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Abstract: Satellite remote sensing data, such as moderate resolution imaging spectroradiometers
(MODIS) and advanced very high-resolution radiometers (AVHRR), are being widely used to monitor
sea ice conditions and their variability in the Bohai Sea, the southernmost frozen sea in the Northern
Hemisphere. Monitoring the characteristics of the Bohai Sea ice can provide crucial information for
ice disaster prevention for marine transportation, oil field operation, and regional climate change
studies. Although these satellite data cover the study area with fairly high spatial resolution, their
typically limited cloudless images pose serious restrictions for continuous observation of short-term
dynamics, such as sub-seasonal changes. In this study, high spatiotemporal resolution (500 m and
eight images per day) geostationary ocean color imager (GOCI) data with a high proportion of
cloud-free images were used to monitor the characteristics of the Bohai Sea ice, including area and
thickness. An object-based feature extraction method and an albedo-based thickness inversion model
were used for estimating sea ice area and thickness, respectively. To demonstrate the efficacy of the
new dataset, a total of 68 GOCI images were selected to analyze the evolution of sea ice area and
thickness during the winter of 2012–2013 with severe sea ice conditions. The extracted sea ice area
was validated using Landsat Thematic Mapper (TM) data with higher spatial resolution, and the
estimated sea ice thickness was found to be consistent with in situ observation results. The entire sea
ice freezing–melting processes, including the key events such as the day with the maximum ice area
and the first and last days of the frozen season, were better resolved by the high temporal-resolution
GOCI data compared with MODIS or AVHRR data. Both characteristics were found to be closely
correlated with cumulative freezing/melting degree days. Our study demonstrates the applicability
of the GOCI data as an improved dataset for studying the Bohai Sea ice, particularly for purposes
that require high temporal resolution data, such as sea ice disaster monitoring.

Keywords: sea ice monitoring; geostationary ocean color imager; ocean remote sensing; Bohai Sea

1. Introduction

The Bohai Sea is a semi-enclosed sea located at approximately 117◦–122◦ E, 37◦–41◦ N in North
China (Figure 1). It freezes every winter for about three to four months from December to the next
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March, and is the southernmost frozen sea in the Northern Hemisphere. The Bohai Sea possesses rich
fishery, oil, and gas resources, making the Bohai Rim a critical economic zone in China [1]. Subject
to global and regional climate changes, sea ice extent exhibits heterogeneous variability across the
globe [2–5]. While a significant decreasing trend of Arctic sea ice extent since the 1980s has been
observed, sea ice extent has showed significant and slight increasing trends in the Antarctic and the
Bohai Sea, respectively [4,5]. Varying Bohai Sea ice conditions severely influence marine navigation,
offshore oil exploitation, mariculture, and coastal construction [1,6,7]. Sea ice can be desalinated
using proper techniques to produce freshwater for industrial and agricultural consumption, with the
potential to become an alternative freshwater resource that may help alleviate the severe freshwater
shortage in the region [8–10]. Therefore, the ability to closely monitor the sea ice conditions and their
variability in this region is critical for ice disaster prevention, climate change studies, and sea ice
resource estimation.
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Figure 1. Location of the Bohai Sea. The black dots represent the 13 meteorological stations. The red
squares represent the oil platforms where the in situ measurements of sea ice thickness were conducted.

Satellite remote sensing data have been widely applied to investigate the spatiotemporal
distribution and evolution of sea ice. Particularly, polar-orbiting satellites, such as the Earth Observing
System (EOS) moderate-resolution imaging spectroradiometer (MODIS) and the National Oceanic and
Atmospheric Administration (NOAA) advanced very high-resolution radiometer (AVHRR), have been
commonly used to study the Bohai Sea ice [5,9,11–16]. Although these satellite data cover the study
area with a fairly high spatial resolution (~1 km), they are typically limited in temporal resolution and
provide only one image covering the study area per day, which are constrained by the proportion of
cloud-free images of the MODIS and the AVHRR data being mostly less than 20% [5,15]. Synthetic
aperture radar (SAR) data is also commonly used to monitor sea ice, which has also been applied to
detecting ice types and thickness in the Bohai Sea due to their fine spatial resolution and insensitivity
to cloud interference [17–19]. However, the SAR data are limited by a long repeat cycle (6–44 days) [20].
As such, these data are not suitable for continuous observation of short-term dynamics, such as the
sub-seasonal changes.

