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Abstract: Solar greenhouse vegetable fields have been found to be hotspots of nitrous oxide (N2O)
emissions in China, mainly due to excessive manure application and irrigation. Pulses of N2O
emissions have been commonly reported by field monitoring works conducted in greenhouse fields,
though their significance regarding total N2O emissions and the driving mechanism behind them
remain poorly understood. N2O fluxes were monitored in situ using a static opaque chamber method
in a typical greenhouse vegetable field. Then, laboratory incubations were conducted under different
soil moisture and manure application gradients to monitor nitrous oxide emissions and related soil
properties, using a robotized incubation system. Field monitoring showed that the occurrence of
clear N2O emission bursts closely followed fertilization and irrigation events, accounting for 76.7% of
the annual N2O efflux. The soil N2O flux increased exponentially with the water-filled pore space
(WFPS), causing extremely high N2O emissions when the WFPS was higher than 60%. During the
lab incubation, emission bursts led to N2O peaks within 40 h, synchronously changing with the
transit soil NO2

−. An integrated analysis of the variations in the gas emission and soil properties
indicated that the denitrification of transit NO2

− accumulation was the major explanation for N2O
emission bursts in the greenhouse filed. Nitrous oxide emission bursts constituted the major portion
of the N2O emissions in the Chinese greenhouse soils. Nitrite (NO2

−) denitrification triggered by
fertilization and irrigation was responsible for these N2O emission pulses. Our results clarified the
significance and biogeochemical mechanisms of N2O burst emissions; this knowledge could help us
to devise and enact sounder N2O mitigation measures, which would be conducive to sustainable
development in vegetable greenhouse fields.

Keywords: emission bursts; nitrous oxide; manure application; irrigation; denitrification; solar
vegetable field; greenhouse gases

1. Introduction

Nitrous oxide (N2O) is a major greenhouse gas that also plays a primary role in stratospheric ozone
depletion [1]. Agricultural soils contribute approximately 50% of the global anthropogenic N2O flux,
primarily because of the application of synthetic nitrogen fertilizer and manure [2,3]. More than 30%
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of global N fertilizers are applied to Chinese agricultural soils, which constitute only approximately
10% of the world’s arable lands [4,5]. A recent estimate showed that Chinese agricultural soils emitted
about 1.21 Tg yr−1 N2O-N in 2014, accounting for 31% of global N2O emissions [6]. Therefore,
understanding the pattern and underlying mechanisms of N2O emission from agricultural soils is
of great importance for estimating a sound N2O emission inventory in China, and for developing
scientific mitigation strategies.

In China, solar greenhouses are widely distributed agricultural facilities for vegetable production,
where excessive nitrogen fertilizers and irrigation water are commonly used to produce high yields [7].
Annual nitrogen application rates may range from 1000 to 3600 kg N ha−1 in these greenhouses [6–11];
chicken manure is the most commonly used fertilizer [12]. In addition, 800 to 1200 mm of water
is irrigated per growing season [13], which is substantially is higher than the amount that used in
other cropping systems [14]. Extreme N fertilizer application, along with frequent irrigation, has
caused large N2O emissions from intensive agriculture [9,15,16], and has hindered the sustainable
development of atmospheric environment. Nitrous oxide emitted from greenhouse vegetable soils
was estimated at 12.2 Gg N2O-N yr−1, contributing 3.02–3.61% of the total emissions from Chinese
croplands [7,17]. Meanwhile, the emission factors (EFs) of N2O in greenhouse soils ranged from
approximately 1.1–1.43%, two to seven times higher than the EFs in neighboring cereal cropping
systems [18–20]. Recent field monitoring has shown that large pulse N2O emissions were commonly
observed closely following fertilization and irrigation events [7,15,18,21,22]. Song reported that such
N2O emission bursts accounted for more than 50% of the annual N2O emissions from greenhouse
soils [22]. Understanding the driving processes of N2O emission bursts is therefore crucial for reducing
N2O emissions from Chinese vegetable greenhouses.

