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Abstract: Accurate and timely classification and monitoring of urban functional zones prove to be
significant in rapidly developing cities, to better understand the real and varying urban functions of
cities to support urban planning and management. Many efforts have been undertaken to identify
urban functional zones using various classification approaches and multi-source geospatial datasets.
The complexity of this category of classification poses tremendous challenges to these studies
especially in terms of classification accuracy, but on the opposite, the rapid development of machine
learning technologies provides us with new opportunities. In this study, a set of commonly used urban
functional zones classification approaches, including Multinomial Logistic Regression, K-Nearest
Neighbors, Decision Tree, Support Vector Machine (SVM), and Random Forest, are examined and
compared with the newly developed eXtreme Gradient Boosting (XGBoost) model, using the case
study of Yuzhong District, Chongqing, China. The investigation is based on multi-variate geospatial
data, including night-time imagery, geotagged Weibo data, points of interest (POI) from Gaode,
and Baidu Heat Map. This study is the first endeavor of implementing the XGBoost model in the
field of urban functional zones classification. The results suggest that the XGBoost classification
model performed the best and was able to achieve an accuracy of 88.05%, which is significantly
higher than the other commonly used approaches. In addition, the integration of night-time imagery,
geotagged Weibo data, POI from Gaode, and Baidu Heat Map has also demonstrated their values for
the classification of urban functional zones in this case study.

Keywords: urban functional zones classification; Yuzhong district; XGBoost; multi-source
geospatial data

1. Introduction

In recent years, most cities focus on classifying land use/land cover (LULC) based on remote
sensing (RS) satellite images, which is costly and lacks timely update. Urban functional zones detection,
as an effective way to understand the urban space and the interaction between human activities and
the environment, is seldom conducted by the government due to limited budgets and manpower [1,2].
Meanwhile, diverse and complex urban functional zones have also been formed and transformed
continuously, in order to meet people’s increasing social and economic needs as a result of rapid
urbanization [3,4]. Thus, the demand for up-to-date urban function information is becoming increasingly
crucial, because it is the basis to capture human behavior patterns of a city, and then to effectively inform
urban management with respect to traffic control, energy recycling, and emergency management [5–7].
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In general, urban functional zones are categorized as commercial, recreational, industrial
and residential zones. Numerous models have been developed to extract and analyze urban
functional zones. Traditionally, urban functional areas are identified based on onsite survey and
field observation [8]. With the improvement of high-resolution satellite images (Landsat, SPOT,
QuickBird), many detailed urban land-use maps have also been produced with remote sensing
technology, which mainly concentrates on feature representations, semantic cognition classification,
and zonal segmentation [1,9,10]. The above-mentioned studies largely take advantage of the spectral
features of a city, and satellite images can only describe the natural characteristics of ground elements,
and largely ignore and cannot capture the real human activities.

It is the activities of, and interactions between, urban inhabitants that give rise to the characteristic
physical environment of the city, and which, in return, also conditions people’s various behaviors in the
urban setting. This also empowers social sensing studies in various disciplines. Liu et al. [11] proposed
the concept of social sensing, an important complement to remote sensing that is able to capture social
and economic activities in the city and explore the function of a city at a fine and temporal scale.
A considerable set of social sensing datasets have been successfully utilized for urban functional zones
classification, such as night-time light imagery [12,13], cell phone [14], taxi trajectory [15–17], points
of interest (POI) [18], and multi-social media data [19–21]. For example, Aubrecht and Torres [13]
effectively identified and distinguished areas of mixed use from the predominant residential areas
using night time images. Zhang, Du, and Wang [1] used hierarchical semantic cognition to classify
functional zones in Beijing based on a very-high-resolution (VHR) satellite image and POI data,
which produced good experimental results. Pei et al. [22] utilized the mobile phone dataset and
a semi-supervised clustering method to classify different land-use types, and the detection rate of
land-use reached 58.03%. Zhan, Ukkusuri, and Zhu [23] successfully explored the possibility and
validity of using social media check-in dataset to classify land-use types.

