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Abstract: One of the various methods of manufacturing low-carbon cement is substituting limestone
powder as a raw material or admixture. Limestone sludge powder (LSSP) has the same composition
as that of limestone powder. The surface characteristics of LSSP powder modified with recycled
acetic acid (RAA) and the characteristics of cement using this modified LSSP as a substitute were
investigated in this study. The surface of LSSP modified with RAA was converted into calcium acetate
and had a large grain size. When conventional LSSP was used as a substitute for cement, the initial
strength increased owing to improved pore filling; however, the strength after 28 days of aging was
lower than that of non-substituted cement. In the case of modified LSSP being replaced with cement
at up to 10% of the cement weight, however, the calcium acetate on its surface increased the amount
of hydration products in the cement, thereby increasing both the initial and the long-term strength.
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1. Introduction

One of the major issues in the construction industry in recent years has been the demand for
cement materials that can reduce carbon emissions. The reality is that 1 t of CO2 is generated to
produce 1 t of cement, and most studies have focused on reducing cement usage or using cement
substitutes [1,2]. One of the most widely used materials in the cement production process is limestone
powder. In Europe, limestone powder may be used at up to 35% according to the EN 197-1 standard,
whereas in Canada and the United States, up to 5% Portland cement and 15% Portland limestone
cement may be used [3–5]. Limestone powder contains a large amount of calcium carbonate. Calcium
carbonate and silica or nanocarbon are used as fillers in organic and inorganic complexes. These
fillers serve to improve the viscosity or physical performance of polydimethylsiloxane (PDMS) [6–10],
which is used for penetrating water repellency and surface penetration coating. The functional groups
on the surfaces of these fillers may be changed to improve their reactivity with the polymer or to
optimize the dispersion ability. Compared with silica or nanocarbon, calcium carbonate is a less
expensive functional filler [8–15].

In the steel industry, burnt lime is produced by washing and burning limestone. The sludge
composed of powders washed from limestone is known as limestone sludge powder (LSSP). LSSP has
the same composition as limestone powder and can be used as a substitute for cement and, therefore,
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as an admixture material of cement mortars. Limestone powder is a raw material of cement, and
the LSSP used in this study is an admixture for mixing with cement to reduce cement use. LSSP has
the same composition as that of limestone powder and can be replaced with cement as an admixture
material. The shape and particle size of limestone powder are relatively good compared to those of
cement particles. Replacing a portion of cement with limestone powder improves the fluidity of the
mortar [16,17]. It has been reported that it also contributes to quality enhancements such as improved
resistance to material separation and enhanced strength, owing to the pore-filling effect. Studies have
suggested that limestone powder accelerates the hydration of alite in cement. However, calcium
carbonate, which is a major component of limestone powder, is mostly non-hydrated and, thus, it is
possible that the initial strength can be lowered when a substantial amount of LSSP is used [16–21].

Similarly, using fly ash and blast furnace slag, which are mixed materials used to improve the
performance of cement, may delay the hydration of cement and lower its initial strength. To induce
initial hydration early, researchers have used strengthening agents such as compounds containing
carboxyl groups, lithium compounds, and calcium nitrate [22–29]. Waste acetic acid, a byproduct
of liquid crystal display (LCD) surface etching processes, has a low concentration and is restricted
to reuse in industry. The calcium acetate produced by the reaction of calcium salts with acetic acid
can promote the hydration of cement owing to the carboxyl groups of this acid. Calcium acetate
also improves the initial strength and reduces internal voids. Hence, modification of the surfaces of
limestone powders using acetic acid can improve the early strength properties of these powders when
they are used as admixtures for cement.

Therefore, in this study, an admixture material was developed by modifying LSSP using acetic
acid to form reactive limestone powders to enhance the performance of cement mortar. The properties
of the samples were investigated in terms of mortar setting time and compressive strength. They
were also analyzed using X-ray diffraction (XRD), thermogravimetric/differential thermal analysis
(TG-DTA), and scanning electron microscopy (SEM).