Fertilization and irrigation are considered external triggers of N2O emission bursts, but their
operating mechanisms are not well understood [10,15]. Recently, transit nitrite accumulations have
been proposed as a possible explanation for the explosive N2O emissions during the short period after
the application of NH4

+-based fertilizers [23–25]. Furthermore, a field measurement confirmed that
nitrite accumulated to the maximum level within two days after manure application and irrigation [26].
These results imply that the reduction of intermediate nitrite, though nitrifier denitrification or
heterotrophic denitrification, may be responsible for the N2O emission bursts. However, synchronous
changes in N2O flux and related soil parameters during N2O emission bursts remain absent, preventing
clarification of the contribution of nitrite denitrification to the short-term N2O emission pulse. Here,
we simultaneously monitored the temporary variations in N2O fluxes and related soil properties in
a greenhouse vegetable field and during a short-term laboratory soil incubation. The major objectives
of this study were to: (1) quantify the contribution of burst pulses to annual N2O emissions from
Chinese greenhouse vegetable fields; (2) analyze the synchronous changes between N2O emissions
and the related soil parameters during the key period of N2O emission bursts; and (3) identify the
driving process of N2O emission bursts after manure application and irrigation.

2. Materials and Methods

2.1. Experimental Site and Field Treatments

The experiment was conducted in a solar greenhouse at Shouguang vegetable research station
(36◦51′ N, 118◦52′ E), in Shandong Province. This station was established by China Agricultural
University in 2008. In the study area, the mean annual air temperature is 12.7 ◦C and mean annual
precipitation is 550 mm. The greenhouse was constructed with thick clay walls and covered with
polyethylene plastic film. The soil in the greenhouse is classified as Cambisol [27], with a silty clay
texture. The soil pH was 8.02 (2.5:1 water to soil) in the surface layer (0–30 cm depth) when the
experiment was initiated in 2008. The organic matter and alkaline N were 14.1 g kg−1 and 174 mg kg−1,
respectively. Details of the experimental layouts are provided in the literature (Fan et al., 2014) [28].
Briefly, there were two growing seasons per year with continuous cropping of tomato: the winter-spring
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(WS) and the autumn-winter (AW) season. The WS season began in early February and ended in
the middle of June, while the AW season started in early August and ended the following January.
The summer fallow period (F) lasted less than two months. Conventional flooding irrigation with an
over fertilization treatment (CFF) was selected in the vegetable greenhouse. The treatment had three
replicates, with a plot size of 1.4 m × 10 m. Before tomato planting, chicken manure (215 kg N ha−1)
was applied to the soil as a basal fertilizer. A compound fertilizer was also applied as a basal fertilizer
at a rate of 339 kg N ha−1 per growing season. Within each season, soluble compound fertilizer was
applied through topdressing. The total fertilization rates were 1248 and 740.9 kg N ha−1 for the AW
and WS seasons, respectively. The irrigation timing was dependent on the soil water content and
climate, with levels of 1519 and 1052 mm for the WS and AW seasons, respectively.

2.2. N2O Flux Measurement

The N2O fluxes were measured in situ from January 2013 to January 2014 using a static opaque
chamber method. In each replicate plot, a rectangular stainless-steel frame (covering an area of 1.2 m
× 0.6 m) was permanently embedded into the soil to a depth of 10 cm. An opaque chamber with
a digital thermometer was mounted onto the frame, and the groove was filled with water to seal the
chamber during the gas sampling. Rectangular chambers with three height gradients (i.e., 0.5, 1.0 or
1.5 m) were used during sampling, depending on tomato growth. To measure the N2O fluxes, five gas
samples were collected from the chamber headspace, using a 60 mL gas-tight plastic syringe 0, 6, 12,
18, 24, and 30 min after chamber closure. The N2O fluxes were usually measured 2–4 times per week
following the irrigation and fertilization events, and all the gas samples were taken between 08:30 and
11:00 local standard time. The nitrous oxide concentration in the gas samples was analyzed within
24 h after sampling using a gas chromatograph equipped with an electron capture detector (Agilent
7890A, Agilent Technologies, Palo Alto, CA, USA).