Meanwhile, many classification methods have also been widely developed to classify land use
types and urban functional zones, such as K-Nearest Neighbors [24], Decision Tree [25], Support Vector
Machine (SVM) [1,26], and Random Forest [19,27]. For instance, DeFries, Hansen, Townshend, and
Sohlberg [28] used the Decision Tree algorithm to classify global land cover of 8 × 8 km resolution,
which achieved an accuracy of over 80%. Mountrakis, Im, and Ogole [29] reviewed the research on
remote sensing implementations using the support vector machine and found this method is especially
suitable for multi-class classification problems because of its self-adaptability, quick learning rate, and
limited requirements on sample sizes. Huang, Davis, and Townshend [30] evaluated the performance
of SVM compared with the maximum likelihood classifier, neural network classifier, and Decision Tree
classifier using Thematic Mapper image of eastern Maryland in the U..S, and their results show that
mostly the SVM is more accurate and stable than the other three algorithms because of its optimal
separating hyperplane during the training process. Liu et al. [31] proposed a novel scene classification
framework to identify dominant land use type by combining probabilistic topic models and SVM using
satellite image, social media data and open street map (OSM) road data, which achieved an overall
accuracy of 86.5%. Although SVM is able to deal with high-dimensional and nonlinear problems, the
uncertainty caused during the model training process due to its sensitivity to the initial parameters
should also be noted. The Random Forest algorithm, a nonparametric classification model, is effective
in obtaining accurate and stable predictions and reducing overfitting through building and merging
multiple decision trees together [32], and was quite popular for land use and urban functional zones
classification studies in past years [27,33–35]. Yao et al. [19] used the greedy algorithm, Random Forest
algorithm and CBOW-based Word2Vec model to identify urban land use types based on POI data
with an accuracy of 87.28%. Jiang et al. [20] compared several machine learning methods for land
use classification with POI data in Boston, U.S. and they concluded that tree-based approaches, e.g.,
Decision Tree and Random Forest, outperformed Bayesian networks and rule-based learners.

On the other hand, apparently the higher accuracy of classification is always desirable for
classifications. To find a more accurate method for inferring hybrid transportation modes based
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on trajectory data, Xiao, Wang, Fu, and Wu [36] compared different tree-based ensemble models
and traditional method, and it was noted that eXtreme Gradient Boosting (XGBoost) was able to
achieve the highest classification accuracy. Moreover, although many machine learning classification
methods have been used for urban functional zones, XGBoost, as a newly developed machine learning
method, has not been applied in the field of urban functional zones classification from existing
literature. To bridge the research gap, this research aims to compare XGBoost with other commonly
used classification methods, including Logistic Regression, K-Nearest Neighbours, Decision Tree,
Support Vector Machines and Random Forest, in the field of urban functional zones classification
through the case study in Yuzhong, Chongqing, China based on the multi-source geospatial datasets,
including nightlight imagery, social media records, POI and Baidu Heat Map. We believe that this
research can significantly help other urban functional zones classification applications while enough
datasets are available and the target research context is similar as the case study in this research.
The remainder of this paper is divided into four sections. Section 2 briefly describes the research area
and how the geospatial datasets are selected. Sections 3 and 4 introduce the methodology and the
results, and lastly the discussion and conclusion are included in Section 5.

2. Study Area and Data

2.1. Study Area

The Yuzhong District situated in Chongqing, China with an area of 23.71 km2 was chosen as
our research area (Figure 1). This district is characterized by the highest population density in
the Chongqing Municipality. With a population of 657,200 in 2016 and the GDP in 2016 of CNY
105.021 billion, this region is essential for the economic development of Chongqing. It is also the most
important political, cultural, and commercial circulation center of Chongqing. The urban structures of
the Yuzhong District are of high complexity due to the acute contradiction between land resources and
ecological environment, population as well as economic growth.
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2.2. Datasets

2.2.1. Night-Time Light Imagery

In this research, nighttime light imagery was used to map the features and distribution of the
population. Launched at the end of 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) dataset
has been available since April 2012. Compared with the previous widely used Meteorological Satellite
Program’s Operational Linescan System (DMSP/OLS), the VIIRS images have higher spatial resolution
and wider radiance range, which could provide more spatial information [37]. The VIIRS data
products used in this research were downloaded from National Geophysical Data Center (NDGC) (http:
//ngdc.noaa.gov/eog/viirs/download_viirs_ntl.html) in 2016 with 15 arc-seconds spatial resolution
in the geographic grid [38]. The night light imagery was radiometrically calibrated using robust
regression [39]. To decrease error on geo-referencing, this dataset is transformed into the Universal
Transverse Mercator projection system.