2. Materials and Methods

2.1. Materials

Table 1 shows the chemical properties of the binders used in the experiments. The cement used
was an ordinary type 1 Portland cement (OPC). Chemical analysis of LSSP showed that the CaO and
MgO contents were 51.5% and 1.60%, respectively. This corresponds to about 90% of CaCO3, which
corresponds to high-grade limestone, and is similar in chemical properties to reagent-grade CaCO3.
Recycled acetic acid (RAA) was obtained after being extracted from the separation process of acids
used in etching processes. For this study, RAA with 60% solid content was used. Figure 1 shows the
Fourier transform infrared (FT-IR) spectroscopy results for the RAA. Organic acids are denoted by the
peaks in the range of 3300–2500 cm−1, where carboxylic groups are traditionally located. C=O groups
(1760–1690 cm−1) and C–O groups (1320–1210 cm−1) are also present in this spectrum. Some examples
of carboxylic acids are acetic acid, formic acid, glucosan, and propionic acid. The functional group of
the RAA used for this study was confirmed to be carboxylic acid.

Table 1. Chemical composition of the ordinary type 1 Portland cement (OPC), CaCO3, and limestone
sludge powder (LSSP) (%).

CaO SiO2 MgO Al2O3 SO3 Fe2O3 K2O Na2O LOI

OPC 63.35 21.09 3.32 4.34 3.09 2.39 1.13 0.29 1.0

CaCO3 52.53 1.18 2.47 0.47 0.02 0.43 0.13 0 42.77

LSSP 53.16 3.96 1.09 2.13 0.08 1.4 0.46 0.05 37.7
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Figure 1. Fourier transform infrared (FT-IR) spectrum of recycled acetic acid (RAA). 
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Figure 2 shows the surface modification process of the LSS. A 10% aqueous solution was made 
using RAA with 60% solid content; then, 1 kg of the aqueous solution was mixed with 100 g of LSS 
and the mixture was kneaded for about 10 min. The modified calcium carbonate was collected 
through a filter. The reaction with acetic acid on the surface of the LSS is as follows: 

2CH3COOH + CaCO3 = Ca (CH3COO)2 + H2O + CO2 (1) 

 
Figure 2. Flow diagram for the modified calcium carbonate. 

Table 2 shows the mixing proportions of samples, where OPC was substituted by conventional 
and modified LSSP. The specimens for evaluating the characteristics of the cement mortar were 
prepared by mixing the mortar and placing it into a beam-shaped mold with dimensions of 40 × 40 × 
160 mm3. The prepared specimens were cured for 18 h at room temperature and demolded for 
underwater curing. The compressive strength was then measured after different curing times: 18 h, 
1 day, 3 days, 7 days, and 28 days, according to ISO 679 [30]. The mortar fluidity was measured 
according to ASTM C 1437. The mortar setting time was measured according to the initial and final 
setting time specified in ASTM C 191, and the mortar compressive strength was measured according 
to ASTM C 109. 

The age of the sample for analysis is 28 days, and immersed in acetone for 24 hours to stop 
hydration of individual samples. The water was then removed in a 60 °C dryer. Sample preparation 
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Figure 1. Fourier transform infrared (FT-IR) spectrum of recycled acetic acid (RAA).

2.2. Methods

Figure 2 shows the surface modification process of the LSS. A 10% aqueous solution was made
using RAA with 60% solid content; then, 1 kg of the aqueous solution was mixed with 100 g of LSS and
the mixture was kneaded for about 10 min. The modified calcium carbonate was collected through a
filter. The reaction with acetic acid on the surface of the LSS is as follows:

2CH3COOH + CaCO3 = Ca (CH3COO)2 + H2O + CO2 (1)
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Figure 2. Flow diagram for the modified calcium carbonate.

Table 2 shows the mixing proportions of samples, where OPC was substituted by conventional and
modified LSSP. The specimens for evaluating the characteristics of the cement mortar were prepared
by mixing the mortar and placing it into a beam-shaped mold with dimensions of 40 × 40 × 160 mm3.
The prepared specimens were cured for 18 h at room temperature and demolded for underwater
curing. The compressive strength was then measured after different curing times: 18 h, 1 day, 3 days,
7 days, and 28 days, according to ISO 679 [30]. The mortar fluidity was measured according to ASTM
C 1437. The mortar setting time was measured according to the initial and final setting time specified
in ASTM C 191, and the mortar compressive strength was measured according to ASTM C 109.



Sustainability 2019, 11, 879 4 of 10

Table 2. Mixing proportions (unit: g).

