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Abstract: Various factors must be considered when running a courier service in an urban area,
because the infrastructure of a city differs from those in suburban or countryside areas. Of note,
population density is higher, and vehicles encounter greater restrictions. Moreover, air pollution from
fossil fuel combustion is more severe. As tailpipe emissions are becoming costly to both corporations
and the environment, researchers are increasingly exploring more appealing transportation options.
Electric bicycles have become an important mode of transportation in some countries in the past
decade. Electric bicycles and automobiles have their respective merits and demerits when used to
provide courier services. E-bikes in particular can ply their trade in densely packed areas that are
off-limits to cars and trucks. This paper focuses on (1) developing a truck–bike mixture model to
reduce operating costs for an existing truck-only service by replacing some of the trucks with bicycles,
and (2) exploring the resulting effects in terms of reducing overall carbon emissions. Data from
one of the major courier companies in South Korea were utilized. The problem was tackled as a
heterogeneous fleet vehicle routing problem using simulated annealing because the actual size of the
problem cannot be solved directly with a mathematical approach. The most effective fleet mix was
found for the company’s case. Effects on operating costs and reduced emissions were analyzed for
15 different scenarios with varying demands and off-limits areas. Computational results revealed
that the new model is viable from economic and sustainability standpoints. They indicated that costs
decrease to varying degrees in all scenarios, and that carbon emissions also decrease by around 10%
regardless of the selected scenario.
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1. Introduction

Courier services in urban areas are assumed to differ from services in suburban or countryside
areas. For the purposes of this paper in particular, it is noted that urban areas have greater population
densities and numerous off-limits areas. In much of South Korea, and especially in newly developed
cities as well as Seoul, delivery trucks are often banned from entering certain apartment complexes
where space is reserved for aesthetic landscaping and children’s play areas. Further, conventional
market areas often prohibit trucks from making door-to-door deliveries due to narrow streets, safety
reasons, and exhaust gases. In this paper, these off-limits areas are termed ‘evade areas’. Despite
these restrictions, current courier service providers in South Korea rely solely on delivery trucks, and
in these areas, delivery workers must unload goods far away from delivery points and use carts or
trollies to reach them. This process increases time and labor costs.

Compared to trucks, electric cargo-bikes have lower velocities and cargo volume capacities, and
they also suffer from travel distance limitations. However, they can reach customers in evade areas.
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This study proposes a new model for delivering goods via electric cargo-bikes to evade areas. General
non-electric cargo-bikes could be used for this model, but parcels loaded on such bikes would exhaust
delivery workers and limit the possible work. Thus, due to recent advances in technology, e-bikes are
considered to take the place of some of the delivery trucks.

Our new model (truck–bike mixture model) helps to reduce carbon emissions. Recently, countries
worldwide have witnessed a renewed interest in sustainability, and acute concern has grown over
increases in greenhouse gas emissions and particulate matter (PM) caused by the burning of fossil
fuels. In South Korea, in 2015, greenhouse gas emissions reached 690.2 million ton CO2, which was
135.7% higher than levels recorded in the 1990s. South Korea’s greenhouse gas emission levels are the
sixth highest among the 35 OECD nations [1]. In a 2014 report [2] on the country’s PM10 and PM2.5
(particulate matter smaller than 10µm and 2.5µm) emissions, it was stated that 10.2% of the PM10 and
14.6% of the PM2.5 resulted from on-road emissions. E-bikes are a game changer in this regard as
they are only responsible for the electric power used to charge their batteries. From an environmental
standpoint, this is an obvious benefit. Accordingly, this study analyzes the expected reduction of
carbon emissions when the truck–bike mixture model is used.

The reduction of operational costs is another major concern. By simulating the original truck
model’s mileage and cargo capacity, we can then compare the truck-only model to the truck–bike
mixture model and analyze the validity and operational cost reductions as well as sustainability.
The data used to formulate the problems were provided by one of the major courier companies
in South Korea. As a method of analysis, we applied a vehicle routing problem (VRP) that is a
capacity-constrained form of the multiple traveling salesman problem (mTSP) and heterogeneous fleet
vehicle routing problem (HFVRP). The latter is an extension of the VRP with more than one vehicle
type. The VRP and HFVRP were applied to find the best truck-to-bike ratio for the study case and to
compare the truck–bike mixture model with the present truck-only model in terms of operating costs
and carbon reductions.

The use of electric bikes in conjunction with a truck delivery system requires validation before it
is applied to a real system. As such, the delivery job assignment with proper vehicle route planning
needs to be examined by applying current data to a planned system. This study employed a VRP to
compare the original truck-only delivery process with the new truck–bike mixture delivery process.