2.2.2. Social Media Data

Geo-located social media records are appropriate and commonly used to detect population activity,
because check-in location data are usually recorded when users stay in a location for a period as they
engage in social media activities. For example, geo-located social media like Weibo microblogs, a social
platform similar to Twitter, allow users to post messages each containing fewer than 140 words [40].
Location-based spatio-temporal social media data from Sina Weibo were obtained by large-scale
crawler technology. Weibo data can be obtained using Application programming interface (API) from
the website ( http://open.weibo.com/wiki/位置服务 ). In addition, the Sina Weibo users are mainly
young and middle-aged people. Altogether, a dataset of more than 444,000 check-in observations in
2016 were collected through API for this research. The collected Weibo check-in data contain longitude
and latitude. After preprocessing, ESRI ArcGIS 10.5 was used to transform the check-in data are from
.csv format to point .shp format. Then, the fishnet function of ArcGIS10.5 was used to divide the
Yuzhong District of Chongqing into the grid before the number of check-in data in each grid could
be calculated. In this research, the density of Weibo check-in datasets in 2016 was then calculated in
Yuzhong District (Figure 2) for further experiments.
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provider with over 100 million daily active users in China. The POI data are crawled in JSON format
and have plenty of information including ID, name, address, type, longitude, and latitude of the POI.
After processing, the categories of POI data are combined into commercial, residential, transportational,
educational and cultural POI data. The dataset processed in the study comprises more than 33,000 POI
data in 2016 (Figure 3).
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2.2.4. Baidu Heat Map

Baidu Heat Map was launched by Baidu based on the real-time location data derived from
smartphones with Baidu Maps and other apps [41]. Baidu Map has over 200 million users and
processes 3 million position requests per day, which makes it reliable and effective to help detect urban
population mobility (Figure 4). After geocoding, the Baidu Heat Map used in this study was converted
into raster format. The heat values between 0 and 1 were assigned to different places. The closer the
value is to 1, the high the population concentration and vice versa.
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3. Methodology

In this study, the XGBoost method was employed and compared with other commonly used
methods to classify urban functional zones. The framework of our methodology can be seen in Figure 5
that comprises data pre-processing, feature selection, model construction model evaluation, and model
comparison. Each module is explained in the following sections in detail.
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3.1. Multinomial Logistic Regression

Multinomial Logistic Regression is a popular and widely used linear classification method to
solve multiclass problems [42]. It aims to predict the probabilities of the different possible outcomes of
a dependent variable. In the algorithm of Multinomial Logistic Regression, linear predictor function
f (n, i) is used to calculate the probability that the observation i could have outcome k. The formula is
listed as follows:

f (n, i) = β0,n + β1,nx1,i + β2,nx2,i + . . . + βM,nxM,i (1)

where βm,n is a regression coefficient with the mth explanatory variable and the nth outcome.

3.2. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm is a common classification model based on distance
measures. For two n-feature instances, for example, A = (a1, a2, a3, . . . , an), B = (b1, b2, b3, . . . , bn), the
Euclidean distance is usually measured as

dist(A, B) =
√
(a1 − b1)

2 + (a2 − b2)
2 + . . . + (an − bn)

2 =
√

∑ n
i=1(ai − bi)

2 (2)

Once the nearest neighbors are confirmed, the prediction then depends on the majority or
distance-weighted voting [24].

3.3. Decision Tree

The Decision Tree algorithm relies on decision rules to classify new data based on the learning
from training samples [43]. A couple of algorithms have been used to build a decision tree including
CART (Classification and Regression Trees) and ID3 (Iterative Dichotomiser 3). Decision tree has been
frequently used in land-use classification in the past decade because it is relatively easy to understand
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and interpret. In addition, it can also be combined with other classification methods. Nevertheless,
this method is not very stable, for example, even very small changes in the input data may lead to
a significant difference in the structure of the optimal decision tree [44]. In addition, compared with
other classification models like Random Forest, the classification result of the Decision Tree is usually
less accurate.