The N2O fluxes were calculated by using the following equation:

F = M× dc
dt
× PV

ART
(1)

where F is the gas flux (µg m−2 h−1), and M is the molar mass of N2O. The dc/dt variable (in ppbv
min−1) represents the change rate of the N2O concentrations inside the chamber during the sampling
period, and was calculated as the slope of the regression line between the N2O concentration and
time [29]. A and V denote the surface area (in m2) and volume (in L) of the chamber, respectively. P, R
and T are the actual atmospheric pressure (in atm), the universal gas constant (i.e., 0.0821 L atm K−1

mol−1) and the mean air temperature (K) inside the chamber during the gas sampling. The seasonal
and annual N2O emissions were sequentially accumulated from the fluxes between every two adjacent
sampling intervals during the monitoring period.

The soil water-filled pore space (WFPS) was calculated using the gravimetric water content (%),
total soil porosity and soil bulk density [30]:

WFPS(%) =
gravimetric water content (%)

total soil porosity
× soil bulk density× 100 (2)

where total soil porosity = 1-soil bulk density/soil particle density. In this study, the soil particle
density was assumed be 2.65 g cm−3 [31].

2.3. Gas Kinetics during the Aerobic Incubations

For further investigation of the effects of soil moisture and manure application on N2O emission
bursts, we collected soil samples (0–20 cm) at the end of the field measurement. Fresh soil samples were
sieved (2 mm mesh) to remove roots and other debris, and were then stored at 4 ◦C until use. The major
properties of the soil used are summarized in Table 1. The chicken manure had a pH (H2O) of 7.80,
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a total N of 3.32% and a total C of 36.9%. Six treatments (four replicates for each) were included in the
laboratory incubation, considering the manure application rates (i.e., fertilization and nonfertilization)
and soil moisture levels (i.e., 65, 75 and 85% of the WFPS). For fertilization treatments, 0.2 g of dried
chicken manure (CM) was mixed with the soil (56.44 g dry mass for each replicate). The mixtures
were then transferred to 120 mL serum vials. Such a treatment corresponds to a fertilization level of
260 kg N ha−1 (M260), which is close to the fertilization convention of local farmers. For both the
fertilization and non-fertilization treatments, different amounts of deionized water were added to each
vial to achieve the targeted WFPS levels of 65%, 75% and 85%. Based on Equation (2), the soil WFPS
was determined using the calculated values of soil bulk density (1.13 g cm−3) assuming a particle
density of 2.65 g cm−3 [31].

Table 1. Initial soil physical and chemical properties in surface soils (0–20 cm).

Treatment pH †
Soil Organic

Carbon
(g kg−1)

Total
Nitrogen
(g kg−1)

Olsen-P
(mg kg−1)

Exchangeable
Potassium
(mg kg−1)

NH4
+-N

(mg kg−1)
NO3

−N
(mg kg−1)

CFF 8.03 ± 0.03 11.0 ± 0.24 1.10 ± 0.06 172 ± 3.7 496 ± 3.9 3.54 ± 1.3 43.1 ± 2.1
† pH at 2.5:1 of water: soil (v/w).

The vials were then immediately sealed with a bromobutyl stopper and screw cap (Macherey-
Nagel, Germany). All the vials were flushed using an oxygen-helium gas mixture (21% O2, v/v)
through 8 vacuuming-replenishing cycles to remove the N2. Finally, the vials were filled into 21%
O2 and kept under overpressure for 3 min. The pressure in the headspace was then equilibrated
with atmospheric pressure, using a syringe filled with deionized water. All the flushed vials were
transferred to a robotized incubation-monitoring system to conduct an aerobic soil incubation for
7 days at 20 ◦C. To maintain the aerobic conditions, pure O2 (99.99%) was injected into the vials when
the O2 concentration in the headspace was less than 10% (v/v) during the incubation period.