VRPs typically involve a homogeneous fleet of vehicles that have a fixed capacity to serve a set of
customers from a single depot. All vehicles must depart from and return to the depot. Restrictions
such as route lengths or time limits will constrain the distance traveled by the vehicles. The goal is
to assign a sequence of deliveries to each vehicle so that service can be provided to all customers
while minimizing the total distance traveled or the total time consumed by the fleet. Different types of
VRP variations exist, including the multi-depot vehicle routing problem (MVRP), in which vehicles
depart from multiple depots, and the open vehicle routing problem (OVRP), in which vehicles do not
return to the depot. More detailed lists and descriptions can be found in the literature [2,3]. Of note,
a variation called the green vehicle routing problem (GVRP) focuses on minimizing the environmental
impact of fuel consumption. Detailed solution approaches for this variation are also available in the
literature [4].

VRPs are deemed static, meaning all demands are known in advance before planning. In reality,
however, demands change often with cancellations, rush orders, varying traffic conditions, and so
on. With recent technology [5], real-time scheduling can accommodate some of this dynamic reality.
Bányai [6] focuses on energy efficiency and Giaglis et al. [7] on risk mitigation from a real-time
scheduling point of view.

Rather than real-time information at the operational level, this study used known information
from the managerial and planning viewpoint. The truck–bike mixture model is well-suited to the
HFVRP method. In the HFVRP, vehicles are not homogeneous, meaning that capacities and operating
costs can vary. Taillard [8] points out that most companies that deliver goods operate a heterogeneous
fleet of vehicles, but the HFVRP has attracted little attention mainly due to the fact that it is much more
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complicated than the classic VRP. According to Hoff et al. [9], mixed-vehicle fleets increase flexibility
from tactical and operational points of view, so fleets are rarely homogeneous in the industry.

This paper is organized as follows. Section 2 summarizes the preceding research on carbon
emissions and electric cargo-bike logistics. Section 3 describes the basic delivery process in South Korea.
Section 4 first presents the model construction and formulation for the truck-operation model and
newly deployed model for the evade areas. It then depicts the methodology for the model’s delivery
routing problem and calculation of carbon emissions. Section 5, through a comparison of results,
shows how the models differ and highlights the efficiency of the truck–bike mixture model. Section 6
provides discussion and concludes the paper with a summary of the study and further benefits.

2. Literature Review

According to the National Greenhouse Gas Inventory Report of Korea [1], greenhouse gas
emissions from the transportation field have increased yearly. A total of 86.0 million tons of emissions
were recorded in 2013, and this number is expected to reach 95.4 million tons by 2020 and 104.1 million
tons by 2030 [10]. Under this increase, greenhouse gas emissions from the transportation sector are
going to hamper the country’s reduction goals for the coming decades.

The transportation industry accounted for about 13.6% of total greenhouse gas emissions in the
country [1]. This included shipping, railroad, and aviation emissions, but road vehicles accounted
for the bulk of domestic logistics. The national transportation statistics of Korea [11] reveal that on a
tonnage basis, road transport accounted for 91.79% of the tonnage moved in 2014.

The significance of the greenhouse gas emissions of the transportation sector has led many
studies to document CO2 emissions from the sector as well as the efforts to reduce those emissions.
Poudenx [12] looked at 12 major cities that employ a range of policies to limit private vehicle
use, and he evaluated their success from two aspects—energy consumption and greenhouse gas
emissions. Schwanen et al. [13] reviewed papers on the effects of transportation improvements from
the perspective of technology, transport price changes, supply infrastructure, behavioral change,
and alternative institutional arrangements. Their analysis explored transport system regulations to
develop a deeper understanding of climate change mitigation strategies in the transportation sector.
Yang et al. [14] considered how California might reduce emissions in its transportation sector to 80%
below 1990 levels by 2050. Each transportation subsector was analyzed to identify possible reduction
opportunities for greenhouse gas emissions. Greene and Plotkin [15] argued that CO2 is by far the most
important greenhouse gas emitted in the transportation sector. They presented an analysis of potential
strategies to reduce these sector-derived emissions, and they also included a resulting costs and
benefits analysis for the Northeast and mid-Atlantic states. Stanley et al. [16] investigated six ways to
reduce road transport emissions that could help to achieve Australia’s 2020 and 2050 reduction targets.
Hickman et al. [17] developed a simulation model of transport and carbon emissions for London.
He then developed various policies, scenarios, and methods aimed at reducing CO2 emissions in the
transportation sector. Timilsina and Shrestha [18] analyzed possible factors increasing transportation
sector CO2 emissions in selected Asian countries, and they reviewed present government policies to
curb the growth.

Within the transportation sector, freight truck efficiency has been of great interest. Many scholars
and practitioners have researched the potential for improvements in vehicle energy usage. Greene
and Plotkin [15] argued that light trucks account for a large amount of greenhouse gas emissions in
the transportation sector, and they claimed that increasing fuel economy can make the largest single
contribution to emission reductions. Bányai [6] built a real-time vehicle scheduling optimization model
for last mile logistics that enables efficient energy usage. Ang-Olson and Schroeer [19] suggested
strategies to enhance the energy efficiency and environmental performance of freight trucking in the
United States. Additional research has looked into energy use trends in freight trucking and carbon
emissions in OECD countries [20], in 11 International Energy Agency (IEA) countries [21], in China [22],
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and in London [23]. Léonardi and Baumgartner [24] analyzed the status quo as well as the potential
for CO2 efficiency in road freight.