The first geostationary ocean color imager (GOCI) in the world was launched on June 27, 2010,
providing a stationary observation of a zone of 2500 km × 2500 km around the Korean Peninsula [21],
which covers the Bohai Sea. GOCIs produce eight images at a 500 m spatial resolution and hourly
interval from 8:15 a.m. to 3:45 p.m. local time every day, and the images cover eight spectral bands
with blue to near-infrared wavelengths [22]. Due to their wide coverage and high spatiotemporal
resolution, the GOCI data have been used to study the optical characteristics of water [21,23,24], ocean
surface currents [25–28], biological features of waters [29–31], water quality [32–34], harmful algal
bloom [35,36], sea surface salinity [37], and sea fog [38]. However, these high-quality data have not yet



Sustainability 2019, 11, 777 3 of 17

been applied to the characteristics of Bohai Sea ice, where fast-changing first-year ice poses challenges
for traditional satellites.

In this study, high-spatiotemporal resolution GOCI data with high proportions of cloud-free
images were applied to monitor the characteristics of Bohai Sea ice, including area and thickness.
To demonstrate the efficacy of the new dataset, the winter of 2012–2013 was chosen as a case study
period, as severe ice conditions appeared in the Bohai Sea during this period. Section 2 introduces
the study area. Section 3 describes the remote sensing data and relevant meteorological data, as well
as the methodologies used to extract sea ice area and thickness. Section 4 presents the results on the
evolution of sea ice area and thickness during the winter of 2012–2013, as well as their correlation with
meteorological factors, which is followed by a discussion of the benefits of using the new dataset in
Section 5. Our main conclusions are listed in Section 6.

2. Study Area

The Bohai Sea is a semi-enclosed sea covering 73,686 km2 in Northern China, consisting of
Liaodong Bay, Bohai Bay, Laizhou Bay, and the central Bohai Sea, and is connected to the Yellow Sea
to the east (Figure 1). Several major cities are located along the Bohai Sea coast, including Tianjin,
Dalian, Yingkou, Jinzhou, Qinhuangdao, and Dongying. The major tributaries include the Yellow
River, Hai River, Liao River, and Luan River, which carry large amounts of freshwater and sediments
from land to the Bohai Sea. The average water depth of the Bohai Sea is 18 m. The salinity of the
seawater is only 30 PSU, which is the lowest among all Chinese coastal water [14]. The mean surface
water temperature ranges from 0 ◦C (February) to 21 ◦C (August) [11]. The frozen period of the Bohai
Sea is generally from early December to mid-March.

3. Data and Methods

3.1. Data Description

3.1.1. Remote Sensing Data

GOCI Level 1B (L1B) data were downloaded from the Korea Ocean Satellite Center (KOSC) [39].
The GOCI image covers eight spectral bands, including six visible bands and two near-infrared bands,
as shown in Table 1. To study the daily variation of sea ice, we are aiming to obtain one best image out
of eight available ones for each day from 1 December 2012 to 31 March 2013. The criterion of selection
is to pick the one with least disturbances from cloud cover, sea fog cover, uneven illumination, and
dislocation. A total of 73 images were selected to cover 73 days, while no clear images were available
for the other days.

Table 1. The parameters of the spectral bands of geostationary ocean color imager (GOCI) images.

Band Central
Wavelengths (nm) Bandwidth (nm) Nominal Radiance

(W·m−2·um−1·sr−1)
Saturation Radiance

( W·m−2·um−1·sr−1)

1 412 20 100.0 150.0
2 443 20 92.5 145.8
3 490 20 72.2 115.5
4 555 20 55.3 85.2
5 660 20 32.0 58.3
6 680 10 27.1 46.2
7 745 20 17.7 33.0
8 865 40 12.0 23.4

Landsat Thematic Mapper (TM) and MODIS data were also used for validation and comparison
purposes in this study. Landsat TM data with 30 m spatial resolutions were obtained from the U.S.
Geological Survey (USGS) website [40], and the Chinese mirror website is in the Geospatial Data Cloud
website [41]. During the chosen study period, the TM image was cloudless only on 22 December 2012,
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which was thus selected for validation. A total of 106 Terra MODIS images with spatial resolutions of
500 m were downloaded from the National Aeronautics and Space Administration (NASA) Level 1
and Atmosphere Archive and Distribution System (LAADS) website [42], among which 15 cloud-free
images were selected.