The gases (N2O, CO2, and O2) in the vial headspace were continuously monitored using the
incubation-monitoring system, at a sampling interval of 8 h. Details of this system have been described
in the literature, e.g., Molstad et al., 2007; Qu et al., 2014; Wang et al., 2017 [32–34]. Briefly, a gas sample
in the headspace gas was automatically sampled and transported by a peristaltic pump (Gilson Model
222, Gilson, France) connected to an Agilent 7890A GC equipped with an electron capture detector and
a thermal conductivity detector. The sampling and analysis were controlled by a custom-made Python
computer program. To maintain constant pressure inside the vials, an equal volume of ultrapure
helium (He, 99.999%) was automatically injected back into the vials after each sampling. The N2O and
CO2 production rates were calculated based on their concentration changes in the headspace for each
time increment between two the samplings [32]. All the reported measurements and calculations in
this study were based on dry soil mass.

2.4. Statistical Analysis

One-way analysis of variance (one-way ANOVA) with a general linear model was used to
determine the effect of the chicken manure application and WFPS. Statistical significance was denoted
at the level of p < 0.05, unless otherwise noted. The statistical analysis was conducted using the IBM
SPSS statistical package (SPSS Inc., New Orchard Road, Armonk, NY, USA). Redundancy analysis
(RDA) and correlation analysis were used to investigate the relationships between the soil properties
and the gaseous parameters (e.g., N2O, CO2 production rate, etc.). All the figures were made using
SigmaPlot 12.5 software (Systat Software Inc., San Jose, CA, USA). The values in the figures and tables
are presented in the sequence of the treatment means ± standard error.
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3. Results

3.1. Soil Moisture and N2O Flux during Field Observation

As shown in Figure 1a, the WFPS varied substantially with the rate and frequency of irrigation,
and reached a peak following each irrigation event. The average irrigation rate was higher in the
WS season than in the AW season, leading to significantly lower (p < 0.01) WFPS during AW season.
The soil WFPS in the AS season fluctuated between 41.1% and 78.6%, with an average of 64.6%. Then,
the WFPS declined to a lower level of ca. 30% during the fallow period, except for an irrigation-induced
peak. From the beginning of the AW season, frequent irrigation increased the soil moisture to a WFPS
range of 42.0–75.8%, with an average value of 60.4%.
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Figure 1. Temporary changes in soil water-filled pore space (WFPS) (a) and soil N2O flux (b) in
a solar greenhouse during the observation period. Bars in subfigures represent standard errors
(n = 3). Downward thick and thin arrows denote basal fertilization and topdressing with flooding
irrigation, respectively. WS, F and AS mean winter-spring season, summer fallow and autumn-winter
season, respectively.

The nitrous oxide efflux generally ranged between 2.51 and 9032 µg N m−2 h−1 over the
observation period, with exceptions during several emission pulses (Figure 1b). In the WS season,
the first emission burst occurred within the first 7 days after the chicken manure application followed by
flooding irrigation, and reached a peak flux of 2567 µg N m−2 h−1. The second pulse in the WS season
was observed on 17 February 2013, with a maximum flux of 485.7 µg N m−2 h−1. The nitrous oxide
efflux reached a peak of 9033 µg N m−2 h−1 on the second day after the first irrigation in the AW season.
Then, the efflux remained nearly constant until the second emission burst on 22 September 2013. These
results indicate that the soil N2O emission peaks were likely triggered by high loadings of manure
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and irrigation during the short period. The total N2O emissions were 5.32, 7.36 and 14.1 kg N ha−1,
for the AS and AW seasons and the observation year, respectively. The emission bursts accounted for
74.9%, 89.2% and 76.7% of the total N2O emissions during the corresponding periods. Therefore, the
manure and irrigation-induced emission bursts were the major contributors to the N2O fluxes from
the greenhouse field.