3.4. SVM

The SVM model is non-parametric and is derived from the statistical learning theory. It normally
is able to outperform traditional classifier when the training samples are small [26]. The principle of
SVM model is to use an optimal hyperplane with the maximal margin to categorize new examples and
it is derived by solving those constrained quadratic programming problem.

Maximize W(α) = ∑n
i=1 αi − 1

2 ∑n
i=1 ∑n

j=1 αiαjyiyjK
(
xi, xj

)
Subject to {∑n

i=1 αi yi = 0 and 0 ≤ αi ≤ T f or i = 1, 2, . . . n}
(3)

where xi ∈ Rd denotes the vectors of training sample, yi ∈ [−1, 1] denotes the related class label, and
K(u, v) denotes the kernel function [45]. The radial basis function (RBF) was evaluated as the kernel
function in this study [46], and in the following equation, the width σ (the only free parameter) was
set to 1.0.

K(u, v) = e(−|u−v|2/2σ2) (4)

In this study, the RBF kernel was used to address the classification problem.

3.5. Random Forest

Breiman [47] first developed Random forests (RF), a supervised classification method that consists
of numerous trees generated by bootstrap samples. The RF model has the following strengths
for addressing classification issues. First, the RF model is insensitive to outliers, noise, and even
overtraining. Second, it is highly efficient to accept input layers whose nature is different. Third, it
is able to generate layer importance measure [47]. In the RF model, the ‘out-of-bag’ (OOB) datasets,
regarded as the holdout data before growing a tree, are the overall samples used for validation.
Alternatively, the training dataset is regarded as ‘in bag’. To perform the RF model, two essential
parameters need to be set: One is the maximum depth of the tree, and the other is the number of
trees (ntree). For Random Forest, its final predicted class is calculated by the majority vote from the
single classifiers.

3.6. XGBoost

XGBoost is a highly efficient, flexible and accurate application of distributed gradient boosting
system [48]. Developed to improve the model performance, XGBoost runs much faster than many
other machine learning algorithms [49]. For a dataset with n labeled samples and m features
D = {(xi, yi)} (|D| = n, xi ∈ Rm, yi ∈ R), this tree ensemble method uses K additive functions to predict
the label.

ŷi = ϕ(Xi) =
K

∑
k=1

fk(Xi), fk ∈ F (5)

where F = {f (x) = ωq(X)}(q: Rm → T, ω ∈ RT) is the space of regression trees. q denotes the structure
of a tree with T leaves. Each fk corresponds to an independent q and weights w. The regularized
objective for minimization is as follows.

τ(ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (6)
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where Ω( f ) = γT +
1
2

λ||w||2 (7)

l denotes the loss function and Ω denotes the regularized term. In addition, ŷ(t)i is used to calculate the
i-th instance at the t-th iteration.

τ(t) =
n

∑
i=1

l
(

ŷi, ŷi
(t−1) + ft(xi)

)
+ Ω( ft) (8)

τ(t) '
n

∑
i=1

[l(yi, ŷ(t−1)) + δi ft(xi) +
1
2

hi f 2
t (xi)] + γT +

1
2

λ
t

∑
j=1

ω2
j (9)

where δi and hi are the first and second order gradient statistics on the loss function. Besides, other
techniques are also employed in the XGBoost model to improve the classification results [49].

3.7. Evaluation and Comparison Approaches

To assess the performance of the Random Forest model trained in this study, accuracy is used
as the major evaluation and comparison measures in this research. In addition, confusion matrix,
AUC (area under the curve) and ROC (receiver operating characteristics) curve are also employed as
evaluation and supplementary comparison metrics.

The performance measures are thus defined as:

Accuracy =
TP + TN

TP + FP + FN + TN
(10)

A confusion matrix is a table or a figure that is often used to show the TP, TN, FP, and FN of a
classification model (see Table 1 for details). Confusion matrix, as an evaluation indicator, also shows
the different performances of the classification models. Typically, it is a tabular representation showing
the strengths and weaknesses of our model. In the confusion matrix, element aij denotes the number of
test class i that the classification model predicted as the class j. The diagonal elements aii means that
this is the correct predictions. ROC curve is a graph that summarizes the performance of a classification
model based on different threshold settings and is generated by plotting the TP Rate against the FP
Rate, and AUC represents degree or measure of separability [50].