3.1.2. Meteorological Data

Daily meteorological data, including the minimum, average, and maximum daily temperatures at
13 meteorological stations (Jinzhou, Panjin, Yingkou, Xingcheng, Xiongyue, Suizhong, Qinhuangdao,
Wafangdian, Laoting, Dalian, Tanggu, Huanghua, and Dongying) surrounding the Bohai Sea, were
obtained from the website of the National Meteorological Information Center of China [43] during the
entire study period. The average daily temperature data were further applied to calculate cumulative
freezing degree days (CFDD) and cumulative melting degree days (CMDD) in Section 3.5.

3.1.3. In Situ Measurement of Sea Ice Thickness

In situ observed sea ice thickness data in the winter of 2012–2013 were obtained from the
literature [19] for validation. The locations of the observed stations are shown in Figure 1. The numbers
1–4 labelled in Figure 1 represent the four offshore oil platforms of JZ09–3, JZ20–2, JZ25–1, and JX01-1,
respectively, in this study. The samples shown here were evenly distributed in January and February
(January 2, 6, 9, 16, and 26; and February 2, 9, 12, and 16).

3.2. GOCI Data Pre-Processing

The pre-processing of the GOCI data primarily included three steps: Radiometric calibration,
geometric correction, and atmospheric correction. The process of radiometric calibration of the GOCI
data involved converting the L1B data from digital numbers to radiance units using ENVI 5.1 (ITT
Visual Information Solutions, Boulder, CO, USA). The Geographic Lookup Table (GLT) method [44]
was used for geometric correction of GOCI data to provide the actual location of an uncorrected pixel
in the output.

In order to accurately derive the surface reflectance, atmospheric correction is required for
eliminating the absorption effect of solar shortwave radiation [45]. As a relatively new remote
sensing dataset, there is no well-established algorithm for an atmospheric correction for GOCI. In this
study, the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercube (FLAASH) atmospheric
correction method [14] was used for GOCI data. FLAASH has been widely applied for multi-band
or hyperspectral data [5,46], including an aerosol estimation algorithm considering the dark pixel
reflectance ratio, to remove atmospheric scattering and absorption in the 400–2500 nm wavelength
range. The input parameters for FLAASH atmospheric correction for a sample GOCI image are listed
in Table 2. After conducting a set of iterative calculations to quantify water and aerosol amounts,
we obtained atmospherically corrected images with units of apparent surface reflectance.

Table 2. Input parameters for Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercube
(FLAASH) atmospheric correction for a sample GOCI image.

Sensor Altitude Ground Elevation Pixel Size Flight Date Flight Time
(GMT)

35,786 km 0 m 500 m 2013–02–01 06:16:43
Atmospheric

model Aerosol model Water column
multiplier Initial visibility1 CO2 mixing ratio

Mid-latitude
winter Maritime 1.0 18.6 km 390 ppm

1 The initial visibility data was obtained from the Wunderground website [47].
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3.3. Extraction of Sea Ice Area

