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Abstract: This paper focuses on analytics of an extremely large dataset of smart grid electricity price
and load, which is difficult to process with conventional computational models. These data are known
as energy big data. The analysis of big data divulges the deeper insights that help experts in the
improvement of smart grid’s (SG) operations. Processing and extracting of meaningful information
from data is a challenging task. Electricity load and price are the most influential factors in the
electricity market. For improving reliability, control and management of electricity market operations,
an exact estimate of the day ahead load is a substantial requirement. Energy market trade is based
on price. Accurate price forecast enables energy market participants to make effective and most
profitable bidding strategies. This paper proposes a deep learning-based model for the forecast of
price and demand for big data using Deep Long Short-Term Memory (DLSTM). Due to the adaptive
and automatic feature learning mechanism of Deep Neural Network (DNN), the processing of big
data is easier with LSTM as compared to the purely data-driven methods. The proposed model
was evaluated using well-known real electricity markets’ data. In this study, day and week ahead
forecasting experiments were conducted for all months. Forecast performance was assessed using
Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE). The proposed Deep
LSTM (DLSTM) method was compared to traditional Artificial Neural Network (ANN) time series
forecasting methods, i.e., Nonlinear Autoregressive network with Exogenous variables (NARX) and
Extreme Learning Machine (ELM). DLSTM outperformed the compared forecasting methods in terms
of accuracy. Experimental results prove the efficiency of the proposed method for electricity price
and load forecasting.

Keywords: smart grid; big data; electricity load; price forecasting; Long Short-Term Memory LSTM

1. Introduction

The Smart Grid (SG) is the modern and intelligent power grid that efficiently manages the
generation, distribution and consumption of electricity. SG introduced communication, sensing and
control technologies in power grids. It facilitates consumers in an economical, reliable, sustainable
and secure manner. Consumers can manage their energy demand in an economical fashion based
on Demand Side Management (DSM) [1]. The DSM program allows customers to manage their load
demand according to the price variations. It offers energy consumers for load shifting and energy
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preservation in order to reduce the cost of power consumption. Smart grid establishes an interactive
environment between energy consumers and utility. Customers partake in smart grid operations
to reduce the price by load shifting and energy preservation.

Competitive electricity markets benefit from load and price forecast. Several important operating
decisions are based on load forecasts, such as power generation scheduling, demand supply
management, maintenance planning and reliability analysis [2].

Price forecast is crucial to energy market participants for bidding strategies formulation, assets
allocation, risk assessment and facility investment planning. Effective bidding strategies help market
participants in maximizing profit. Utility maximization is the ultimate goal of both power producers
and consumers. With the help of a robust and exact price estimate, power producers can maximize
profit and consumers can minimize the cost of their purchased electricity [3]. The necessity of efficient
generation and consumption is another crucial issue in the energy sector. Most of the generated
electricity cannot be stored, therefore, a perfect equilibrium is necessary to be maintained between the
generated and consumed electricity. Therefore, an accurate forecast of both electricity load and price
holds a great importance in market operations management.

ISO NE (Independent System Operator, New England) is a Regional Transmission Organization
(RTO), coordinated by an ISO. It is responsible for management of the wholesale energy markets
operations and power trade auctions. ISO NE provides energy to six states of New England including
Connecticut, Maine, Massachusetts, New Hampshire, Rhodes Island and Vermont. In this study,
analytics were performed on a large dataset of ISO NE and NYISO. Electricity price and load exhibit
certain characteristics. Electricity load and price have a relationship of direct proportionality [4].
However, some unexpected variations are observed in the price data. There are various reasons for
these unexpected changes in price pattern. In reality, the price is not only affected by the change in
load. Several different parameters influence the energy price: fuel price, availability of inexpensive
generation sources (e.g., photovoltaic generation, windmill generation, etc.), weather conditions, etc.

In this study, analyses were performed on a large amount of electricity data referred to as energy
big data. Big data are defined as datasets with extremely huge volume and complexity that are not
possible to process with traditional data mining techniques [5].

Big data have a few major characteristics referred to as 4 Vs of big data.

• Volume: The major characteristic that makes data big is their huge volume. Terabytes (1012 bytes)
and exabytes (1018 bytes) of smart meter measurements are recorded daily. Approximately
220 million smart meter measurements are recorded daily, in a large-sized smart grid.

• Velocity: The frequency of recorded data is very high. Smart meter measurements are recorded
with the time resolution of seconds. It is a continuous streaming process.

• Variety: The SG’s acquired data have different structures. The sensor data, smart meter data and
communication module data are different in format. Both structured and unstructured data are
captured. Unstructured data are standardized to make it meaningful and useful.

• Veracity: The trustworthiness and authenticity of data are referred to as veracity. The recorded data
sometimes contain noisy or false readings. The malfunctioning of sensors and noisy transmission
medium are reasons for false measurements.

In addition to the 4 Vs of big data, energy big data exhibit a few more characteristics: (i) data as
an energy: big data analytics should cause energy savings; (ii) data as an exchange: energy big data
should be exchanged and integrated with other sources of big data to identify its value; and (iii) data
as an empathy: data analytics should help improve the service quality of energy utilities [6].

Big data analytics enable identification of hidden patterns, consumer preferences, market trends,
and other valuable information that helps utility company to make strategic business decisions.
The size of real-world historical data of smart grid is very large [7]. The authors surveyed smart grid
big data in great detail in [8]. This large volume of data enables energy utilities to make novel analysis



Sustainability 2019, 11, 987 3 of 29

leading to major improvements in the market operation’s planning and management. Utilities can have
a better understanding of customer behavior, demand, consumption, power failures, downtimes, etc.

Various techniques are used for load and price forecasting. With increasing size of input data,
the training of conventional forecasting methods become very difficult. Big data are difficult to handle
by classifier models due to their high time and space complexity. On the other hand, deep learning
methods work well on big data, because they divide training data into mini batches and train the
whole data batch by batch. Artificial Neural Network (ANN) has the excellent abilities of nonlinear
approximation and self-learning, which make it the most suitable method for electricity price and load
forecasting.

Deep Neural Networks (DNN) have higher computation power compared to Shallow ANN
(SANN). Therefore, DNN is capable of automatically extracting the complex data representations with
good accuracy. The main objective of this paper is to propose an accurate forecast model that can take
advantage of a large amount of data.