Table 1. The four categories of classification.

Predicted Class

Actual
Class

Yes No Sum
Yes TP (True Positive) FN (False Negative) Actual True (TP+FN)
No FP (False Positive) TN (True Negative) Actual False (FP+TN)

Sum Predicted Positive (TP+FP) Predicted Negative (FN+TN) TP+FP+FN+TN

4. Results

4.1. Data Pre-Processing

The dataset collected in 2016 was used to assess the performance of models. This dataset is
distributed in Yuzhong District, Chongqing Municipality, China, which contains nightlight imagery,
Sina Weibo check-in data, POI data, and Baidu Heat Map. The whole Yuzhong District is divided into
100 m× 100 m pixels. After data pre-processing, 2381 grids were generated. The dataset was randomly
split into a training set (80% of the data) and a testing set (20% of the data) using the scikit-learn python
library. The parameters of each model have been calibrated by the function GridSearchCV from the
scikit-learn python library. In addition, the ground truth data for further validation and comparison of
these models are obtained through visual interpretation and field survey for each grid of the urban
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functional zones. Referring to Tu et al. [51], which divided the urban functional zones of Shenzhen
into eight types, and based on the master plan of Chongqing (2007–2020) [52] and the field survey
of Yuzhong District, the urban functional zones of Yuzhong District in this research are categorized
into seven types, namely, residential functional, commercial and financial functional, transportation
and parking functional zones, educational and research functional zones, cultural and entertainment
functional, mixed functional, and green land and square functional zones (Figure 6). As Yuzhong
District is the economic and entertainment center of Chongqing municipality, the industrial zone only
takes a very small portion of the functional zones, the industrial zone of Yuzhong District has not been
considered in this study. The abbreviation of urban functional zones is shown in Table 2. The detailed
experiments are shown below:
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Table 2. Abbreviation of urban functional zones.

Full name Abbreviation

Residential functional zones R
Commercial and financial functional zones C

Transportation and parking functional zones T
Educational and research functional zones E

Cultural and entertainment functional zones L
Mixed functional zones M

Green land and square functional zones G

After data pre-processing, it can be detected that there are 2381 urban functional zones grids in
Yuzhong District, Chongqing. There are seven kinds of functional zones, and the commercial functional
zone is the majority (Figure 7). To make the results of our research reliable and stable, the testing of
these classification models has been repeated for 100 times on the input datasets, and the average of
classification accuracy was obtained as the final accuracy of the model for further comparison [31].
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4.2. Multinomial Logistic Regression

In the Multinomial Logistic Regression, to avoid the overfitting and underfitting of the model,
parameter C was used as our regularization parameter. The function of GridSearchCV from scikit-learn
python library is used to tune the parameters’ penalty and C. First, a list of values of each parameter
was defined, then the Grid Search function was used to calibrate these parameters. When the penalty
is set to be 11 and C is set to be 59.94, the accuracy is the highest which is can also calculated to be
70.86%. The confusion matrix, ROC curves, and AUC values are presented in Figure 8.
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4.3. KNN

The KNN is a supervised classification method, and its main task is to determine the K closest
labeled data points. Generally, if the K is set small, the model would be complex which leads
to overfitting. It means that the model memorized too much of the train datasets to predict the
test datasets accurately. If the k is set too big, it means that the model is simple and would cause
under-fitting. To find the best value of the hyperparameter K, we ranged the value of K from 1 to
40 and calculated the related accuracy. The best K, i.e., five, was obtained by using GridSearchCV
function from scikit-learn python library. The highest accuracy achieved by the KNN model was
61.22%. Figure 9 shows the confusion matrix, the ROC curves and AUC values of the classification
results. It can be noted that KNN model does not perform very well in differentiating between different
urban functional zones.
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4.4. Decision Tree