Sample OPC (Ordinary
Portland Cement)

LSSP (Limestone
Sludge Powder)

Modified
LSSP Silica sand Water

OPC 1000 - -

2000 340

OPC-L5 950 50
OPC-L10 900 100
OPC-L15 850 150
OPC-L20 800 200
OPC-ML5 950 50

OPC-ML10 900 100
OPC-ML15 850 150
OPC-ML 20 800 200

The age of the sample for analysis is 28 days, and immersed in acetone for 24 hours to stop
hydration of individual samples. The water was then removed in a 60 ◦C dryer. Sample preparation for
each analysis is as follows. SEM samples were made of flake samples with a width of 0.5 cm × 0.5 cm
and a thickness of 5 mm or less. TGA and XRD analysis specimens were prepared with paste, without
aggregates, to suppress noise of sample. After grinding to below 100 microns at 28 days of age, it was
immersed in an acetone solution and dried using a vacuum distillation apparatus.

3. Results and Discussion

3.1. Characteristics of Modified LSSP

Figure 3 shows the SEM images of the surfaces of conventional and modified LSSP. On the
surface of the modified LSSP, calcium acetate crystals with relatively large grain sizes can be seen.
This is because the calcium carbonate in powder form was dissolved by acetic acid. The pyrolysis
characteristics of conventional LSSP showed a rapid weight loss of approximately 84% between
700 ◦C and 800 ◦C, as shown in Figure 4. The pyrolysis of the byproducts showed a heating curve
with a weight loss of approximately 1.476% at around 350 ◦C and 59% between 700 ◦C and 800 ◦C.
The modified LSSP showed about 30% weight loss at 800 ◦C. The result of the particle size distribution
measurement of the LSS showed an average particle size of 18.5 µm. In the case of the modified LSSP,
the average particle size was 17.2 µm.
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3.2. Mortar Application Characteristics

3.2.1. Setting Time

Figure 5 shows the measured setting time of mortar mixed with conventional and modified LSSP.
The use of conventional LSSP showed no noticeable difference in both the initial and the final setting
time. In the case of the modified LSSP, however, the initial setting time decreased as the substitution
ratio increased. The final setting time decreased by up to 10%, but increased for LSSP content above
15%. It is possible that the initial setting time decreased owing to hydration reactions induced by
calcium acetate on the surface of the modified LSSP; however, the presence of excessive organic calcium
for higher contents of LSSP caused the increase in values of the final setting time. Acetic acid, used for
LSS modification, has been reported to increase the conductivity in the initial cement paste, thereby
increasing the ionic concentration of Ca2+ and Al (OH)4

−. However, an excessive amount of acetic
acid may cause hydration delay with increasing adsorption amount on the surface of cement paste
particles [31].
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Figure 5. Setting time of cement mortar: (a) Mortar using conventional LSSP; (b) Mortar using
modified LSSP.

3.2.2. Compressive Strength

Figure 6a shows the compressive strength of the cement mortar according to the substitution
ratio of conventional LSSP for different curing times. Overall, the compressive strength of the mortar
was not significantly different from that of OPC, even when the replacement ratio of conventional
LSSP increased at all curing ages. Figure 6b shows the graph of the compressive strength according
to the substitution ratio of the modified LSSP. Substitution with the modified LSSP produced lower
initial compressive strength than that of OPC for all specimens. After 1 day of aging, the substitution



Sustainability 2019, 11, 879 6 of 10

proportions of 5% and 10% modified LSSP showed higher strength than that of OPC. After 28 days of
aging, the 5% substitution resulted in strength superior to that of OPC. We believe that the introduction
of modified LSSP into the space between cement particles improved pore filling and induced hydration
reactions around the unreactive calcium carbonate particles, thereby increasing the strength. At a
replacement rate of up to 15%, the mortar using LSSP and modified LSSP showed a performance equal
to or higher than that of the mortar using OPC.
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Figure 6. Compressive strength of cement mortar: (a) mortar using conventional LSSP and (b) mortar
using modified LSSP.

It has been reported that the rheological properties are improved when limestone powder is
replaced with cement. In addition, limestone powder is reported to be effective in reducing hydration
heat and in increasing the initial strength. However, it is expected that both the long-term strength and
the chlorine ion penetration resistance are decreased [32]. When the modified LSSP was replaced with
cement at up to 10% of the cement weight, the initial (up to 3 days of aging) strength was low. On the
other hand, the compressive strength of the mortar was as good as that of OPC after 28 days of aging,
and a 5% substitution showed higher strength than those of OPC and conventional LSSP.