There have also been studies on the possibility of replacing current freight trucks with other
options to reduce greenhouse gas emissions. One option is to use electric trucks. Lee et al. [25]
considered an electric urban delivery truck model, and they compared greenhouse gas emissions,
energy consumption, and total costs for electric and diesel trucks. Barnitt [26] reported a 12-month
evaluation on the FedEx Express hybrid—gasoline and electric—delivery truck compared to three
comparable diesel trucks. The evaluation determined that there was no statistical difference in
operating costs per mile between the two groups, but tailpipe emissions were considerably lower
for the hybrid truck than the diesel vehicles. A truck-based intermodal model is another option.
Kim and Van Wee [27,28] proposed a methodology to assess CO2 emissions for intermodal and
truck-only freight systems. Rail-based and vessel-based intermodal systems were considered.
They concluded that in general, intermodal systems emit less CO2 than a truck-only system.

Railway and seaway freight delivery, in most cases, lacks accessibility. In urban areas, even trucks
have difficulty achieving door-to-door deliveries. In densely populated urban areas, bike-couriers or
bike-messengers offer delivery advantages. Hong et al. [29] noted that bicycle delivery services have
been especially vigorous in Tokyo and Beijing. They also pointed out weaknesses: Limited delivery
areas and limited delivery times. Human-powered bicycles cannot travel far or for long periods of
time because of fatigue and/or heavy payloads. Recent developments in technology, however, have
mitigated many of the constraints.

Technologically, electric cargo-bikes can currently be utilized for deliveries, and this becomes even
more plausible with more advanced battery capacities. According to Schier et al. [30], electric bicycles,
tricycles, or quadracycles are capable of transporting 50–250 kg of cargo, and battery capacities allow
for transport ranges of up to 50–80 km. Gruber et al. [31] showed that the substitution of electric
cargo-bikes takes over 19% to 48% of the distances carried by regular trucks.

The economic feasibility of electric cargo-bikes has been studied by many researchers.
Gruber et al. [32] investigated potential markets for electric cargo-bikes, and they determined that
electric cargo-bikes stand between cars and regular bikes in terms of cost, cargo capacity, and range.
Choubassi et al. [33] analyzed the economic feasibility of using different cargo cycles in different
environments. They presented a case study of the U.S. Postal Service, in which electric trikes have
the lowest net present value when the service vehicles are replaced with cargo cycles for mail
deliveries in populated areas. Rudolph and Gruber [34] identified six relevant market segments
in which electric cargo cycles offer efficient solutions in terms of cost and time: Postal, courier, parcel,
home delivery, internal and on-site transport, and service trips. Tipagornwong and Figliozzi [35]
investigated tricycle-based freight services in urban areas and compared their competitiveness against
regular delivery trucks. They concluded that tricycles will succeed in urban areas with certain
constraints, such as limited parking, reduced access for regular vehicles, restricted travel speeds,
and limited time windows for delivery. Diesel vans are dominant when the required number of
tricycles increases considerably due to capacity constraints or lengthy travel distances. Case studies
on the introduction of electric cargo-bikes and their environmental impacts in some regions such as
China [36–39], Europe [40,41], Italy [42,43], and New York [44] have been reported.

3. Problem Descriptions

The basic delivery process in South Korea can be divided into five location-based phases: Service
centers, hub-terminals, sub-terminals, service centers, and delivery. Goods that need to be sent are
collected at service centers and sent to hub-terminals, where they are sorted by region to be shipped
to regional sub-terminals. The sorted goods are sent to the sub-terminals of each area by trunk
line transportation. At sub-terminals, goods are once again sorted by service area, and they are
subsequently sent to service centers. The service centers operate 1-ton trucks for final delivery to
customers. The delivery processes of each courier company differ from the basics explained above.



Sustainability 2019, 11, 1255 5 of 19

This paper uses data from H, one of the three major courier companies in South Korea. H delivers
goods directly from sub-terminals to customers using 1-ton trucks, skipping over the last service center
phase. This study sets limits to the range from an H’s sub-terminal to customers. We have excluded
goods moved from hub-terminals to sub-terminals or any other prior phases.

The sub-terminal operated by H delivers approximately 5250 boxes a day using 35 trucks.
The couriers must deliver to all customers, including in market areas where traffic congestion and
population density are significant, or in apartment complexes where trucks are not allowed to enter.
In such cases, deliveries are completed using carts or trollies. The H sub-terminal in this study
delivers to around 1000 locations in the districts of Seongbuk, Jongno, and Dongdaemun, which are
set as A, B, and C, respectively. The three districts can be found in Figure 1. Among these locations,
the average evade area rate is about 15% (10% for apartment complexes and 5% for conventional
markets). The number of deliveries in the evade areas amounts to approximately 770 boxes a day,
which is 15% of the total 5250 boxes delivered. This study aims to shorten the weighted distance by
introducing electric cargo-bikes for the evade areas and to reduce carbon emissions by reducing the
number of trucks required. Table 1 summarizes the data for the H sub-terminal.
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Table 1. Data and information for the sub-terminal.