The Decision Tree model is simple to understand as well as to interpret. Different to the artificial
neural network which is a black box model, the Decision Tree model can be easily explained. In
addition, in contrast to other methods which need to normalize the data, create dummy variables, and
remove missing values before preprocessing, the Decision Tree model needs little data preparation. If
new data is constantly introduced in the Decision Tree model, the overfitting is most likely to occur.
Hence, suitable parameters are needed to stop the recursive splitting process to prevent overfitting.
One of the most important parameters is the max_depth, which shows the maximum depth of the tree
in the model. While the tree becomes deeper, it will split more to collect more information on the
data. As a result, the maximum depth of the tree was tuned in the decision tree. The GridSearchCV
function from scikit-learn python library was used to tune the model. When maximum depth was
set to nine, the accuracy is able to reach 76.10%. From the ROC curves, it can be seen that although
the Decision Tree model performs better than the KNN model, it is still unable to effectively identify
different urban functional zones (Figure 10). In addition, the confusion matrix and AUC values are
also presented below.
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4.5. SVM

SVM can be divided into linear SVM and non-linear SVM. For the more commonly used non-linear
SVM with a Gaussian RBF kernel, C, and Gamma are the parameters that need to be tuned to find the
best margin that separates all positive and negative samples. The model is sensitive to the parameters.
The high value of gamma indicates the influence if the single training example reaches very close, as
far as the support vector itself, which will cause overfitting. The low value of gamma shows that the
whole training dataset will be included in any chosen support vector. The overall accuracy of the SVM
model is the highest when the C and gamma are 100 and 0.01 respectively, which were obtained by
using the GridSearchCV function from scikit-learn python library. The accuracy assessment indicates
that the highest accuracy of the urban functional zones is 67.71%. In addition, the confusion matrix,
ROC curves and AUC values are also presented below (Figure 11). Results from the classification of
urban functional zones indicate that it is difficult to distinguish different urban functional zones using
SVM in this research.
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4.6. Random Forest

The Random Forest model was selected for this research because of its high accuracy and limiting
overfitting. During the model training, it is important to tune the model to improve its efficiency.
n_jobs denotes the number of cores used in the training process. Negative one was selected because it
can enable all the cores in our experiment. n_estimators denotes the number of classification trees in
the training model. The high value of n_estimators will make the predictions of the model accurate
and stable, but it may take more time. max_depth denotes the maximum depth of the tree, or how
much a node should be expanded in the training process. If the max_depth is set too high, the whole
model will have a high risk of overfitting. min_sample_split and min_sample_leaf control the number
of samples at a leaf node. As a leaf is usually where the decision tree ends, small numbers may
lead to overfitting, while large numbers may prevent learning. The default value of the parameter
min_sample_leaf and min_sample_split is used in this research. Lastly, the parameters n_estimators and
max_depth were calibrated using the GridSearchCV function from scikit-learn python library, and the
best values for n_estimators and max_depth were 81 and 21, respectively. The testing accuracy finally
reached 84.49%. In addition, the confusion matrix, the ROC curves and AUC values of the experiment
based on the Random Forest model can also be seen from Figure 12.
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4.7. XGBoost

XGBoost, a famous boosted tree learning model, was built to optimize large-scale boosted tree
algorithms. XGBoost has a few parameters that can dramatically affect the model’s accuracy and
training speed, including max_depth, eta, min_child_weight, etc. The parameter of max_depth determines
how deep we would like to grow our tree. If max_depth is set to be too high, this model might run into
the risk of overfitting. eta is the step size shrinkage used in each boosting step to prevent overfitting
and make the model more robust. min_child_weight is the minimum sum of weights needed in a child.
In this research, max_depth was calibrated using the GridSearchCV function from scikit-learn python
library, apart from the selection of the default values for all the other parameters. The experiment
accuracy surprisingly reached 88.05%. In addition, the confusion matrix, the ROC curves and AUC
values of the experiment based on XGBoost model can also be found in Figure 13.
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4.8. Model Performance Comparison

From Tables 3–5 it is noted that the tree-based models, including XGBoost, Random Forest, and
Decision Tree, performed better than other classifiers in our experiments. It is also noted that XGBoost
model outperforms all the other models in terms of accuracy, followed by Random Forest, both of
which have reached more than 80%. The results also align with our hypothesis. As a tree-based model,
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Decision Tree model reached an accuracy of 76.1%, but less than the ensemble models Random Forest
and XGBoost. The classification accuracy of the Multinomial Logistic Regression model is around 70%.
The second least performed model is SVM, followed by K-Nearest Neighbors model, which is the least
performed model and nearly 27% less than XGBoost model in this research. The reason might be that
K-Nearest Neighbors model does not learn the weight from the training data, which lead to the poor
generation of results and being easily influenced by noise [53].