The desired sea ice features were extracted from the GOCI image using an object-based feature
extraction method [5,48–50]. Before using the object-based feature extraction method, we used a land
mask of the Bohai Sea to mask the land in the pre-processed images. Then, the image was segmented
and neighboring pixels of a number of objects were grouped based on the similarity of spectral and
texture characteristics [50]. During the process of segmentation, a merge level (usually 60–80) was set
to avoid over-segmentation and improve the integrity of sea ice information by combining the speckles
with identical features [49]. After segmentation, the workflow of an example-based feature extraction
in Environment for Visualizing Images (ENVI) 5.1 (ITT Visual Information Solutions, Boulder, CO,
USA) was used to discriminate the sea ice from sea water and thick cloud. Specifically, for each image,
we manually selected representative objects of seawater, sea ice and thick cloud (if existing) based
on visual interpretation, then computed the spectral, texture, and spatial attributes of these sample
objects to define classifications, which were used for feature extraction and outputted as shapefiles.
Finally, the output shapefiles were further corrected using visual interpretation in ArcGIS 10.1 (Esri,
Redlands, CA, USA), e.g., removing polygons incorrectly classified as sea ice and vice versa [5,50].
Notably, the light clouds were manually removed in this step by repeating a manual cloud masking
through visual interpretation [51], as it was difficult to distinguish between sea ice and light clouds
using the above method and the area of the clouds was usually small. The selected 68 pre-processed
images were processed step-by-step as described above to obtain the sea ice area. Figure 2 shows an
example of the sea ice area extracted through the object-based feature extraction method. The above
method was further applied for TM and MODIS data to extract sea ice area.
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Figure 2. Bohai Sea ice area extraction: (a) The original image using bands 6/5/4 (680/660/555 nm,
respectively) (February 1, 2013) and (b) the blue-color-coded sea ice area extracted using the
object-based feature extraction method.

3.4. Sea Ice Thickness Inversion

Numerous studies [11,52,53] have stated that sea ice thickness is strongly related to its surface
albedo, which leads to the sea ice thickness inversion model, i.e., the exponential relationship between
sea ice thickness and its albedo derived from remote sensing data [11,14,15,54,55]:

h = −ln[(1 − αh · αmax
−1) · k−1] · µα

−1, (1)

where h is the sea ice thickness; αh is the sea ice albedo of solar shortwave radiation; αmax is the albedo
corresponding to infinite ice thickness; k is a correlation coefficient related to αmax and αsea, i.e., k = 1
− αsea/αmax, where αsea is the albedo of seawater; and µα (m−1) is the attenuation coefficient of the
albedo. The parameters of αmax, αsea, and µα all assumed values obtained from field experiments in
previous studies [11,14,15,54,55], setting to 0.70, 0.06, and 2.6599, respectively. In this study, the effects
of snow were neglected and Equation (1) was used to estimate the bare sea ice thickness under the
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assumption that no snow cover exists, as the amount of snowfall in the Bohai Sea during the winter is
generally minimal [56]. Even when snowfall occurs, snow cover is still limited on the sea ice due to the
effects of wind and current [56,57]. The effects of surface melt were also neglected as the meltwater
layers on ice surfaces were extremely thin during daytime when the GOCI images were captured [8].
The error in the sea ice thickness inversion in the Bohai Sea was ~15% compared to the results of the
field survey [15,54].

Sea ice thickness was estimated using Equation (1), in which the shortwave broadband albedo αh
was directly derived from GOCI data. αh was evaluated using the linear regression model reported
previously [55]:

αh = −0.1356α1 − 0.2704α2 + 1.4087α3 − 0.3284α4 − 0.0812α5

+ 0.6204α6 − 0.1474α7 − 0.0268α8 − 0.0464,
(2)

where αj (j = 1, 2, . . . , 8) is the GOCI’s reflectance of band j.

3.5. Meteorological Parameters

Sea ice formation is strongly related to the period of surface air temperature remaining below
or above the freezing/melting point of the seawater, which can be quantified by CFDD and CMDD,
respectively [5,14,58]. The mathematical definitions of the two meteorological parameters are
as follows:

CFDD =
∫ t=de

t=ds
(Tf − Ta)dt, (3)

CMDD =
∫ t=de

t=ds
(Ta − Tm)dt. (4)

where Tf and Tm are the freezing and melting point of the seawater in the Bohai Sea, respectively; Ta is
the average daily air temperature of the 13 meteorological stations around the Bohai Sea; t is time in
days; and ds and de are the start and end date, respectively. Here, Tf and Tm were set to −2.0 ◦C and
0 ◦C, respectively, which are compatible with the salinity in the Bohai Sea (30 PSU) [14].