Number of
Trucks

Average Cargo
Quantities
(Day, Box)

Amount of
Fuel Usage

(Day, L)

Number of
Delivery

Points

Apartment
Complexes

Conventional
Markets

35 5253.5 385 L 1000 10% 5%

4. Methodology

4.1. Model Construction and Formulation

To reflect reality while still efficiently solving problems, necessary assumptions were made.
The assumptions have been derived from interviews with H courier employees, data from H
couriers, and the literature review. The objective function, assumptions, constraints, and scenarios are
explained here.

4.1.1. Vehicle Capacity

The weight of delivered boxes varies, but generating a random distribution is infeasible because
the company has not accumulated weight data. Rather than weight limitations, the number of boxes
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is used to set the vehicle capacity. The 1-ton truck capacity is set based on the average number of
deliveries made, 150 boxes. The electric cargo-bike capacity may vary depending on type. This study
relied on the specifications for one of the most well-known electric cargo-bikes. The bike’s capacity in
weight is 350 kg, and this can be converted into about 50 boxes.

The battery capacity for the cargo-bikes also needs to be considered. The battery mounted on
electric cargo-bikes can last for about 50 to 80 km [30]. However, considering how lithium ion batteries
deteriorate and how rider fatigue increases, we have set the battery capacity to 20 km. The cargo-bikes
must return to the depot within 4.5 hours before departing for another round of 4.5 hours. In this
system, a bike can handle 100 boxes a day. To substitute for a truck, 1.5 cargo-bikes are required.

Demands arise independently and are dispersed. However, delivery vehicles do not stop at all
locations. In interviews, the H courier delivery workers indicated that they stop at a location to deliver
an average of 5 boxes. If a delivery worker has 100 boxes to deliver, he or she will be stopping at about
20 points. With this information, we were able to further simplify the problems. The capacity was set
to 30 stop points for 1-ton trucks and 10 stop points for cargo-bikes.

4.1.2. Number of Trucks and Bikes

The ratio of the number of 1-ton trucks to electric cargo-bikes to be used is an important strategic
decision. This decision calls for another VRP variation called the fleet size and mix vehicle routing
problem (FSMVRP). The major difference between the HFVRP and FSMVRP is that the latter allows
for an unlimited number of vehicles for each type, while the former has a pre-determined fleet mix.
The FSMVRP is used for strategic decisions, such as resizing accompanied by large investment. On the
other hand, the HFVRP assumes that a strategic decision has already been made, meaning the fleet
we have is fixed, and it aims to optimize the problem at tactical or operational levels. Methods for
these two VRPs are substantially different. However, with only two vehicle types in the present study,
the number of cases is not large, and the HFVRP can also be helpful to determine the strategic fleet
size. An empirical search has to be performed.

Using the aforementioned vehicle capacity assumption, 1.5 cargo-bikes are required to replace
a truck. From the original total of 35 trucks, replacements will be made in two-truck intervals from
33 trucks + 3 bikes down to 21 trucks + 21 bikes, allowing the best ratio to be determined where
operating costs are minimized. This ratio will subsequently be utilized to analyze different scenarios.

4.1.3. Delivery Time and Penalty

Stopping at a location is not the end of the delivery. Boxes must be delivered to customers by
hand, and this is included in the delivery time in this paper. In interviews, H courier delivery workers
revealed that on average, 2.5 min are needed to make a delivery after the vehicle stops. However,
this differs in evade areas. Because restrictions prohibit vehicles from stopping in front of the door,
workers need to use carts or trollies to reach customers. Approximately 7 min is required for a delivery.
In this study, 12.5 min and 35 min will be consumed when 1-ton trucks stop at non-evade and evade
areas, respectively, whereas 12.5 min will be consumed for cargo-bikes regardless of the stop point.

4.1.4. Travel Time

Aside from the delivery time, it is essential to also consider the required travel time to ensure
that the drivers’ workload does not exceed the 9-hour work hour constraint. Travel time is the time
consumed while driving the vehicle between each stopping point. Time can be simply calculated
by dividing distance by velocity. Accordingly, we need to determine the vehicle velocity and the
distance representation.

After processing this delivery time, the sub-terminal’s delivery record, and the 9-hour constraint,
we concluded that the average traveling speed for 1-ton trucks is 30 kph. For electric cargo-bikes, real
data cannot be obtained for average traveling speeds. Ten kilometers per hour was assumed.
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The Euclidian distance from the depot to the stopping points, or from points to points, was used.
To make the Euclidian distance approximate reality, a common multiplier of 1.4 was used.