Table 3. The accuracy of different models’ performance in this research.

Ranks Model Accuracy

1 XGBoost 88.05%
2 Random Forest 84.49%
3 Decision Tree 76.10%
4 Multinomial Logistic Regression 70.86%
5 SVM 67.71%
6 K-Nearest Neighbors 61.22%

Table 4. The confusion matrix comparison of different models (correctly classified numbers of grids for
different classes).

Model
Label

C E G L M R T

XGBoost 162 2 82 40 34 73 27
Random Forest 161 2 83 35 27 71 24
Decision Tree 151 2 80 30 26 54 20

Multinomial Logistic Regression 149 0 80 33 12 52 12
SVM 144 0 81 31 17 44 6

K-Nearest Neighbors 110 2 80 28 22 35 15

Table 5. The ranks comparison of confusion matrix of different models.

Model
Label

C E G L M R T

XGBoost 1 1 2 1 1 1 1
Random Forest 2 1 1 2 2 2 2
Decision Tree 3 1 4 5 3 3 3

Multinomial Logistic Regression 4 2 4 3 6 4 5
SVM 5 2 3 4 5 5 6

K-Nearest Neighbors 6 1 4 6 4 6 4

In terms of the confusion matrix, the comparison of correctly classified numbers of grids for
different classes and the comparison of ranks of these models have been conducted, respectively (see
Tables 4 and 5). XGBoost was the best among all these classifiers tested in this research. It showed the
best performance of classifying all these classes except Class G. For individual classes, the classification
result of Random Forest was not as good as XGBoost for most of these classes, but Random Forest
outperformed XGBoost in the classification of class G. The Decision Tree model performed worse
than Random Forest and XGBoost in all the classes’ classification. Regarding Multinomial Logistic
Regression, it classified worse in class C, E, M, R, and T than Decision Tree, Random Forest and
XGBoost. SVM and K-Nearest Neighbors models performed the worst in general, compared with all
the other models, especially the class T was classified the worst in SVM and the class C, L and R were
classified the worst in the K-Nearest Neighbors model.

Besides, the comparison of the ROC curves of these models (see Figures 8b, 9b, 10b, 11b, 12b and
13b) and the comparison of the AUC values and ranks (see Tables 6 and 7) have also been conducted.
It is noted that the curves of XGBoost and Random Forest are closer to the left-top corner compared to
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the other tested models, which revealed that the two models have a higher capability of distinguishing
between individual classes. Especially, most AUC values of these classes in XGBoost and Random
Forest models were near to 1, which means XGBoost and Random Forest models had shown good
separability between classes. As for Decision Tree model, its classification performance was apparently
worse than XGBoost and Random Forest models. The AUC values of these classes M and R were less
than 0.8, while AUC values of all the other classes are greater than or equal to 0.89. For the Multinomial
Logistic Regression, its AUC values of all these classes were more than or equal to 0.81 and ROC
curves look smoother than the ROC curves based on the Decision Tree model, which showed its better
performance on the classification if looking into these classes as a whole. As can be seen from ROC
curves based on the SVM model, they looked much worse than the ROC curves based on XGBoost
and Random Forest models. The AUC values of these classes were also significantly worse. Lastly,
the K-Nearest Neighbours model performed worst compared with all the other models in this study,
whose AUC values of class M, R and T were even less than 0.8 and the ROC curves looked quite sharp.

Table 6. The AUC values comparison of different models.

Model
Label

C E G L M R T

XGBoost 0.99 1 0.99 0.99 0.98 0.96 0.99
Random Forest 0.99 1 0.99 0.97 0.92 0.94 0.98
Decision Tree 0.93 1 0.96 0.90 0.79 0.77 0.89

Multinomial Logistic Regression 0.98 0.89 0.97 0.95 0.81 0.84 0.94
SVM 0.95 0.96 0.93 0.93 0.76 0.77 0.87

K-Nearest Neighbors 0.92 0.81 0.93 0.85 0.77 0.74 0.78

Table 7. The ranks comparison of AUC value of different models.