3.3. X-ray Diffraction Analysis

Figure 7 shows the results of the XRD analysis according to the cement substitution ratios of the
conventional and modified LSSP after curing for 28 days. For the substitution with the conventional
LSSP, the XRD analysis showed that the peak of calcium carbonate gradually increased and that the
peak of calcium hydroxide decreased. This phenomenon has also been shown to reduce peak of
ettringite and C–S–H. This might have been the cause of the initial strength reduction in the case of
substitution with the conventional LSSP. In this case, however, it is believed that high-density filling
by calcium carbonate increased the strength, and that the initial strength reduction was not significant.
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Figure 7. X-ray diffraction (XRD) patterns of samples with different contents: (a) conventional LSSP
and (b) modified LSSP.
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3.4. Thermogravimetric/Differential Thermal Analysis

Calcium carbonate, which is a major component of limestone powder, is mostly non-hydrated,
and, thus, it is possible that the initial strength can be lowered when a substantial amount of LSSP
is used. Figures 8 and 9 show the results of the TG-DTAs for different contents of conventional
and modified LSSP, respectively. The temperature range of the cured specimens were measured at
a maximum temperature of 900 ◦C. In Figure 8, comparison of the dehydration amounts at 450 ◦C
shows that the amount of calcium hydroxide decreased with increasing LSSP content. In the case
of the modified LSSP, Figure 9 shows that the reduction in the amount of calcium hydroxide was
not significant, even when the substitution ratio increased. This suggests that the calcium acetate
component on the surface of the modified LSSP was absorbed by tricalcium aluminate (C3A) and
converted into calcium hydroxide, thereby fixing the internal amount of calcium hydroxide. Calcium
chloride and calcium nitrate are known to produce calcium aluminate hydrate combined with anion
through hydration reaction with C3A in cement and to release calcium ions. When anions substitute
OH− in the cement to produce hydrates, the order of anions affecting the hydration of cement is OH−

< Cl− < NO3
− < Br− < acetate. Acetate ions are expected to produce hydrates of C3A and to produce

calcium hydroxide. The amount of calcium hydroxide determined by TGA is shown in Table 3 [33–35].
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Figure 8. TG-DTA results for samples cured for 28 days: (a) OPC, (b) OPC with 5% conventional LSSP, 
and (c) OPC with 10% conventional LSSP. 

Figure 8. TG-DTA results for samples cured for 28 days: (a) OPC, (b) OPC with 5% conventional LSSP,
and (c) OPC with 10% conventional LSSP.

Table 3. Quantification of the calcium hydroxide (28 days).

Sample OPC (Plain) OPC-L5 OPC-L10 OPC-ML5 OPC-ML10

Ca(OH)2 Weight
content (%) 2.33 1.01 0.985 1.771 1.876
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3.5. Scanning Electron Microscopy Analysis

Figure 10 shows the SEM images of samples with 5% substitution of conventional and modified
LSSP, respectively. When reagent-grade calcium carbonate was mixed, it was observed that the
calcium carbonate was held between the hydrates. Hydrates, such as ettringite, were formed on the
surface, which enabled compact filling through physical filling and induced hydrate formation in the
cement mortar.
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4. Conclusions

The conclusions of this study can be summarized as follows.
Limestone powder is used as a raw material or admixture of cement. In this study, various

properties of limestone sludge powder (LSSP) were evaluated by using recycled acetic acid (RAA),
which is one of the industrial byproducts, as a cement admixture after surface modification of LSSP.

The surface of LSSP modified with RAA was converted into calcium acetate and had a large grain
size. Calcium acetate has effects on mortar properties. The setting time of mortars with conventional
LSSP was independent of the mixing ratios and was equal to that of ordinary type 1 Portland cement
(OPC), whereas the initial compressive strength slightly increased. When conventional LSSP is used as
a cement admixture material, it is possible that physical performance may deteriorate in the long term.
Nevertheless, the use of modified LSSP with RAA can promote and continuously induce hydration in
the long term, thereby improving the performance of the cement mortar. When the modified LSSP
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was replaced with cement up to 10% of the cement weight, the initial (up to 3 days of aging) strength
was low. On the other hand, the compressive strength of mortar was as good as that of OPC after
28 days of aging, and 5% substitution showed higher strength than those of OPC and conventional
LSSP. Therefore, the use of cement admixture through modification of LSSP using RAA in this study is
expected to be useful as a sustainable construction material.
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