4.1.5. Demand Generation

The sub-terminal delivers to three different administrative districts (gu), A, B, and C, as mentioned.
The districts can further be divided into 51 smaller administrative units (dong), as shown in Figure 2.
The population density of the 51 administrative units was used to probabilistically generate demand.
A total of 10,255 cells were created on a spreadsheet to cover the districts, as shown in Figure 3, each cell
belonging to one of the 51 units. Once the unit (dong) is chosen by population density, a cell is chosen
uniformly within it.
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The sub-terminal produces 5250 boxes to be delivered. However, to correlate with the vehicle
capacity assumption, 1050 stopping locations, which is one fifth of the demand, are generated.
On average, the vehicles will deliver to 1050 stopping locations, of which each location has 5 boxes
to be delivered. Among the 1050 stopping locations, traditional markets and apartment complexes
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account for 5 and 10%, respectively, as shown in Table 1. A total of 1050 stopping locations, including
53 evade market areas, 105 evade apartment complexes, and 892 non-evade areas, were generated.

The generation of demands for traditional markets and apartment complexes was carried out
as follows. Shown as yellow cells in Figure 3, geographic information for 51 traditional markets in
the three districts is used to mark the cells as evade areas. Fifty-three (5% of 1050) yellow cells are
randomly chosen to be evade traditional market stopping points. The decisions made by apartment
complexes to allow or disallow the entrance of delivery trucks are autonomous to their communities.
Their decisions can change at any time. As such, rather than rely on a snap-shot of the current situation,
we randomly chose 105 (10% of 1050) non-yellow cells to be evade apartment complex stopping points.
Figure 4 shows an example of the generated stopping points. The blue triangles indicate market areas,
and the green triangles indicate apartment complexes.
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4.1.6. Objective Function

Exact cost information for the company is too sensitive to be revealed. The fuel cost (per km)
for the cargo-bike being one unit, we converted all costs into an equivalent unit and approximated
the values. Table 2 summarizes the cost information. Truck payments are a daily installment for a
purchased vehicle for a five-year period. License plates for trucks must be purchased for business
usage. The price for the license plate, insurance premiums, and maintenance costs are also converted
into a daily basis. Daily cost items in Table 2 are the fixed costs for each problem set. They are fixed as
long as the number of trucks and bikes are determined. On the other hand, labor and fuel costs are
variable. With different routings, the total labor and fuel costs change.

Table 2. Cost comparison of truck and electric bike.

Vehicle
Car

Payment
(Day)

License
Plate
(Day)

Vehicle
Insurance

(Day)

Cargo
Insurance

(Day)

Maintenance
(Day)

Labor (Hour) Fuel Cost
(km)Regular Overtime

Truck 2508 3343 1634 192 2034 6101 9152 114
E-Bike 1672 0 1089 128 1356 6101 9152 1

The objective function value that needs to be minimized can be expressed as fixed costs plus
variable costs. Fixed costs are the daily costs presented in Table 2 multiplied by the number of trucks
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and bikes. Variable costs are labor costs multiplied by the total time spent, traveling, and delivering,
plus fuel costs multiplied by the total distance traveled by the trucks and bikes. The objective function
is as follows, and the notations are provided in Table 3 below.

Table 3. Parameters of truck and electric bicycle.

Parameter Notation

CP Daily car payment for truck CPt, for bike CPb
LP Daily license plate for truck LPt, for bike LPb
VI Daily vehicle insurance for truck VIt, for bike VIb
CI Daily cargo insurance for truck CIt, for bike CIb
MT Daily maintenance for truck MTt, for bike MTb
Nt Number of routes for trucks
Nb Number of routes for bikes
LCr Hourly regular labor cost
LCo Hourly overtime labor cost
WH Standard working hours (daily), 9 hours in this case
FC Fuel cost per km for truck FCt, for bike FCb
Dt Distance traveled by trucks
Db Distance traveled by bikes
Tt Time spent by trucks
Tb Time spent by bikes

Minimize FixedCost + LaborCost + FuelCost

where

i) FixedCost = (CPt + LPt + VIt + CIt + MTt)Nt + (CPb + LPb + VIb + CIb + MTb)Nb

ii) LaborCost =
Nt
∑

i=1
(min[Tti, WH]LCr + max[(Tti −WH), 0]LCo)

+
Nb
∑

j=1
(min

[
Tbj, WH/2

]
LCr + max

[(
Tbj −WH/2

)
, 0
]