Model
Label

C E G L M R T

XGBoost 1 1 1 1 1 1 1
Random Forest 1 1 1 2 2 2 2
Decision Tree 4 1 3 5 4 4 4

Multinomial Logistic Regression 2 3 2 3 3 3 3
SVM 3 2 4 4 6 4 5

K-Nearest Neighbors 5 4 4 6 5 5 6

In summary, XGBoost showed its dominant performance among the other tested models in
this study. However, to reach a high accuracy, XGBoost model may require more knowledge and
parameters calibration than other techniques, such as Random Forest, which also need to be considered
while using XGBoost.

5. Discussion and Conclusion

It has been an increasingly important issue recently to conduct the urban functional zones
classification because it could provide a good reference for urban planners and decision makers to
monitor the changes of urban functional zones over space and time for making better plans and
decisions. However, urban functional zones classification remains a challenge due to the complexity of
urban systems and the limitation of datasets. Although many classification approaches have been used
to distinguish between different urban functional zones based on various kinds of datasets, there is still
room for improvement in terms of designing and employing more effective models for better accuracy
in the field. Newly developed machine learning classifier XGBoost has shown its high efficiency and
effectiveness in many applications. However, it has not been tested and utilized in urban functional
zones classification. Hence, in this study, the XGBoost model was employed, tested, and compared
with other commonly used classification models to classify a variety of urban functional zones in
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the case study of Yuzhong District, Chongqing, China. In these successful experiments, the XGBoost
model was found to be the best among all these commonly used models tested in this research,
with the highest accuracy of 88.05%. The results could explicitly demonstrate that the XGBoost
model could effectively be applied in urban functional zones classification through the combination of
physical and socioeconomic features extracted from high-resolution satellite images and multi-source
geospatial data, respectively. In this study, ensemble classifiers, such as XGBoost and Random Forest,
have also shown a promising classification performance compared to other kinds of state-of-the-art
classifiers. In addition, although XGBoost is a highly sophisticated algorithm, the model is still quite
straightforward to use and is able to perform better than Random Forest and the other tested models
based on accuracy, confusion matrix, ROC curves, and AUC values in this case study. This might be
due to the following aspects: First, XGBoost is a regularized boosting technique and allows users to
define custom optimization objectives and evaluation criteria, which is of high flexibility as well as
able to reduce overfitting. Second, XGBoost is also able to handle missing values, which could decrease
the uncertainty. Furthermore, Random Forest model ranks the second of all these tested models in
the case study. As a tree-based model, the Decision Tree has also performed well, but less accurate
than XGBoost and Random Forest models, respectively. Surprisingly, Multinomial Logistic Regression,
as the most commonly used and simplest model, shows an accuracy of 70.86%, which is even better
than SVM and K-Nearest Neighbors models in this study. SVM, although proved to be efficient in
previous studies [26,44], only achieved an accuracy of 67.71% in this case study, which is less than
most of the classification model tested in this study. The K-Nearest Neighbors model performed worst
in both accuracy and classification separability in this study.

The success of our comparison between these models could be a good reference to other
case studies in urban functional zones classification or even other applications of classifications.
Furthermore, as the extension of our current research, more efforts will be put into the temporal
dimension of urban functional zones classification, which requires even more efficient classification
models or even integration of high-performance computation. In addition, in this research, the sample
size was set to be 100 m by 100 m given the data availability and the size of the research area. However,
the scale may also matter in the performance of these models, we would like to continue our research
on this direction in the future. On the other hand, our case study based on multi-source geospatial
datasets has also revealed the value of nighttime light imagery, social media datasets, POI datasets,
and Baidu Heat Map to the recognition of urban functional zones. Of course, more geospatial datasets,
especially social sensing datasets, are also worth exploring, which will also be one direction of our
future research.

Last but not least, there are also a few limitations in this research. First, there exist some
uncertainties on these multi-source geospatial data collected. Given that it applies to all these models,
the influence on the results of our study could be ignored. Second, considering the computation
intensity, the parameters calibration in this research could also be improved for possibly more precise
results. These aspects will be addressed in our future research.
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