4. Results

4.1. Sea Ice Area

4.1.1. Validation

The sea ice area extracted on 22 December 2012 was validated using the TM data with a much
higher spatial resolution (30 m), and compared to results obtained from the MODIS data with a spatial
resolution of 500 m. The extracted sea ice areas from these three datasets were shown to compare well
overall with each other (Figure 3). The overall distributions of the Bohai Sea ice from TM, GOCI, and
MODIS were comparable. Specifically, the main ice zone in Northern Liaodong Bay and the small
individual ice floes in Western Liaodong Bay were all well captured. The sea ice area extracted from
both GOCI and MODIS data tend to be overestimated compared to TM data—the sea ice area extracted
from the TM data is 3.93 × 103 km2, whereas those extracted from the GOCI and MODIS data are
4.05 × 103 km2 and 4.12 × 103 km2, respectively. The associated mean relative biases of the GOCI
and MODIS results are 3.1% and 4.7%, respectively, which suggests that the results of the sea ice area
extracted from both GOCI and MODIS data are relatively accurate. The main difference of sea ice
distribution lies along the ice edge, which can be better resolved by the TM data with much higher
resolution. The lower spatial resolution of the GOCI and MODIS data tended to misclassify some
ice–water mixed pixels as sea ice or water, and the estimated sea ice coverage is thus associated with
larger error bar compared to TM data.
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Figure 3. Comparison of sea ice area extracted from (a) Landsat Thematic Mapper (TM),
(b) geostationary ocean color imager (GOCI), and (c) moderate resolution imaging spectroradiometer
(MODIS) data on 22 December 2012.

4.1.2. Spatiotemporal Distribution and Evolution

The spatiotemporal distribution and evolution of the Bohai Sea ice area during the winter of
2012–2013 are shown in Figure 4. The sea ice first started to appear on the northeastern coastline,
then gradually clung to the shore, and further expanded from the shore to the central basin. Among
the different bays of the Bohai Sea, the sea ice first appeared and expanded quickly in Liaodong
Bay, then expanded southward to Bohai Bay and Laizhou Bay. A significant increase was observed
in mid-January 2013, which was followed by a shrinking in late January to early February, and an
expansion again in early February. Particularly, on 8 February 2013, Liaodong Bay was almost
covered with ice, and the total sea ice area reached its maximum in the entire study period. Starting
mid-February, the sea ice area quickly shrunk due to melting. The melting process appeared to be
spatially heterogeneous, as a higher melting rate was observed in the Northwestern and Eastern
Liaodong Bay compared to other parts of the Bohai Sea. The ice was not completely melted until
mid-March. Throughout the entire freezing–melting process, the sea ice was mainly concentrated in
Liaodong Bay. The total freezing period in Liaodong Bay was 104 days, whereas in Bohai Bay and
Laizhou Bay, the freezing periods were 59 and 51 days, respectively.

Some ice-free zones were observed in Liaodong Bay in the severe ice period. During the period
of 22–24 January 2013, the average temperature in the Bohai Sea was −6.9 ◦C, which was lower than
the average temperature of the previous three days. The majority of the existing sea ice was drift ice,
with strong dynamic behaviours driven by the currents and winds in the Bohai Sea [1,59]. Therefore,
the shrinking of the sea ice in Northern Liaodong Bay during this period was more likely due to the
relocation of the drift ice along the fringe of the land-fast sea ice rather than melting. On the contrary,
the reduction in ice area in Eastern Liaodong Bay during the period of February 16–19 was mainly
due to melting. Specifically, during February 16–18, the average temperature was −1.9 ◦C, which is
closer to the melting point of the sea ice compared to the previous days. Especially on February 17,
the average temperature was 1.2◦C, causing significant melting (the image was missing due to the
cloud cover). The ice-free zone froze again as the temperature dropped to −6.2◦C on February 19.
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from GOCI data during the winter of 2012–2013.