LCo)

iii) FuelCost = FCt

Nt

∑
i=1

Dti + FCb

Nb

∑
j=1

Dbj

4.2. Simulated Annealing (SA)

VRPs are known to be NP-hard [45]. Exact algorithms are adequate for only small problem
instances of fewer than 25 customers [46]. A variety of heuristic and meta-heuristic approaches
have been applied to the HFVRP, including the iterative local search (ILS) [47,48] and tabu search
(TS) [49–51]. Again, comprehensive surveys can be found in the literature [2,3]. Simulated annealing
(SA), a meta-heuristic method, was used to solve the problems in this paper. The use of SA has been
vigorous in the field of VRP research. First introduced by Kirkpatrick et al. [52], SA is a random
search algorithm analogous to the annealing process used for metal. In the physical annealing process,
a metallic object is heated and slowly cooled. In most cases, the cooling process is sufficiently slow to
determine the thermal equilibrium. The higher the temperature, the faster atoms vibrate, enabling them
to more easily break linkages and rearrange structures. When objects cool down, atoms eventually
create tight bonds or crystalize, and as such, rearrangement trials are repeated countless times to
reach equilibrium, i.e., the state of minimal energy. SA mimics this process to find the minimal,
or often times maximal, objective function value. The algorithm has proven its value with various
optimization problems, including VRP variations. Chiang and Russell [53] applied SA for a time
window constrained VRP (TWVRP). Kuo [54] considered a VRP with time-dependent travel speed and
proposed an SA-based algorithm to determine the vehicle routing with minimum fuel consumption.
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This study, on the other hand, aimed to analyze the feasibility and the benefit of the truck–bike mixture
model rather than introduce a new methodology to solve an HFVRP.

The algorithm starts with an initial solution, Si, and initial temperature, Ti. The current
temperature, Tk, is updated to Tk ∗ α after a certain number of perturbation trials. Parameter α

is a decrement cooling factor usually set between 0.7 and 1. Unlike heuristic algorithms that usually
get stuck in a local but not global optimum, SA probabilistically escapes local optima by allowing
uphill movements with some probability Pa = exp(−4 E/Tk), where4E is the degenerated amount
of the objective function value. The probability of accepting a deteriorating configuration comes from
Boltzmann’s factor, which indicates the probability of a state of energy, E. The formula implies that
if 4E is the same, a higher temperature produces a higher chance of accepting uphill movements,
and that if T is the same, a smaller 4E produces a higher chance. This is analogous to the strength
of atomic bonds that weakens with higher kinetic energy at higher temperatures. A pseudo code is
provided in Algorithm 1.

Algorithm 1 SA Structure

Initialization
while Tk > Tf do

while IterCount ≤ IterCountMax
newSol = SwapTwoNodes(nowSol)
if (OFV(newSol) < OFV(bestSol)) bestSol = newSol, IterCount = 0
else IterCount++
if (OFV(newSol) < OFV(nowSol)) Pa = 1.0
else Pa = (−4 E)/Tk
if (Pa > Rand [0, 1]) nowSol = newSol
else newSol = nowSol

end
IterCount = 0
newSol = bestSol
nowSol = bestSol
Tk = Tk * α

end

4.3. CO2 Emmisions Calculation

Vehicle carbon emissions stem from a variety of factors, and providing exact calculations is
almost impossible. Each country chooses its own calculation method according to its own particular
conditions. Mobile combustion is the combustion of fossil fuels that occurs from vehicles such as
trucks, buses, and trains, resulting in the emissions of CO2, CH4, N2O, and so on. Mobile combustion
includes the burning of diesel, gasoline, or LPG, and greenhouse gas emissions are calculated by
fuel use.

The 2006 IPCC guidelines for national greenhouse gas inventories [55,56] advised governing
bodies and researchers to determine calculating methods by considering greenhouse gas inventory
constructs, the importance of emission sources in national statistics, and the presence of available data
for calculation. It advised using the Tier 3 method when the vehicle kilometers traveled (VKT) by fuel
and technology type were available and when country-specific technology-based emission factors were
available. When VKT data were available but country-specific emission factors were not, the guidelines
advised the use of the Tier 2 (Advanced) method, which uses default, instead of country-specific,
factors. Lastly, when neither could be obtained, it advocated the use of the Tier 1 (Simple) method,
which calculates greenhouse gas emissions from the total fuel use of road transportation. The present
study used the Tier 1 method to calculate greenhouse gas emissions. The emission factors also adhere
to the 2006 IPPC suggestions. The guidelines provide a calculation method for CO2 emissions, and
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another for CH4 and N2O. The estimation of CH4 and N2O is difficult because it depends significantly
on emission controls in the fleet or operating characteristics. This paper only estimated carbon
emissions by calculating CO2 emissions. Accordingly, calculating CO2 emissions by fuel use produces
the following. (Table 4 explains the parameters for the calculation).

Eij = Qi × ECi × EFij × fi × 10−9

Table 4. Parameters for greenhouse gas emission calculation.

Parameter Notation

Eij Greenhouse gas emission by fuel consumption
Qi Fuel consumption (m3)
ECi Caloric value liquid (MJ/L), gas (MJ/Nm3)

fi Conversion factor (1TJ = 106 MJ)
EFij Greenhouse gas emission factor, in fuels suggested by the IPPC

All of the carbon in the fuel, including the carbon emitted as CO2, CH4, CO, NMVOC
(non-methane volatile organic compound), and PM, is considered in the emission factor EFij [55].
The calculation results show that 1 liter of diesel usage emits 2.57 kg CO2. The 1-ton trucks’ fuel
efficiency while delivering is 7.5 km per liter, which produces a value of 0.343 kg CO2 emissions per
kilometer. For electricity, 1 kWh of usage emits 0.42 kg CO2. The e-bikes can travel a total of 50 km
using 1 kWh of electricity, which equates to 0.0084 kg CO2 emissions per kilometer.