3.2. N2O and Mineral N Concentration during the Aerobic Incubation

The dynamic change in the N2O concentration in the vial headspace is presented in Figure 2a.
In the M0 treatments (i.e., without manure addition), the maximum N2O amounts in the headspace
were lower than 0.66 nmol N g−1 under the moisture gradients of 65% and 75% WFPS (i.e., 65%-M0
and 75%-M0). The nitrous oxide levels under 85% WFPS (i.e., 85%-M0) were significantly higher than
those under 65% and 75% WFPS, with a peak value of 99.4 nmol N g−1 at 72 h after the beginning of the
incubation (Figure 2a). This suggests that an increased WFPS significantly promotes the N2O emissions
from greenhouse vegetable fields, even without additional N fertilization. Nitrous oxide levels in
the M260 treatments were significantly higher (p < 0.05) than those in the M0 treatments under the
corresponding soil moisture. Their N2O levels increased with the WFPS, with peak concentrations of
26.6, 104.3 and 306.4 nmol N g−1 soil, under 65%, 75% and 85% WFPS, respectively. Moreover, the N2O
emission bursts temporarily lagged with the WFPS decline, reaching the maximum concentrations
at 64, 56 and 40 h after the beginning of the incubation. In summary, both the manure application
and irrigation contributed to the N2O emission bursts during incubation, which is consistent with the
results of the field monitoring.
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Figure 2. Temporary changes in the concentration of headspace N2O (a), soil NH4
+-N (b), NO2

−-N (c),
and NO3

−-N (d) during the first 7 days of incubation. Bars in subfigures represent error bars (n = 4).

The soil NH4
+ reached the maximum concentration at 16 h after the beginning of the incubation,

with an average of 2.76 and 19.5 mg N kg−1, in the M0 and M260 treatments, respectively (Figure 2b).
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This means that chicken manure contributed significantly to the soil ammonium. Then, the NH4
+ level

in all the treatments declined gradually throughout the incubation, with a decreasing rate of 3.91 ±
0.17 mg N kg−1 day−1 in the M260 treatment. As shown in Figure 2c, the soil NO2

− reached the peak
concentrations at 40 h, followed by rapid declines to 0.18 ± 0.07 mg N kg−1. The nitrite concentrations
in the M260 treatments were significantly higher than those in the M0 treatments, suggesting that the
manure application caused these NO2

− accumulations. Moreover, the synchronous changes in the
NO2

− and N2O concentrations supported the contribution of the NO2
− reduction to N2O emission.

In contrast, with NH4
+ and NO2

−, NO3
− did not show clear changes throughout the incubation

(Figure 2d). Furthermore, there was no significant difference in the NO3
− concentration between the

M0 and M260 treatments. This may be attributed to the high initial NO3
− concentration (ca. 43.1 mg

N kg−1) and the small contribution from chicken manure.

3.3. Integrated Relationships Between the Gas Emissions and the Soil Properties

We used redundancy analysis (RDA) to assess the integrated relationships between the gas
emissions and the soil properties (Figure 3). The first two ordination axes explained 82.7% of the
variances in the gas emissions (F = 16.7, p = 0.002). The nitrite concentration, WFPS, and soil organic C
had strong positive loadings along the first ordination axis (i.e., RDA1), which is interpreted to mainly
present the reduction of NO2

−-N, by organic matter under high WFPS (i.e., denitrification process).
RDA1 explained 56.5% of the variation in the gas emissions, meaning that NO2

− accumulation
and subsequent denitrification were the major contributors to the N2O emission bursts during the
incubation. Correlation analysis showed that the soil N2O emissions were significantly (p < 0.01)
influenced by NO2

−-N, soil organic C and WFPS. Furthermore, this deduction was also supported
by the results of Monte Carlo permutation tests showing that the variations in the gas emissions
were significantly correlated (p < 0.01) with the NO2