As seen in Figure 5, the Bohai Sea ice area showed two broad maxima during the entire study
period. In late December, sea ice developed rapidly due to a long-term low temperature period,
with a mean Tmin of −13.2 ◦C. Sea ice area expanded more than four times, from 2.20 × 103 km2 on
21 December 2012 to 9.66 × 103 km2 on 31 December 2012 within 10 days. In early and mid-January
2013, sea ice continued to develop rapidly as the air temperature was maintained below −10 ◦C, and
the sea ice area reached its first peak on January 17 at 17.75 × 103 km2. In late January and early
February 2013, sea ice area dropped considerably from 17.16 × 103 km2 on January 27 to 9.74 × 103

km2 on February 4, corresponding to a drastic rise of Tmin from −12.9 to −0.7 ◦C in the same period in
the Bohai Sea. As of February 5, sea ice expanded once again as the air temperature dropped by ~10 ◦C
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due to a strong cold snap, and the maximum sea ice area of 20.59 × 103 km2 appeared on 8 February,
which accounted for 27.9% of the total area of the Bohai Sea. Afterward, sea ice gradually melted as a
result of continuous warming.
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4.2. Sea Ice Thickness

4.2.1. Validation

The estimated sea ice thickness in the winter of 2012–2013 was validated using in situ observed
data available in Karvonen et al. [19]. Figure 6 shows that sea ice thickness estimated from GOCI
data mostly falls in the range of variation of the measured data. The overall agreement indicates that
sea ice thickness estimated from GOCI data can be effectively used for further analysis. The mean
absolute bias of the sea ice thickness retrieved compared to the mean observation value is 4.6 cm,
and the root mean square error (RMSE) is 5.8 cm. The estimated thickness in this study is subject to
the uncertainty of the prescribed parameters, such as the attenuation coefficient of the albedo (µα) in
the sea ice thickness inversion formula. Moreover, the discrepancy may be caused by the different
scales involved in field measurement and inversion. The ice thickness measured in situ is exactly at the
measurement location, whereas the estimated thickness refers to the average over a pixel (500 × 500 m)
centered at the measurement location. In addition, the estimated values of sea ice thickness using a sea
ice surface heat balance equation introduced by Ouyang et al. (2017) [60] also tended to be on the
lower range compared to the observations, with a mean bias of −4.64 cm greater than ours (–1.97 cm).Sustainability 2018, 10, x FOR PEER REVIEW  11 of 18 
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4.2.2. Spatiotemporal Distribution and Evolution

As shown in Figure 4, the spatial distribution of Bohai Sea ice thickness was rather heterogeneous
among different bays. Throughout the entire study period, the ice thickness mostly ranged between
0 and 30 cm, except the land-fast ice in Northernmost Liaodong Bay, which reached the maximum
thickness of ~90 cm in mid-January. The ice thickness close to the shore in all three bays was usually
greater than in the central basin. Generally, average sea ice thickness in Liaodong Bay was greater than
that in Bohai Bay, which was in turn larger than that in Laizhou Bay. Within Liaodong Bay, where the
most ice occurred, sea ice thickness in the eastern part was generally larger than in the west.

The temporal variation in mean Bohai Sea ice thickness during the study period is further
presented in Figure 7. The mean thickness reached the maximum of 19.5 cm on 9 January 2013, and the
minimum of 2.5 cm on 15 December 2012. As seen in Figure 7, the mean thickness shows two broad
maxima over the entire study period, which is consistent with the temporal pattern of sea ice area.
The mean sea ice thickness is best correlated with the mean sea ice area for a two-day lag (r = 0.76,
p < 0.01) based on the lagged correlation analysis.
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4.3. Correlations Between Sea Ice Characteristics and Meteorological Factors