5. Computational Results and Comparison

5.1. Number of Trucks and Bikes

As mentioned in Section 4.1.2, trucks are replaced in two-truck intervals to determine the ratio
in which costs are minimized. Please note that only an even number of trucks are replaced because
1.5 bikes are required to replace one truck, and thus, an odd replacement number would always
produce redundancies. The experiment was carried out on Java with an Intel(R) Core (TM) i5-2500U
CPU @ 2.20 GHz. The simulated annealing initial temperature, Ti, and final temperature, Tf , were set
to 1000 and 0.1, respectively. The cooling rate α was set to 0.95, and for each temperature, (number
of truck routes + bike routes) × 50,000 iterations were made to search for a solution. Demand was
generated five times. For each demand and replacement number, 30 replications were made and
averaged. Some solution examples are provided in Figures 5–7. In the figures, the X and Y axes are
the geographic coordinates of the stopping locations, e.g., 127.00 East and 37.60 North. The blue and
red dots indicate evade and non-evade areas, respectively. The red lines are truck routes, and the blue
lines are e-bike routes.

Table 5 summarizes the results. Figure 8 presents four lines indicating fixed costs, fuel costs,
labor costs, and total costs. The latter is the sum of the fixed and variable costs (fuel and labor costs).
We concluded that costs are minimized when six trucks are replaced with nine bikes. The benefit of
replacement comes from (i) the reduced fixed costs, (ii) the reduced fuel costs, and (iii) the reduced
labor costs. The most dominant among them is the reduced labor costs. As bikes take over evade
areas, labor costs decrease accordingly. The Bike (%) in Table 5 and Figure 9 shows the percentage
of evade areas covered by bikes. Bike coverage increases from zero to 14 replacements, but after six
replacements, the increment becomes insignificant. More bike replacements after six do not really
increase bike coverage. This increases travel time (labor costs), which is more significant than the
decreased fuel costs.
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Table 5. Result of replacing trucks with bikes on cost.

Replace 0 2 4 6 8 10 12 14 16 18 20

Fixed cost 557,025 546,066 535,107 524,148 513,189 502,230 491,271 480,312 469,353 458,394 447,435
Variable cost 3,694,092 3,310,938 3,142,052 3,100,874 3,115,666 3,137,310 3,162,776 3,190,980 3,224,267 3,259,886 3,301,762

Total cost 4,251,117 3,857,004 3,677,159 3,625,022 3,628,855 3,639,540 3,654,047 3,671,292 3,693,620 3,718,280 3,749,197
Bike (%) 0.00% 50.59% 75.95% 90.51% 90.51% 90.61% 90.61% 90.63% 90.65% 90.65% 90.72%
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5.2. Scenarios and CO2 Emmisions

The real world is not static but rather dynamic. Verifying only the averaged situation, which
has a 15% evade rate and a demand of 5250 boxes, might result in a generalization fallacy. To see the
true effectiveness of the mixture model, we need to embrace some of the sensitivities of the world.
We did this by exploring several scenarios with two axes, the first being the evade rate. The average
evade rate is about 15%, but this can change daily. We set three gradations on the axis—10, 15, and
20%. The other axis is the demand, the number of boxes to be delivered, naturally translating into the
number of stopping points. Demand for the day always changes, so we applied five gradations on the
axis. The average is 0%, and the gradations were set at –20%, –10%, 0%, +10%, and +20%. With these
two criteria, we had 15 possible scenarios and can see the varying cost effects of the mixture model.
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Demand was generated five times for each scenario. For each generated demand, 10 replications were
made and averaged.

Figure 10 and Table 6 summarize the cost reduction results. The dotted and solid lines in Figure 10
indicate the truck-only and the truck–bike mixture model, respectively. For the averaged scenario
where the evade rate is 15% and the demand is +0%, a 14.1% cost reduction was observed. The cost
reduction rate varied from one scenario to another. A minimum of 5.7% and maximum of 26.9% in
cost reduction was observed.
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Table 6. Cost reduction from the truck-only model to the truck–bike mixture model.