This research study is the extension of a previous article [9]. In [9], short-term forecasting of load
and price is proposed on aggregated data of ISO NE. In this article, the short-term and medium-term
forecasting is performed using both aggregated data of ISO NE and data of one city (New York City
(from NYISO)), respectively. The contributions of this research work are listed below:

• Predictive analytics are performed on electricity load and price of big data.
• Graphical and statistical analyses of data are performed.
• A deep learning based method is proposed named DLSTM, which uses LSTM to predict and

update state method to predict electricity load and price accurately.
• Short-term and medium-term load and price are predicted accurately on well-known real

electricity data of ISONE and NYISO.

The forecast error comparisons of the proposed model with a Nonlinear Autoregressive network
with exogenous variables (NARX) and Extreme Learning Machine (ELM) are also added.

The terms load, consumption and demand are used interchangeably throughout this article.
The terms electricity, power and energy are also used in the same context.

The rest of the paper is organized as follows. Related work is given in Section 2. The motivation of
this work is discussed in Section 3. Section 4 includes details about the proposed scheme. The results
and discussion are presented in Section 5. Section 6 concludes the article.

2. Related Work

The imbalance ratio between energy demand and supply cause energy scarcity. To reduce the
scarcity and utilize energy efficiently, DSM and Supply Side Management (SSM) techniques are
proposed. Mostly, researchers focus on appliance scheduling to reduce the load on utility and balance
supply and load. However, with the appliance scheduling, the user comfort is compromised [10,11].
Therefore, Short-Term Load Forecasting (STLF) is important. STLF enables the utility to generate
sufficient electricity to meet the demand.

Several forecasting methods are available in the literature, from classic statistical to modern
machine learning methods.

Generally, forecasting models can be categorized into three major categories: classical, artificial
intelligence and data-driven [12]. Classical methods are the statistical and mathematical methods,
such as Auto-Regressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), Naive
Bayes, Random Forest, etc. Artificial intelligence methods are ANN, Particle Swarm Optimization
(PSO), etc. Classifier-based approaches are widely used for forecasting, such as SWA (Sperm Whale
Algorithm) + LSSVM (Least Square Support Vector Machine) [13], SVM + PSO [14–16], empirical mode
decomposition + Support Vector Regressor (SVR) [17], FWPT (Flexible Wavelet Packet Transform),
TVABC (Time-Varying Artificial Bee Colony), LSSVM (FWPT + LSSVM + TVABC) [18], LSSVR + fruit
fly algorithm [19], phase space reconstruction + bi-square kernel regression [20] and DE (Differential
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Evaluation) + SVM [21]. Although the aforementioned methods show reasonable results in load or
price forecasting, they are computationally complex.

The existing forecasting methods mostly forecast only load or price. A forecasting method that can
accurately forecast both load and price together is greatly required. Conventional forecasting methods
in the literature have to extract most relevant features with great effort [13,14,18,21] before forecasting.
For feature extraction, correlation analysis or other feature selection techniques are used. Whereas
ANNs have an advantage over other methods that they automatically extract features from data and
learn complex and meaningful pattern efficiently, SANN [22–24] tends to over-fit. The optimization is
required for improving forecast accuracy of SANN.

A hybrid framework is proposed in [21] to forecast price. Big data analytics are performed in
this work. Correlated features are selected using Gray Correlation Analysis (GCA). Most relevant
features are selected through a hybrid feature selector that is a combination of Random Forest and
ReliefF. Dimensionality reduction of selected features is performed using kernel Principal Component
Analysis (PCA). After feature extraction, a forecasting model is trained using kernel SVM. SVM is
optimized by modified DE algorithm. Mutation operation of DE is modified. The scaling factor of
mutation is dynamically adjusted on every iteration of DE. Modified DE accelerates the optimization
process. Although this framework results in acceptable accuracy in the price forecasting, price and
load are not forecasted simultaneously. The bidirectional relation of price and load is not analyzed on
the energy big data.

Recently, Deep Neural Networks (DNNs) have shown promising results in forecasting of electricity
load [25–30] and price [31–33]. In [25], the authors used Restricted Boltzman Machine (RBM) with
pre-training and Rectified Linear Unit (ReLU) to forecast day and week ahead load. RBM results
in accurate forecast compared to ReLU. Deep Auto Encoders (DAE) are implemented in [26] for
prediction of building’s cooling load. DAE is unsupervised learning method. It learns the pattern
of data very well and predicts with greater accuracy. The authors of [27] implemented Gated
Recurrent Units (GRU) for price forecasting that is a type of Recurrent Neural Networks (RNN).
GRU outperforms Long Short-Term Memory (LSTM) and several statistical time series forecasting
models. The authors of [28] proposed a hybrid model for price forecasting. Two deep learning methods
are combined, i.e., Convolution Neural Networks (CNN) are used for useful feature’s extraction and
LSTM forecasting model is learned on features extracted by CNN. This hybrid model performs better
than both CNN and LSTM separately. This model outperforms several state-of-the-art forecasting
models. The good performance of the aforementioned DNN models proves the effectiveness of deep
learning in forecasting. A brief description of related work is listed in Table 1.

In smart grid, big data analysis helps in finding the trend of electricity consumption [25–30]
and price [31–33]. This further enables the utility to design predictive demand supply maintenance
programs. Demand–supply maintenance programs ensure the demand–supply balance. Smart grid
big data are studied for: power system anomaly detection [34], optimal placement of computing units
for communicating data to smart grid [35], price forecasting [21] and consumption forecasting [36–38].

The aforementioned methods show reasonable results in load or price forecasting; however, most
of these methods do not consider the forecasting of both load and price. The classifier based forecasting
methods require extensive feature engineering and model optimization, resulting in high complexity.
Deep learning is an effective technique for big data analytics [39]. With the high computation power
and ability to model huge data, DNN gives the deeper insights into data. In [39], the authors performed
a comprehensive and detailed survey on the importance of deep learning techniques in the area of big
data analytics. For analytics of smart grid’s big data, DNN is a very effective technique. Dataset used
in this article is publicly available at [40,41].
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Table 1. Related work of load and price forecasting.