Due to the Bohai Sea’s predominantly shallow water depth, the local synoptic force plays a vital
role in sea ice evolution [5,61]. To explore the specific effects of meteorological forcing, correlations
between sea ice area/thickness and relevant meteorological factors were examined, including the
mean of the daily average and minimum temperature, CFDD, and CMDD of the 13 meteorological
stations surrounding Bohai sea in the freezing/melting phase. Weak and moderate negative linear
correlations between sea ice area and mean daily average temperature (r = −0.29, p < 0.05) and
minimum temperature (r = −0.45, p < 0.01) in the freezing phase are shown in Figure 8a,b, respectively,
suggesting that the daily temperature is of minor importance in driving sea ice area changes in the
freezing process. During the melting phase, strong negative linear correlations between sea ice area
and mean daily average temperature (r = −0.74, p < 0.05) and maximum temperature (r = −0.63,
p < 0.01) are shown in Figure 8d,e, respectively, suggesting that the daily temperature is relatively
important for sea ice area changes during the melting process. In Figure 8g,h,j,k, weak/moderate
negative linear correlations between sea ice thickness and mean average, minimum, and maximum
temperatures during both freezing and melting phases are depicted, which indicate that, compared to
sea ice area, sea ice thickness is even less affected by daily temperature.
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Our study extends the application of the GOCI data to monitoring of the Bohai Sea ice, and the 
benefits are multifold. Unlike in situ measurements [19,64], remote sensing-based methods can 
provide large-scale observation of sea ice for the whole Bohai Sea at a much-reduced cost. Compared 
with traditional satellite data, such as MODIS, AVHRR, and Sentinel-1A/B, the GOCI data have a 
fairly high temporal resolution (eight images per day). After removing images with cloud cover, sea 
fog cover, uneven illumination, and dislocation, GOCI data could provide 68 images to cover 68 days 
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Figure 8. Correlations between sea ice area and (a) the mean of the daily average temperature
(MDAVET), (b) the mean of the daily minimum temperature (MDMINT) of 13 meteorological stations
around the Bohai Sea, and the (c) cumulative freezing degree days (CFDD) during the freezing phase;
correlations between sea ice area and (d) MDAVET, (e) the mean of the daily maximum temperature
(MDMAXT), and (f) cumulative melting degree days (CMDD) during the melting phase; correlations
between sea ice thickness and (g) MDAVET, (h) MDMINT, and (i) CFDD during the freezing phase;
and correlations between sea ice thickness and (j) MDAVET, (k) MDMAXT, and (l) CMDD during
the melting phase. The black lines represent the results of regression analysis. * and ** represent
significance at the 5% and 1% levels, respectively.

In particular, given the nonlinear correlation between the sea ice area/thickness and the
cumulative freezing degree days (CFDD) or cumulative melting degree days (CMDD), logarithmic
fitting was tested, and the obtained results were fairly good. There is a very strong positive logarithmic
correlation between sea ice area and CFDD (r = 0.90, p < 0.01, Figure 8c) during the freezing phase,
which suggests that CFDD is a controlling factor of the formation of sea ice. During the melting phase,
a significant negative logarithmic correlation between sea ice area and CMDD (r = −0.97, p < 0.01,
Figure 8f) was observed, which indicates that CMDD is a crucial parameter controlling sea ice melting.
Similarly, a strong logarithmic correlation between sea ice thickness and CFDD (r = 0.73, p < 0.01,
Figure 8i) and a moderate logarithmic correlation between sea ice thickness and CMDD (r = −0.56,
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p < 0.01, Figure 8l) were observed. Overall, we confirmed that the local synoptic forcing, particularly
the cumulative parameters, such as CFDD and CMDD, play a vital role in sea ice evolution in the
Bohai Sea. This is consistent with some previous studies [62,63]. Therefore, these parameters can be
used as indicators for analyzing the evolution of sea ice.

5. Discussion

Our study extends the application of the GOCI data to monitoring of the Bohai Sea ice, and the
benefits are multifold. Unlike in situ measurements [19,64], remote sensing-based methods can provide
large-scale observation of sea ice for the whole Bohai Sea at a much-reduced cost. Compared with
traditional satellite data, such as MODIS, AVHRR, and Sentinel-1A/B, the GOCI data have a fairly
high temporal resolution (eight images per day). After removing images with cloud cover, sea fog
cover, uneven illumination, and dislocation, GOCI data could provide 68 images to cover 68 days for
the frozen season from 5 December 2012 to 20 March 2013 (106 days in total), i.e., temporal coverage of
64.2% (68/106), whereas MODIS could only provide 15 images to cover 15 days for the same period,
i.e., temporal coverage of only 14.2% (15/106).