−-N, organic C, and WFPS. Ammonium, organic
carbon and total nitrogen positively loaded on the second ordination RDA axis (RDA2), while the
C/N ratio was negatively correlated with RDA2. Thus, RDA2 mainly reflects the mineralization of
organic nitrogen to NH4

+. Meanwhile, the NO3
−, CO2 production rate and O2 consumption also have

positive loadings on RDA2, meaning that it also brings the information of oxidation reactions organic
carbon and NH4

+. The lower variation (i.e., 26.2% in Figure 3) suggested that these mineralization and
oxidation processes were not the major contributors to N2O emissions.
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4. Discussion

4.1. Significance of the Bursts in N2O Emissions

Our results clarified the significance of N2O burst emissions in the greenhouse vegetable field,
which were driven by extreme manure and water loadings. During the field observation, fifteen N2O
bursts lasting 72 days contributed 76.7% to the annual emissions, with an average flux 17.3 times higher
than that during the non-burst period (Figure 1b). During the lab incubation, the chicken manure
application trigged rapid N2O accumulation, reaching N2O peak concentrations within 40 h after the
beginning of the incubation (Figure 2a). Further, ANOVA showed that both the manure application
and the WFPS accounted for the N2O bursts in the M260 treatments (Table 2). These findings are
comparable with the results of previous studies conducted in intensively-managed Chinese greenhouse
vegetable fields. For example, He et al. reported that rapid N2O emissions, within the first 38 days
after tomato transplanting, accounted for 57–84% of the seasonal total [15]. Hou et al. observed
that pulse emissions, during the period of tomato blooming and fruit setting, accounted for 86.1% of
the N2O emissions during whole growth period [35]. Similarly, Xu et al. reported that the majority
of N2O emissions (67.4–75.2%) occurred in the first 20 days after manure application and flooding
irrigation [36].

Table 2. N2O emission rate over the first 40 h of aerobic incubation, as affected by chicken manure
addition with water-filled pore space (WFPS).

Soil Moisture
N2O Emission Rate (nmol N g−1 h−1)

M0 M260

65% WFPS 0.009 ± 0.00 bB 0.31 ± 0.11 aB
75% WFPS 0.014 ± 0.00 bB 2.14 ± 0.57 aAB
85% WFPS 1.76 ± 0.47 bA 8.46 ± 2.89 aA

ANOVA
Chicken manure (CM) 9.35 **
Soil moisture (WFPS) 9.35 **

CM ×WFPS 3.66 *

Uppercase letters indicate significant differences (p < 0.01) in each column and lowercase letters indicate significant
differences (p < 0.05) in each row. ** Significant at p < 0.01, * Significant at p < 0.05.

4.2. Contribution of Denitrification to the N2O Emission Bursts

An integrated analysis of the results in our incubation showed that NO2
−, organic carbon and

WFPS jointly accelerated the emission of N2O (Figure 3). This is consistent with the denitrification
process in reaction stoichiometry, i.e., NO2

− reduction to N2O by organic carbon under reducing
ambient conditions. In the M260 treatments, the NO2

− increased to transitory maximums within 40 h
after the beginning of the incubation (Figure 2c). A transient NO2

− accumulation (ranging from 1.82 to
13.9 mg NO2

−-N kg−1) was observed in situ on day 2 after the manure application and irrigation in the
greenhouse soils [26]. Similarly, Chen et al. also reported that NO2

− accumulated in greenhouse soils
under different oxygen concentrations during a laboratory incubation [37]. This could be responsible
for the synchronous N2O emission bursts (see Figure 2a), due to the rapid NO2