Task Forecast Horizon Platform/Testbed Dataset Algorithms

Load forecasting [13] Short-term Hourly data of 6 states
OF USA NYISO 2015 DWT-IR, SVM, Sperm

whale algorithm

Load forecasting [14] Short-term Hourly price of PJM PJM, 2016–2017 Weighted voting
mechanism

Load and price
forecasting [18] Short-term Hourly data New

South Wales, New York
NYISO, PJM, AEMO, 2012,
2014, 2010

FWPT, NLSSVM,
ARIMA, ABC

Price forecasting [21] Short-term Hourly data of 6 states
of USA ISO NE, 2010–2015 GCA, Random forest,

ReliefF, DE-SVM

Load forecasting [22] Short-term
Electricity market of
three USA grids: FE,
DAYTOWN, and EKPC

PJM Modified Mutual
Information (MI), ANN

Price forecasting [23] Short-term Ontario electricity
market AEMO, 2014 ELM based improved

WNN

Load forecasting [24] Short-term Electricity market data
of 3 USA grids PJM, 2014 Modified MI, ANN

Load forecasting [25] Short-term
Half hour cooling
consumption data of a
educational building

Hong Kong, 2015 Deep auto-encoders

Load forecasting [26] Short-term Korea Korea Electric Power
Company, 2012–2014 DNN, RBM, ReLU

Load forecasting [27] Short-term
Hourly load and
weather data of four
regions

Los Angeles, California,
Florida and New York City,
July 2015–August 2016

Stacked de-noising
auto-encoder, SVR

Load forecasting [28] Short-term 15 min consumption
data

Single user high
consumption data from
Foshan, Guangdong
province of China,
March–May 2016

Trend index,
auto-encoder

Load forecasting [29] Short-term Ireland consumption Load profiles database of
Ireland Pooling deep RNN

Load forecasting [30] Medium-term France Half hourly metropolitan
electricity load, 2008–2016 LSTM, GA

Price forecasting [31] Medium-term

Hourly load of 5 hubs
of Midcontinent
Independent System
Operator (MISO)

MISO USA, 2012–2014 Stacked de-noising
autoencoder

Price forecasting [32] Short-term
Hourly Turkish
day-ahead electricity
market

Turkey, 2013–2016 Gated recurrent
network

Price forecasting [33] Short-term
Half hour regulation
market capacity
clearing price

Electric power markets
(PJM), 2017 CNN, LSTM

Load forecasting [36] Short-term Eight buildings of a
public university

15 min consumption,
2011–2017

K-means clustering,
Davies–Bouldin
distance function

Consumption and
peak demand
forecasting [37]

Medium-term Entertainment venues
of Ontario

Daily, hourly and 15 min
energy consumption,
2012–2014

ANN, SVR

Demand
forecasting [38] Short-term 21 zones of USA

Temperature, humidity and
consumption data,
2004–2007

Recency effect model
without computational
constraints
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3. Motivation

After reviewing existing forecasting methods in the literature, the following are the motivations
of this work:

• Big data are not taken into consideration by learning based electricity load and price forecasting
methods. Evaluation of performance is only conducted on the price data small data, which
reduced the forecasting accuracy.

• Intelligent data-driven models such as fuzzy inference, ANN and Wavelet Transform WT + SVM
have limited generalization capability, therefore these methods have an over-fitting problem.

• The nonlinear and protean pattern of electricity price is very difficult to forecast with traditional
data. Using big data makes it possible to generalize complex patterns of price and forecasts accurately.

• Automatic feature extraction process of deep learning can efficiently extract useful and rich
hidden patterns in data.

4. Proposed Model

Before describing the proposed forecasting model, the utilized method is introduced. In this
section, the method used in the proposed model is discussed in detail.

4.1. Artificial Neural Network

ANN is inspired by the biological neural behavior of the brain. It is the computational modeling
of natural neural network’s learning activity. ANN architectures are classified as Feed Forward
Neural Networks (FFNN) and feedback or Back Propagation Neural Networks (BPNN) networks.
Rosenblatt et al. [42] introduced first ANN Multi-Layer Perceptron (MLP) in 1961 (as shown in
Figure 1).

y(t) = f (
n

∑
i=1

xi(t)wi(t) + bi(t) ) (1)

where xi(t) is the input vector, wi(t) is its corresponding weight, bi(t) is the bias, f () is the activation
function and n is the total number of input vectors. The network learns by updating the weights.
The weights are updated by back propagating the error E. The error E is the squared difference
between the network output y(t) and desired output ý(t). Gradient descent algorithm delta rule is
used for updating weights:

E = || ý(t) − y(t) ||2 (2)

wi(t + 1) = wi(t) −
α∂E

∂wi(t)
(3)

bi(t + 1) = bi(t) −
α∂E

∂bi(t)
(4)

where wi(t + 1) is the updated weight, α is the learning rate and bi(t + 1) is the updated bias.

4.2. ANN for Time Series Forecasting

ANN can be categorized into two major categories: shallow neural network and deep neural
network. A SANN is simple and consists of fewer hidden layers than DNN. Deep networks have more
computational power. They have better performance in fitting nonlinear functions and modeling data,
with fewer parameters. They use sophisticated mathematical modeling to process data in complex
ways, hence grasp underlying hidden pattern from data very well. Forecasting models built using
ANN can be univariate models that take time series as input and multivariate models that take
multiple features as input. This work focuses on the ANN forecasting models for time series data.
The most widely used ANN time series forecasting models are Jordan network, Elman network, NARX,
ELM and Long Short-Term Memory (LSTM). LSTM is a deep learning approach, whereas the other
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mentioned approaches belong to the SANN category. In this study, the forecasting performance of
ELM and NARX were compared with proposed Deep LSTM (DLSTM). The used methodology is
briefly explained in this section.
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Figure 1. Backpropagation artificial neural network with gradient descent weight updating.

4.3. Long Short Term Memory

LSTM is a deep learning method that is a variant of RNN. It was first introduced by Hochreiter et al.
in 1997 [43]. The basic purpose of proposing LSTM was to avoid the problem of vanishing gradient
(using gradient descent algorithm), which occurs while training of back propagation neural network
(as shown in Figure 1). The vanishing gradient leads to overfitting of the network on training data.
The overfitting is the memorizing of inputs and not learning. An overfitted model is not generalized
to perform well on unseen or test data. In LSTM, every neuron of the hidden layer is a memory cell,
which contains a self-connected recurrent edge. This edge has a weight of 1, which makes the gradient
pass across may steps without exploding or vanishing. The structure of on LSTM unit is shown in
Figure 2.