Regarding the sea ice characteristics estimated from the new dataset, the maximum sea ice area
during the entire study period was identified as occurring on 8 February 2013, which is consistent
with the monitoring result reported in the North China Sea Disaster Bulletin in 2013 (North China
Sea Branch of State Oceanic Administration, 2013). However, results from MODIS data showed the
maximum on 17 January 2013, as a cloud-free MODIS image was not available on 8 February 2013 [5].
The sea ice area dropped by over 40% from 27 January to 4 February 2013 according to the GOCI data,
whereas the MODIS data could not record the detailed changes during this period due to frequent
cloud cover. Similarly, the first and last day of the frozen season can be better determined by the GOCI
data rather than using MODIS or AVHRR data [5,9]. The proposed approach has more implications
for the sea ice hazard risk assessment based on grid computing [1].

In our study, an exponential model [11,14,15,54,55] using GOCI data was used to estimate the
ice thickness. The overall agreement between the estimated and in situ observed sea ice thickness
indicates that the selected method is reliable. However, some errors still exist due to the limitations of
the exponential model and image processing. The exponential model is only suitable for estimating the
bare sea ice thickness under snow-free conditions. Although the amount of snowfall in the Bohai Sea
in winter is generally minimal [56], snow does still have an impact on the estimation. The uncertainty
of the prescribed parameters, such as µα, might also cause errors. Yuan (2009) [54] and Yuan et al.
(2012) [15] determined the values of µα based on in situ observation of sea ice thickness from 2005–2008,
which are the most recent results that are available to us and thus adopted in this study. Dedicated
frequent in situ observations are recommended in the future to keep up with the rapidly changing
environment in the Bohai Sea.The constant µα (2.6599), which we assumed for the entire Bohai Sea,
is strictly only applicable for Liaodong Bay and Laizhou Bay [15]. However, we consider this a valid
assumption, as most of the sea ice coverage is located in Liaodong Bay throughout the ice season.
The resultant mean absolute bias of the sea ice thickness retrieved (4.6 cm) is fairly small, which further
validated the adopted approach. However, using more regionally specific values of µα could still
potentially improve the accuracy of the estimated sea ice thickness. When calculating the shortwave
broadband albedo (αh), we did not consider the bi-directional reflectance distribution function (BRDF)
effect, as we assumed that the reflection of the sea ice surface is isotropic. However, the reflection
of sea ice is actually anisotropic [65]. Without BRDF correction, it is likely to introduce errors in
the calculation of αh [66], which further influences the thickness estimation. Besides, the clouds
remaining after the removing process by creating a manual cloud masking may have an influence on
the estimation of thickness.

The number of in situ observations for validation of sea ice thickness was limited, which increased
the uncertainty of the validation. However, the majority of Bohai Sea ice is drift ice, which is subject
to the effects of ocean currents and surface winds, and is hence very dynamic [67]. The number of
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observations adds considerable difficulty when conducting large-scale field observations. Development
of new technologies for in situ observations in the future will help resolve this limitation.

6. Conclusions

In this study, we monitored the Bohai Sea ice characteristics, including area and thickness, using
high-resolution GOCI data during the winter of 2012–2013, during which severe sea ice conditions
were recorded. The correlations between sea ice characteristics and potential meteorological factors
that may influence the evolution of sea ice were explored. The major findings from the present study
are summarized as follows:

The sea ice area extracted from GOCI data was validated using TM data. The temporal variation
in sea ice area during the entire study period exhibited two broad maxima. The sea ice thickness
estimated from GOCI data was consistent with the in situ observations, and its mean ranged from
2.5 to 19.5 cm with two similar broad maxima.

Spatial distribution within the Bohai Sea showed that sea ice formed and expanded from north to
south during the freezing phase, and the opposite occurred for melting. Among the different bays
of the Bohai Sea, both sea ice area and thickness in Liaodong Bay were greater than in Bohai Bay,
which were in turn greater than in Laizhou Bay.

Correlation analysis suggests that CFDD and CMDD are the dominant meteorological factors
driving the change in sea ice area and thickness, whereas daily temperature plays a minor role,
particularly for sea ice thickness.
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