of Industrial Ecology*, 21(6), pp.1–14. - Smetana, Sergiy; Tamasy, Christine; Mathys, Alexander; Heinz, V., 2016. Regionalized Input-Output Life Cycle Sustainability Assessment: Food Production Case Study. In M. Matsumoto et al., eds. *Sustainability Through Innovation in Product Life Cycle Design*. Singapore, pp. 959–968. - Sonnemann, G., Demisse, E. & Adibi, N., 2015. From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. *Journal of Cleaner Production journal*, 94. - Sou, W.I., Chu, A. & Chiueh, P.T., 2016. Sustainability assessment and prioritisation of bottom - ash management in Macao. Waste Manag Res, 34(12), pp.1275–1282. - Stamford, L. & Azapagic, A., 2014. Energy for Sustainable Development Life cycle sustainability assessment of UK electricity scenarios to 2070. *Energy for Sustainable Development*, 23, pp.194–211. - Stamford, L. & Azapagic, A., 2012. Life cycle sustainability assessment of electricity options for the UK. *International Journal of Energy Research*, (September), pp.1263–1290. - Steen, B. & Palander, S., 2016. Life Cycle Sustainability Assessment A selection of safeguard subjects and state indicators for sustainability assessments. *The International Journal of Life Cycle Assessment*, pp.861–874. - Tarne, P., 2018. Introducing weights to life cycle sustainability assessment how do decision-makers weight sustainability dimensions? *The International Journal of Life Cycle Assessment*. - Tarne, P., Traverso, M. & Finkbeiner, M., 2017. Review of Life Cycle Sustainability Assessment and Potential for Its Adoption at an Automotive Company. *Sustainability*, pp.1–23. - Tighnavard, A. et al., 2018. Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: Environmental, economic and social assessment. *Journal of Building Engineering*, 20(February), pp.235–247. - Touceda, M.I., Neila, F.J. & Degrez, M., 2016. Modeling socioeconomic pathways to assess sustainability: a tailored development for housing retrofit. *The International Journal of Life Cycle Assessment*. - Traverso, M., Finkbeiner, M., et al., 2012. Life Cycle Sustainability Dashboard. *Journal of Industrial Ecology*, 16(5), pp.680–688. - Traverso, M., Asdrubali, F., et al., 2012. Towards life cycle sustainability assessment: An implementation to photovoltaic modules. *International Journal of Life Cycle Assessment*, 17(8), pp.1068–1079. - Valdivia, S., Ugaya, C.M.L. & Sonnemann, G., 2013. Life Cycle Sustainability Assessment: from LCA to LCSA A UNEP / SETAC approach towards a life cycle sustainability assessment our contribution to Rio + 20. *The International Journal of Life Cycle Assessment*, pp.1673—1685. - Vinyes, E. et al., 2013. Application of LCSA to used cooking oil waste management. *International Journal of Life Cycle Assessment*, 18(2), pp.445–455. - Wagner, E. et al., 2016. Evaluation of indicators supporting the sustainable design of electronic systems. *Procedia CIRP*, 40, pp.469–474. - Wang, J. et al., 2018. Development of an Ex-Ante Sustainability Assessment Methodology for Municipal Solid Waste Management Innovations. *Sustainability*, 10, p.3208. - Wang, J. et al., 2017. Life cycle sustainability assessment of fl y ash concrete structures. Renewable and Sustainable Energy Reviews, 80(September 2016), pp.1162–1174. - Wood, R. & Hertwich, E.G., 2013. Economic modelling and indicators in life cycle sustainability assessment of Products. *The International Journal of Life Cycle Assessment*, pp.1710–1721. - Wu, S.R., 2017. Agent-Based Modeling of Temporal and Spatial Dynamics in Life Cycle Sustainability Assessment., 21(6), pp.1–15. - Wulf, C. et al., 2017. Lessons Learned from a Life Cycle Sustainability Assessment of Rare Earth. - *Journal of Industrial Ecology*, 21(6), pp.1–13. - Wulf, C. et al., 2018. Sustainable development goals as a guideline for indicator selection in Life Cycle Sustainability Assessment. *Procedia CIRP*, 69(May), pp.59–65. - Xu, D. et al., 2017. Life Cycle Sustainability Assessment of Chemical Processes: A Vector- Based Three-Dimensional Algorithm Coupled with AHP. *Ind. Eng. Chem. Res.*, 56, p.11216 11227. - Ya-Ju Chang, Sabrina Neugebauer et al., 2017. Life Cycle Sustainability Assessment Approaches for Manufacturing. In C. Herrmann & S. Kara, eds. *Sustainable Manufacturing Challenges, Solutions and Implementation Perspectives*. Berlin: Springers, pp. 221–240. - Yu, M. & Halog, A., 2015. Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study. *Sustainability*, pp.1213–1247. - Zajáros, A. et al., 2018. Life Cycle Sustainability Assessment of DMSO Solvent Recovery from Hazardous Waste Water., pp.305–309. - Zamagni, A., 2012. Life cycle sustainability assessment. The International Journal of Life Cycle Assessment, pp.373–376. - Zamagni, A., Pesonen, H. & Swarr, T., 2013. From LCA to Life Cycle Sustainability Assessment: concept, practice and future directions. *The International Journal of Life Cycle Assessment*, pp.1637–1641. - Zhou, Z., 2007. Life cycle sustainability assessment of fuels. Fuel, 86(1–2), pp.256–263. - Zhou, Z. et al., 2019. Model development of sustainability assessment from a life cycle perspective: A case study on waste management systems in China. *Journal of Cleaner Production*, 210, pp.1005–1014.