LSTM consists of five basic units: memory block, memory cells, input gate, output gate and forget
gate. All three gates are multiplicative and adaptive. These gates are shared with all the cells in the
block. The memory cells have recurrent self-connected linear units known as Constant Error Carousel
(CEC). The error and activation signals are recirculated by CEC, which makes it act as a short-term
storage unit. The input, output and forget gates are trained to decide which information should be
stored in memory, for what time period and when to read the information. The flow of a new input
into the cell is controlled by input cell. The output cell decides: (i) the time extension for value in the
cell to be used in output activation of LSTM unit and the forget gate; (ii) the memorizing period of
memory cell’s value; and (iii) the forgetting time of the memory cell’s value. LSTM updates all the
units in the time steps t = 0, 1, 2, . . . n, and compute the error signals for all the weights. The operation
of units is referred to as the forward pass and error signal computation is known as a backward pass.
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Figure 2. Architecture of one unit of LSTM [44].

4.3.1. Forward Pass

The equations below represent the forward pass operations of the LSTM. j denotes the memory
blocks. v is used for memory cells in a block j (that contains Sj cells). cv

j is the vth cell of the jth memory
block. wlm is the connection weight between units m and l. The value of m ranges over all the source
units. When the activation of source unit ym(t−1) is referring to the input unit, the recent external
input ym(t) is used. The calculation of yc output of c memory cell is based on the state of recent cell sc

as well as the four sources of input: cell’s itself input zc, input gate’s input zin, forget gate’s input zϕ

and output gate’s input zout.
Input: The net cell input is calculated for every forward pass as follows:

zcv
j
(t) = ∑

m
wcv

j m ym(t−1) (5)

After calculating the net input, the input squashing or transformation function g is applied to it.
Sigmoid function fin is applied to calculate the value of memory block input gate’s activation.

fin is applied on the input of gate zin:

yinj(t) = finj(zinj(t)) (6)

zinj(t) = ∑
m

winjm ym(t−1). (7)

A product of zin and zcv
j
(t) is calculated. The input gate’s activation value yin is multiplied by all

of the cells in the memory block to determine the activity patterns to be stored into memory. In training
process, input gate learns to store the significant information in the memory block, by opening (yin ≈ 1.
It also learns to block out the irrelevant inputs by closing (yin ≈ 0).
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Cell State: Initially, the activation or state sc of a memory cell c is set to zero. During training,
the CEC accumulates a sum of values, left by the forget gate. Memory block’s forget gate activation is
calculated as:

yϕj(t) = fϕj(zϕj(t)) (8)

zϕj(t) = ∑
m

wϕjm ym(t−1) (9)

where fϕ denotes the logistic sigmoid function of range [0, 1]. The new cell state is calculated by
addition of gated cell’s input with the product of forget gate activation and previous state:

scv
j
(t) = yϕj(t) scv

j
(t−1) + yinj(t) g(zcv

j
(t)) , scv

j
(0) = 0 . (10)

While the forget gate is open (yϕ ≈ 1), the value keeps circulating in the CEC unit. When the
input gate is learning to store in the memory, the forget gate is also learning the time duration of
restraining an information. Once the information is outdated, the forget gate erases it and resets the
memory cell’s state to zero, thus preventing the cell state to approach infinity and enabling it to store
the fresh data without the interference of previous operations.

Output: The output of cell yc is calculated multiplying the cell state sc with the activation yout of
the output gate of a memory cell:

ycv
j
(t) = youtj(t) scv

j
(t) . (11)

The forward pass operations of the LSTM are explained with the help of the aforementioned
equations. The backward pass is explained in the next section.

4.3.2. Backward Pass

The objective function E is minimized by gradient descent function and weights wlm are updated.
The weights are updated by an amount ∆wlm given by the learning rate α times the negative gradient
of E. The weights of the output unit are updated by the standard back-propagation method:

∆wkm(t) = α δk(t) ym(t−1) (12)

δk(t) = −
∂E(t)
∂zk(t)

(13)

Based on the targets tk, squared error objective function is used:

δk(t) = f ′k(zk(t)) ek(t) , (14)

where ek(t) = tk(t) − yk(t) is the externally injected error. The weight changes for connections
to the output gate (of the jth memory block) from source units m are also obtained by standard
back-propagation:

∆woutjm(t) = α δoutj(t) ym(t) (15)

The internal state error is represented by escv
j
. It is calculated for every memory cell:

escv
j
(t) = youtj(t)

(
∑
k

wkcv
j

δk(t)

)
. (16)

The aforementioned equations describe the forward pass, backward pass and learning process of
a single LSTM unit. Several LSTM units are connected together in a series to form the LSTM network.
The output of one unit becomes the input of the next unit.
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4.3.3. Deep LSTM

The functionality of traditional LSTM is explained in the previous section. In this section,
the working of the proposed algorithm DLSTM is discussed in detail. The proposed method comprises
of four main parts: preprocessing of data, training LSTM network, validation of network, forecasting
load and price on test data. The system model is shown in Figure 3.

Normalization

Training data 

preparation

Predicted Load and Price

Electricity Market
Historic Load and 

Price Data
Preprocessing

Forecast Engine

.

.

.

.

.

.

Hourly 
Price / 
Hourly 
Load

.

.

.

.

.

.

Load 
/

Price

.

.

.

.

.

.

.

.

.

Figure 3. Proposed system model.

The steps in the proposed model are listed as follows:

• Step 1: The historical price and load vectors are p and l, respectively, which are normalized as:

pnor =
p−mean(p)

std(p)
(17)

where pnor is vector of normalized price, mean() is the function to calculate average and std()
is the function to calculate standard deviation. This normalization is known as zero mean unit
variance normalization. Price data are split month-wise. Data are divided into three partitions:
train, validate and test.

• Step 2: Network is trained on training data and tested on validation data. NRMSE is calculated
on validation data.

• Step 3: Network is tuned and updated on actual values of validation data.
• Step 4: The upgraded network is tested on the test data where day ahead, week ahead and

month ahead prices and load are forecasted. Forecaster’s performance is evaluated by calculating
the NRMSE.

The step-by-step flowchart of the proposed method is shown in Figure 4.

4.4. Data Preprocessing

Hourly data of regulation market capacity clearing price and system load were acquired from
ISO NE and NYISO. The data of ISO NE represent eight years, i.e., from January 2011 to March 2018.
Data comprise price and load of seven complete years, i.e., 2011 to 2017. Only three months of data
are available for 2018, i.e., January to March. The data of NYISO (New York City) represent 13 years,
i.e., January 2006 to September 2018. The NYISO data comprise 12 complete years, i.e., 2006 to 2017.
For 2018, nine months of data were acquired, i.e., January to September. The data were divided
month-wise. For example, data of January 2011, January 2012, . . ., January 2018 were combined,
all twelve months data were combined in the same fashion. The DLSTM network was trained on
month-wise data. Data were partitioned into three parts: train, validation and test data.
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Figure 4. Flowchart of proposed forecasting method.