Evade Area Rate 10% 15% 20%

Demand +20% 17.1% 23.2% 26.9%
Demand +10% 14.4% 18.2% 18.9%

Demand 0% 7.7% 14.1% 21.1%
Demand −10% 6.3% 9.3% 12.4%
Demand −20% 5.7% 8.6% 10.8%

In addition, carbon emission reductions are also of great interest in this study. Assuming
310 operating days a year, yearly carbon emissions were calculated using the method explained
in Section 4.3. The differences between the two models on the scenarios are shown in Table 7. We see
an approximate 10% reduction in carbon emissions. However, there were no observed tendencies
correlating to changes in the evade rate or demand quantity. This can be explained in the way that
fuel costs affect total costs. As can be seen in Figure 8, fuel costs have the smallest effect on total
costs. On the other hand, labor costs have the greatest impact. When routes are being constructed to
minimize costs, fuel is not the main concern. In other words, reducing the distance traveled by trucks
and increasing the distance traveled by bikes results in a small decrease in fuel costs but much greater
increase in labor costs. We therefore concluded that it is reasonable for carbon reductions to not have
direct correlations across different scenarios.
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Table 7. Carbon reduction from the truck-only model to the truck–bike mixture model.

Evade Area Rate 10% 15% 20%

Demand +20% 6535 kgCO2 (11.2%) 6139 kgCO2 (10.6%) 5221 kgCO2 (9.1%)
Demand +10% 5922 kgCO2 (10.4%) 6054 kgCO2 (10.7%) 5161 kgCO2 (9.1%)

Demand 0% 3587 kgCO2 (6.6%) 6148 kgCO2 (11.0%) 3882 kgCO2 (7.1%)
Demand −10% 5404 kgCO2 (10.1%) 6418 kgCO2 (11.9%) 8097 kgCO2 (14.4%)
Demand −20% 4968 kgCO2 (9.7%) 5635 kgCO2 (10.9%) 5574 kgCO2 (10.9%)

6. Discussion and Conclusions

In South Korea, delivery trucks are unable to access certain off-limits (evade) areas, and this
results in additional time costs. Numerous studies, both domestically in Korea and abroad, have
explored the notion of replacing delivery trucks with other transportation modes, one possibility being
electric cargo-bikes. The present study has explored this latter possibility and verified a number of
potential benefits. In particular, we considered employing the one of the most popular e-bike models,
and we then relied on the existing literature to build our assumptions. The VRP and HFVRP were
solved using the simulated annealing algorithm for the truck-only and truck–bike mixture models,
respectively. The results were used to verify the economic viability of the proposed model and analyze
the effects in terms of reducing carbon emissions.

The study used data provided by one of the three major courier service companies in South
Korea. One of the company’s depots, or terminals, serves three administrative districts, delivering
5250 boxes daily. We empirically determined the appropriate ratio of trucks to bikes by solving the
HFVRP while replacing trucks with bikes from two to many. In this case, the ratio of 29 to nine was
found to be optimal. The results showed that after replacing six trucks, further replacements would
yield inefficiencies.

Using the 29-to-nine ratio, but also embracing a healthy dose of reality, we established 15 scenarios
and observed the varying effects. We compared the operating costs and carbon emissions of the
truck-only and truck–bike mixture models. The experimental results showed that cost reductions were
expected to be 14.1% for the average scenario. A total of 5.7% and 26.9% cost reductions were seen,
respectively, for the scenario where the demand quantity and evade rate were the lowest, and for the
antipodal scenario. Higher evade rates and higher demand yielded higher cost reductions. From a
sustainability standpoint, carbon emission reductions were expected to be around 10%, with no clear
tendencies regarding changes in the demand quantity or evade rate. This lack of tendencies resulted
from the insignificant impact of fuel costs on the total operating costs.

The major assumptions used in this study (e.g., assumptions regarding travel speed or delivery
time) will vary in reality. Likewise, the appropriate truck-to-bike ratio was determined for this case
only and is subject to variations based on circumstances. However, if the evade areas are still present,
we believe that in most cases, our approach will produce a convex–downward cost curve when
replacing trucks with bikes one by one.

The experiment revealed that labor costs dominated the total costs. Like any other last mile
logistics operations, managerial issues revolved around the labor costs. The location of the sub-terminal
had to be determined taking various factors into account, including evade areas and their cost. Taking
evade areas into consideration, the optimal location might shift. Further, having the right capacity
at the sub-terminal, where redundancies and overtime would strike a balance, would be critical in
reducing labor costs. The implementation of advanced IT systems to support vehicle routing or
resource management could also lower costs. Moreover, labor costs might be further reduced if the
government aided silver (senior) citizen workers for deliveries.

Recently in South Korea, much attention has been placed on arguments between courier service
companies and certain apartment complex representatives who have refused to permit delivery trucks
to enter the property. Compromises could be reached if bikes were used for those areas. Particulate
matter (PM), or fine dust, is another serious issue. The truck–bike mixture model naturally reduces PM
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emissions as well as carbon emissions. The truck-bike mixture would also encourage brand loyalty
from environmentally sensitive customers. Finally, the use of cargo-bikes would also help to reduce
traffic congestion and other traffic issues such as blockages that occur when multiple delivery trucks
are forced to park outside of apartment complexes and markets.

An additional concern is the emission of non-carbon pollutants, such as SO2 and PM. The proposed
model naturally reduces PM emissions, but specific measures and the calculation of emissions could
be meaningful and are an intriguing future research direction.
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