4.5. Network Training and Forecasting

Training, validation and test data were obtained by preprocessing the data. The price and load
data were fed to the DLSTM network for training.

The proposed DLSTM has five layers, i.e., an input layer, two LSTM layers, a fully connected layer
and the regression output layer. The number of hidden units in LSTM layer 1 is 250, and LSTM layer
2 is 200. The final number of hidden units were decided after experimenting on a different number
of hidden units and keeping the number of hidden units with the least forecast error. During the
training process of DLSTM, the network predicts step ahead values at every time step. The DLSTM
learns patterns of data at every time step and updates the network trained until the previous time
step. Every predicted value is made part of the whole data for the next prediction. In this manner,
the network is adaptively trained. DLSTM network is trained for price and load data separately.
The network trained on training data is the initial network. Initial network is tested on validation data.
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The initial network forecasts step ahead value on validation data. After taking forecast results from the
initial network, the NRMSE is calculated. The initial network re-learns and re-tunes on actual values
of validation data until the NRMSE reduces to a minimum. Now, the final and tuned network is used
to forecast price and load. The architecture of the proposed forecast method is shown in Figure 5.

.

.
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.

.

.

Hourly Price / 
Hourly Load

.

.

.

.

.

.

Load /
Price

Input Layer           LSTM Layer 1              LSTM Layer 2         Fully Connected Layer   Output Layer

Hidden Layers

.

.

.

250 units                      200 units                         150 units

Figure 5. Architecture of proposed method, DLSTM.

4.6. Implementation Details

The number of network layers and neurons in every layer affect the prediction accuracy.
The number of layers and the hidden units was finalized after several experiments. Increasing number
of layers increases the computational complexity and time. Layers were added one by one and accuracy
was measured. There was no significant increase in forecasting accuracy after adding three hidden
layers, as shown in Figure 6. The hidden layer is the LSTM layer, the second hidden layer is also
an LSTM layer and the third hidden layer is a fully connected layer with 250, 200 and 150 hidden
units, respectively. The output layer is a regression layer. All remaining parameters of the network
were finalized according to best accuracy. The learning rate was set to 0.001. Adam (Adaptive
Moment Estimation) optimizer algorithm is used for adaptive optimization of weights during training.
Initial momentum was set to be 0.9. The maximum number of epochs was set to be 250. The training
of network was stopped if the learning error stopped decreasing significantly or maximum epoch
was reached.

1 2 3 4 5 6

Number of Layers

2

4

6

8

10

M
A

E

Figure 6. Error drop of MAE with addition of hidden layers in DLSTM network.
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4.7. Network Stability

A neural network becomes stable when the training or testing error stops reducing after a certain
value. At this point, the weights are optimized and changes in weights are very small, therefore
the error reduction becomes negligible [45]. The learned and finely tuned weights produce accurate
forecast result. The complete data are leaned and the pattern of data are extracted well when the
network becomes stable. To achieve stability quickly, the inputs, learning rate, momentum, etc. can be
changed. The stability of the proposed network was achieved after 200 epochs, where the NRMSE
reduced to 0.08 (Figure 7). In Figure 7, the stability of the network is highlighted in a rectangle, where
the error drop almost becomes zero, showing a straight line. The error drop and epochs are shown
for both the networks: initial and fine-tuned after validation. Both networks converge or become
stable after the 200 epochs. It is clear that the minimum error of the initial un-tuned network is higher
as compared to the validated network. It verifies that the validation is beneficial in improving the
accuracy of the network.
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0.2

0.4

0.6

0.8

1

N
R

M
S

E

Un tuned Network

Tuned / Validated Network

Network has

become stable
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Figure 7. Network stability with epochs.

5. Results and Discussion

This section covers the experimental results of the proposed forecast method. In this section,
the qualitative and quantitative analysis are given for the proposed forecast method. The graphical
analyses of data and prediction results are presented in Figures 8–28.

5.1. Working of DLSTM

The DLSTM network works on the train and update state method. At a time step, the networks
learns a value of price or load time series and stores a state. On the next time step, the network learns
the next value and updates the state of previously learned network. All data are learned in the same
fashion to train the network. While testing, the last value of training data is taken as the initial input.
One value is predicted at a time step. Now, this predicted value is made the part of training data and
network is trained and updated. Every predicted value is made the part of the training data to predict
the next value. For example, if network dlstmn is learned on n values, the nth value is the input to
predict the n + 1th value. After predicting the n + 1th value, the network dlstmn+1 is now trained and
updated on n + 1 values to predict the n + 2th value. The n + 1th value is the first predicted value by
the initially learned network dlstmn. To predict m values, the network will train and update m times.
After predicting m values, the last trained and updated network dlstmn+m is trained on n + m values,
i.e., n, n + 1, n + 2 . . . , n + m− 1.
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5.2. Data Description

The historic electricity price and load data used in simulations were taken from ISO NE [41] and
NYISO [42]. ISO NE manages the generation and transmission system of New England. ISO NE
produces and transmits almost 30,000 MW electric energy daily. In ISO NE, annually 10 million dollars
of transactions are completed by 400 electricity market participants. The data comprise ISO NE control
area’s hourly system load and regulation capacity clearing price of 21 states of the USA captured in the
last eight years, i.e., January 2011 to March 2018. The data contain 63,528 measurements.

NYISO is a not-for-profit corporation that operates New York’s bulk electricity grid and administers
the state’s wholesale electricity markets. The data taken from NYISO are hourly consumption and
price of New York City. The duration of data is thirteen years, i.e., January 2006 to October 2018.
Total measurements are 112,300.

The electricity prices and load are significantly affected by seasonality. In proposed work,
inter-season prices and load variations are also handled. Data were split month-wise, which improves
the forecast accuracy. Inter-season splitting of data helps in efficient capturing of the highly varying
price trend. The electricity load exhibits a repetitive pattern over the years. On the other hand, price
pattern changes very drastically and stochastically. Both load and price increase over the years. It is
clearly shown in Figure 8 that load increase with a constant rate and trend of load profile remains
the same, whereas the price is increasing without any pattern similar to the one observed in the load
profile. Price signals have a wide range of values sudden increase in spikes. The extremely volatile
nature of energy price makes forecasting of price very difficult. The price trend is too random to handle
by any forecasting algorithm. The price pattern is shown in Figure 9. The repetitive pattern of the load
is caused by the same consumption times; the consumption hours always remain the same. There is
more consumption in working hours and less in off hours and late night. There are several reasons
behind the price’s varying patterns: (1) the amount of generation, which is inversely proportional
to electricity price; (2) the source of electricity generation, which increases the price if fuel is used
for generation and reduces the price if renewable resources are used for generation; (3) the price of
fuel used for power generation; (4) government increments in price or taxes; and (5) excessive use of
electricity penalty.

Electricity price and load are directly proportional. The relationship between electricity load and
price is shown in Figure 10. It is clearly shown in the figures that price increases with increase in load
in most cases. However, there are a few exceptional cases, where price is much higher than load.

The trends of NYISO data are presented in Figures 11–13.

5.3. Simulation Results

All simulation were performed using MATLAB R2018a on a computer system having core i3
processor. Two cases were studied. The first case was short-term forecasting (one day and one week)
using aggregated load and the average price of six states. In the second case short- and medium-term
(one month) load and price were forecasted using the data of one city, i.e., New York City. In this
section, both case studies are discussed in detail.

5.3.1. Case Study 1

First, load data were taken to train forecast model. After normalization, the load profile trend
showed a monotonous pattern (Figure 8). The load data were given for network training after
normalization. The network was trained on 325 weeks, validated on 50 weeks and tested for 1 week.
Without validation, the forecast results were worse. The DLSTM forecast result is a flat trend without
the validation of the network. The network tuned and updated its previous state on real values of
validation data.
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Figure 8. Normalized load of ISO NE, January 2011 to March 2018.
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Figure 9. Normalized price of ISO NE, January 2011 to March 2018.
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Figure 10. Relation between load and price signals of ISO NE, January 2011 to March 2018.

The hourly system load from 1 January 2011 to 31 March 2018 is shown in Figure 8. Electricity load
shows a similar pattern over the years. The hourly price from 1 January 2011 to 31 March 2018 is shown
in Figure 9, which depicts the electricity price has a stochastic nature with sharp price spikes and it
increases continuously. Figure 10 shows the relation between load and price signals from 1 February
2018 to 31 March 2018. An eight-year dataset was considered. The dataset was divided into 12 parts
for 12 months of a year.
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Figure 11. Normalized load of NYISO, January 2001 to March 2018.
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Figure 12. Normalized price of NYISO, January 2006 to March 2018.

Figure 13. Relation between load and price signals of NYISO, January 2006 to March 2018.

In Figure 14a, price signals of January 2017 are shown, whereas Figure 14b shows price signals of
January 2018. Figure 14c illustrates the price signals of March 2017 and Figure 14d shows the price
signals of March 2018. The price signals of same months, e.g., March 2017 and March 2018, show a
similar pattern. The reason behind the similar price signals of same months of different years is the
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same weather conditions. In January 2018, there was an increase in the price between Hours 100
and 150 and Hours 200 and 300. Although the general patterns of the January 2017 and 2018 prices
were the same, the increase in price in the aforementioned hours of January 2018 was higher than
those of January 2017. This unexpected increase was due to the unavailability of cheaper electricity
generation resources (i.e., photovoltaic generation and windmill generation). It is clear from the results
in Figure 14 that the patterns of price signal of different months, e.g., January 2018 and March 2018 are
different. Every year, the weather is colder in January and moderate in March. Due to the weather
conditions, the heating and cooling loads are similar every year, which directly impact the price.
Therefore, the forecast model was trained on data of January 2011, January 2012, . . ., January 2018 (first
three weeks) to forecast the price of the last week of January 2018. The month-wise splitting of input
data helped improve the forecast accuracy. On the other hand, if input data were not split, the forecast
accuracy degraded to an unacceptable level.
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Figure 14. (a) The normalized price of January 2017; (b) the normalized price of January 2018; (c) the
normalized price of March 2017; and (d) the normalized price of March 2018

Figure 15 illustrates the actual and forecasted price of 23 March 2018. Figure 16 is the price forecast
of last week of March 2018. Figures 17 and 18 present the predicted load of one day and one weak.
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Figure 15. Forecasted price of one day, ISO NE.
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Figure 16. Forecasted price of one week, ISO NE.
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Figure 17. Forecasted load of one day, ISO NE.

0 20 40 60 80 100 120 140 160

Hours

1

1.2

1.4

1.6

1.8

L
o

a
d

 (
M

W
)

10
4

Observed

Predicted

Figure 18. Forecasted load of one week, ISO NE.

5.3.2. Case Study 2

Thirteen years (i.e., January 2006 to March 2018) load and price data of New York City were used
for medium-term forecasting. The normalized load is shown in Figure 11. The price signals of 13 years
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are shown in Figure 12. The relation of price and load signals of New York City is shown in the scatter
plot of Figure 13.

For medium-term forecasting, load and price of one month (September 2018) were forecasted,
for a total of 720 h. Forecasting results of one day (24 h) and one week (168 h) are also shown.
Price forecast of one day and one week are shown in Figures 19 and 20, respectively. Forecasted price
from 1 September 2018 to 30 September 2018 is shown in Figure 21. Load forecast of one day and
one week are shown in Figures 22 and 23, respectively. The 1 month forecasted load is shown in
Figure 24. The load and price forecast of New York City were more accurate compared to the forecast
on aggregated data of ISO NE. The ISO NE data comprise aggregated load and average price of six
states. The reason for NYISO’s better accuracy is its larger size of data as compared to ISO NE. The total
number of measurements in ISO NE are 63,528 and NYISO are 112,300. It is the characteristic of deep
learning that its performance improves with the increase in the size of data [39].

Figure 16 illustrates actual and forecasted price of last week of March 2018. Figure 25 illustrates
the performance comparison of proposed deep LSTM with the well known time series forecasting
methods for price forecasting. In Figure 26, comparison of DLSTM is shown for the load forecasting.
The MAE and NRMSE are shown for the day ahead load and price forecast.
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Figure 19. Forecasted price of one day, NYISO.
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Figure 20. Forecasted price of one week, NYISO.
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Figure 21. Forecasted price of one month, NYISO.
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Figure 22. Forecasted load of one day, NYISO.
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Figure 23. Forecasted load of one week, NYISO.
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Figure 24. Forecasted load of one month, NYISO.
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Figure 25. Comparison of DLSTM, ELM and NARX for price forecast of one week, ISO NE.
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Figure 26. Comparison of DLSTM, ELM and NARX for load forecast of one week, ISO NE.

The performance of the proposed method was compared with well-known forecasting methods:
ELM, Wavelet Transform (WT) + Self Adaptive Particle Swarm Optimization (SAPSO) + Kernel
ELM (KELM) (WT + SAPSO + KELM) [46], NARX and Improved NARX (INARX) [47]. When the
performance of DLSTM was compared with the aforementioned methods, it had less error.
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DLSTM had lower MAE and NRMSE as compared to ELM, WT+SAPSO+KELM, NARX and INARX.
WT+SAPSO+KELM [46] is proposed for electricity price prediction. For price forecasting, DLSTM
was compared with ELM, NARX and WT + SAPSO + KELM. Buitrago et al. proposed INARX [47] for
electricity load prediction. The DLTM load prediction results were compared with ELM, NARX and
INARX. The comparison of forecast results is shown in Figures 27 and 28. DLSTM forecasted accurately
compared to ELM, WT + SAPSO + KELM, NARX and INARX. ELM is a feed-forward ANN. Its weights
are set once and never changed afterwards. For good performance of ELM, the weights should be
optimized. ELM can only perform well if the weights are optimized, because its weights cannot change
during the training of the network. NARX performed better as compared to ELM. Unlike ELM, NARX
has a feed back architecture. It has a recurrent ANN like DLSTM. NARX performance is reasonable
for load forecast (Figure 28), however it is unable to model the high seasonality and volatility of price
signals (Figure 27). DLSTM has a feedback architecture, where errors are backpropagated. In DLSTM,
weights are updated multiple times during training, with every new input. The learned weights are
obtained when network completes its training on complete training data.
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Figure 27. Comparison of DLSTM, ELM and NARX for price forecast of one month, NYISO.
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Figure 28. Comparison DLSTM, ELM and NARX for load forecast of one month, NYISO.

5.4. Performance Evaluation

For performance evaluation, two evaluation indicators were used: MAE and NRMSE. MAPE
performance matric has a limitation of being infinite, if the denominator is zero; MAPE is negative,
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if the values are negative, which are considered meaningless. Therefore, MAE and NRMSE are suitable
performance measures. The formulas of MAE and NRMSE are given in Equations (18) and (19),
respectively.

MAE =
1
T

T

∑
t=1
|(Xs − ys)| (18)

NRMSE =

√
1
T ∑T

t=1(Xs − ys)2

(max(Xs)−min(Xs))
(19)

where Xs is the observed test value at time t and ys is forecasted value at time t.
The last week of every month was tested; starting from May 2017 to April 2018. Twelve weeks

were tested. The performance of every month is shown in Table 2. It is proven by low NRMSE in
Table 2 that the proposed method forecasted the price with good accuracy. For NYISO data, the load
and price of one month, i.e., September 2018 was forecasted. The RMSE and MAE for load forecasting
is shown in Table 3.

In Table 2, the errors of proposed method for the price forecast are listed. Price was trained and
tested on monthly data, whereas load was not split month-wise (Section 5.3.1). The results in Table 2 is
forecast error of one week (168 h) for all 12 months. In Table 3, the load forecast error of one week is
listed. The price forecast error presented in this table is the average error of 12 weeks of each month
(presented in Table 2). The compared method’s price forecast errors are also average error of 12 weeks
of every month.

NARX is a successful method for time series forecasting. NARX predicts reasonably well on
time series with linearly increasing or decreasing trends. However, it is unable to capture the highly
nonlinear and complex patterns of price and load accurately. DNN has the ability to model any
arbitrary nonlinear function. SANN are more interpretable than other methods, but less flexible and
accurate than DNN.

Table 2. Monthly forecasting error of energy price.

Data ISO NE NYISO

Month January February March April January February March April

MAE 1.72 1.45 2.7 1.92 3.6 3.8 2.9 2.7
NRMSE 0.076 0.062 0.102 0.082 0.032 0.043 0.037 0.047

Month May June July August May June July August

MAE 2.83 1.45 1.96 1.92 2.14 2.7 2.42 2.56
NRMSE 0.107 0.062 0.087 0.102 0.014 0.017 0.024 0.031

Month September October November December September October November December

MAE 2.04 1.36 2.01 1.98 2.19 2.36 2.8 2.12
NRMSE 0.093 0.057 0.124 0.115 0.047 0.014 0.018 0.021

SANN cannot handle big data very well and tends to overfit. DNN has more computational
power than SANN. For a prediction on big data, deep learning is shown to be an effective and viable
alternative to traditional data-driven machine learning prediction methods [39]. The validated and
updated Deep LSTM forecaster outperformed ELM and NARX in terms of MAE and NRMSE.

The NRMSE and MAE metrics were used to compare the accuracy of different forecasting models.
However, the fact that the accuracy of a model is higher does not confirm that a model is better than
the others. The difference between the accuracy of two models should be statistically significant.
For this purpose, the forecasting accuracy was validated using statistical tests: Friedman test [48],
error analysis [49], Diebold–Mariano (DM) test [50], etc. The performance of the proposed method
was validated by two statistical tests, DM and Friedman test. DM is a well-known statistical test for
validation of electricity load [51] and price forecasting [33]. DM forecasting accuracy comparison test
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was used for comparing the accuracy of proposed model with the existing models, i.e., ELM, WT +
SAPSO + KELM, NARX and INARX.

Table 3. Comparison of load and price forecasting errors.

Forecast Data ISO NE NYISO
Forecasting Method MAE NRMSE MAE NRMSE

ELM 67.4 11.86 9.97 7.36
Price Forecast NARX 12.47 8.24 10.32 8.62

WT+SAPSO+KELM [46] 8.99 0.13 19.26 0.06
DLSTM 1.945 0.08 2.6 0.028

ELM 52.8 8.42 9.68 5.24
Load Forecast NARX 37.18 14.74 12.36 11.57

INARX [47] 9.7 0.2 1.9 0.02
DLSTM 2.9 0.087 1.4 0.012

A vector of values that are to be forecasted are [y1, y2, . . . , yn]. These values are predicted by
two forecasting models: M1 and M2. The forecasting errors of these models are [εM1

1 , εM1

2 , . . . , εM1
n ]

and [εM2

1 , εM2

2 , . . . , εM2
n ]. A covariance loss function L() and differential loss are calculated in DM as

Equation (20) [33]:

dM1, M2

t = L(εM1

t )− L(εM2

t ) (20)

In its one-sided version, the DM test evaluates the null hypothesis H0 of M1 having an accuracy
equal to or worse than M2, i.e., equal or larger expected loss, against the alternative hypothesis H1 of
M2 having a better accuracy, i.e., [33]:

One− sided DM test

{
H0 : dM1, M2

t ≤ 0,

H1 : dM1, M2

t > 0.
(21)

The second test used for verification of improved accuracy of proposed model was the Friedman
test. The Friedman test is a two-way analysis of variance by ranks. It is a non-parametric alternative
to the one-way ANOVA with repeated measures. Multiple comparison tests are conducted in the
Friedman test. Its goal is to detect the significant differences between the results of different forecasting
methods. The null hypothesis of Friedman test states that the forecasting performances of all methods
are equal. To calculate the test statistics, first the predicted results are converted into the ranks.
The predicted results and observed values pairs are gathered for all methods. Ranks are assigned to
every pair i. Ranks range from 1 (least error) to k (highest error) and denoted by rj

i (1 ≤ j ≤ k). For all
forecasting methods j, average ranks are computed by:

Ri =
1
n

n

∑
i=1

rj
i (22)

Ranks are assigned to all forecasts of a method, separately. The best algorithm has rank 1,
the second best has 2, and so on. The null hypothesis states that all methods’ forecast results are similar,
therefore, their Ri are equal. Friedman statistics are calculated by equation shown in Equation (23) [48].

F =
12n

k(k + 1)

[
n

∑
i=1

Rank2
i −

k(k + 1)2

4

]
(23)

where n is the total number of forecasting results, k is the number of compared models, Ranki is
the average rank sum received from each forecasting value for each model. The null hypothesis
for Friedman’s test is that equality of forecasting errors among compared models. The alternative
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hypothesis is defined as the negation of the null hypothesis. The test results are shown in Table 4.
Clearly, the proposed DLSTM model was significantly superior to the other compared models.

Friedman test

 H0 : F ≤ 0 M1
Accuracy ≤ M2

Accuracy ,

H1 : F > 0 M1
Accuracy > M2

Accuracy.
(24)

In Table 4, the results of DM and Friedman tests are presented. The DM test statistics of DLSTM
with the compared methods are listed. The DM results greater than zero mean the DLSTM method was
significantly better than the compared method (as shown by hypotheses in Equation (21)). Friedman R
ranks were computed by Equation (23). The ranks ranged from 1 to 4 for four compared methods.
Rank 1 shows the best performance and 4 shows the worst performance of forecasting method.
The DM values of DLSTM versus three compared method are shown (DLSTM was not compared
with itself, therefore Not Applicable N/A is listed). For price forecasting, the F rank was: DLSTM >
WT+SAPSO+KELM [46] > NARX > ELM. The F rank for load forecasting was: DLSTM > INARX [47] >
NARX > ELM. The used statistical tests validated that the accuracy of proposed method DLSTM was
significantly improved. The DLSTM ranked first for both load and price forecasting. The DM results
were greater than zero, which means DLSTM was better than the other compared methods.

Table 4. Diebold–Mariano test results and Friedman tests’ F ranks.

Data ISO NE NYISO

Forecast Forecasting Method Diebold–Mariano Friedman Diebold–Mariano Friedman

DLSTM vs. F Rank DLSTM vs. F Rank

Price Forecast

ELM 47.3 4 52.6 4
NARX 27.6 3 21.4 3
WT+SAPSO+KELM [46] 12.8 2 8.6 2
DLSTM N/A 1 N/A 1

Load Forecast

ELM 43.2 3 34.7 4
NARX 6.8 2 7.9 3
INARX [47] 4.2 2 3.8 2
DLSTM N/A 1 N/A 1

Experimental results prove that the proposed method forecasts the real patterns and recent trends
of load and price with greater accuracy as compared to ELM and NARX. Comparison of the proposed
method with NARX and ELM is shown in Table 3. The price forecast errors listed in Table 3 are the
average of all twelve months of forecasting errors for ELM, NARX and DLSTM.

6. Conclusions

In this paper, big data are studied for load and price forecasting problem. Deep LSTM is proposed
as a forecast model for short- and medium-term load and price forecasting. The proposed framework
comprises data preprocessing, training of improved LSTM model, and forecasting of 24, 168 and
744 h load and price patterns. The data are studied with great depth and analytics are performed
exploring data behaviors and trends. Problems in training LSTM model are investigated. The DLSTM
network stability is also discussed. Simulation results prove the effectiveness of the proposed method
in forecasting. The numerical results show that the DLSTM forecasting model has lesser MAE and
NRMSE as compared to ELM and NARX. The practicality and feasibility of proposed DLSTM model
are confirmed by its performance on well-known real market data of NYISO and ISO NE.
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Abbreviations

ABC Artificial Bee Colony
AEMO Australia Electricity Market Operators
ANN Artificial Neural Networks
ARIMA Auto-Regressive Integrated Moving Average
CNN Convolution Neural Networks
CART Classification and Regression Tree
DNN Deep Neural Networks
DSM Demand Side Management
DT Decision Tree
DE Differential Evaluation
DWT Discrete Wavelet Transform
ELM Extreme Learning Machine
GA Genetic Algorithm
ISONE Independent System Operator New England
KNN K Nearest Neighbor
LSSVM Least Square Support Vector Machine
LSTM Long Short Term Memory
MAE Mean Absolute Error
NYISO New York Independent System Operator
NRMSE Normalized Root Mean Square Error
RNN Recurrent Neural Network
SAE Stacked Auto-Encoders
STLF Short-Term Load Forecast
SVM Support Vector Machine
b Bias
Sc Current state of LSTM memory cell
εt Error term of NARX
zϕ Forget gate
Zin Input gate
x Input vector to network
α Learning rate
l Load vector
fϕ Logistic sigmoid function
yc LSTM memory cell
zc LSTM memory cell’s input to itself
wi j Network weights
y Network output or forecasted value
M Components of the training vector
n Number of hidden units in ELM
Zout Output gate
vi Output of the ith hidden neuron
p Price vector
E Squared error
T Time step
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