− reduction under
circumneutral and alkaline conditions [38]. Another prerequisite of nitrite denitrification is the
lower oxidation-reduction potential that can be achieved by irrigation. Conceptually, nitrification is
favored within the WFPS range of 30–60%, while WFPSs higher than ca. 60% are more conducive to
denitrification processes [39–41]. As shown in Figure 4a, the field N2O flux increased substantially
when WFPS was higher than 60%. Furthermore, the soil moisture content exponentially increased the
N2O bursts in our incubation within the WFPS range of 65–85% (Figure 4b). These results agree with
previous studies that attributed irrigation induced N2O pulses to denitrification processes [42–46].
Finally, studies in molecular biology showed that N2O emission bursts after flooding events were
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observed concurrently with increases in denitrifier activities. Uchida et al. reported that the mRNA
levels of the denitrification genes (nirK, nirS, and nosZ) increased within a few hours after water
logging, with synchronous increases in N2O emission [47]. Riya et al. observed increases in both nirK
mRNA transcription and N2O emission after water flooding [48]. In summary, it is reasonable to argue
that the N2O emission bursts observed in our study were mainly due to nitrite denitrification triggered
by manure application and flooding irrigation.Sustainability 2019, 11, x FOR PEER REVIEW 9 of 12 

 
Figure 4. Relationships between soil water-filled pore space (WFPS) and field N2O flux (a) and 
laboratory N2O peak concentration (b). 

4.3. Implications for N2O Mitigation 

Our results show that nitrite denitrification triggered by fertilization and irrigation is the process 
responsible for N2O emission bursts from Chinese greenhouse soils. These findings may help us to 
develop more effective N2O emission mitigation strategies. First, optimizing the fertilization rate, 
especially the manure application rate, may be a straightforward measure, by reducing the substrates 
of the denitrification process. The effectiveness of this option for N2O mitigation has been 
demonstrated by several field experiments conducted in Chinese vegetable greenhouses [20,49,50]. 
Second, improvements in irrigation management also showed considerable potential for reducing 
N2O emissions. A value of 60% WFPS is widely recognized as the threshold of strongly increased 
N2O emissions from soils [42,45,51,52]. This implies that maintaining soil moisture at a higher level 
than this critical WFPS level, by adopting reasonable water management strategies may significantly 
depress denitrification and thus N2O production [53–58]. Ye et al. found that drip irrigation decreased 
N2O emissions by approximately 50% in greenhouse fields [58]. Third, avoiding simultaneous 
fertilization (e.g., manure-N and/or chemical-N) and irrigation may also be used as a promising 
strategy for decreasing N2O emission in Chinese greenhouse vegetable fields. Based on our results, 
this measure could limit nitrite denitrification, and thereby decrease N2O emission bursts. 

5. Conclusions 

Excessive manure and irrigation loadings caused concurrent N2O emission pulses that 
contributed 76.7% to the annual N2O emissions in the investigated vegetable greenhouse. The nitrous 
oxide concentration changed synchronously with the soil NO2− during the experimental incubation 
and increased exponentially with the soil WFPS under both field and laboratory conditions. The 
statistical analysis of the gas emission and soil properties indicated that nitrite denitrification under 
high WFPS was the major driving process for the observed N2O emission bursts. Therefore, 
significant N2O emission mitigation could be achieved in solar greenhouse vegetable fields through 
optimized water and N management. In this case, decreasing the manure application rate, drip 
irrigation and asynchronous manure and water inputs can be used as promising measures to reduce 
the transit denitrification process, and therefore, N2O emissions. Future studies should focus on 
screening these measures intended to reduce N2O emissions from greenhouses. 

Author Contributions: J.W., J.G. and S.L. designed the experiments. W.C., S.L., Z.Q. and H.S. carried out the 
experiments and performed the analyses. W.C., J.G., H.S., J.W., Q.W., Q.C. and S.L. substantially contributed to 
interpreting the results and writing the paper. 

Funding: National Natural Science Foundation of China: 41230856. 

WFPS (%)

20 40 60 80 100

N
2O

 fl
ux

 (μ
g 

N
 m

-2
 h

-1
)

0

500

1000

1500

2000

2500

3000

WFPS (%)

60 65 70 75 80 85 90

 N
2O

 p
ea

k 
co

nc
en

tr
at

io
n 

(n
m

ol
 N

 g
-1

)
0

100

200

300

400

M0 
M260 y=0.023exp(0.112x), R2=0.9328,  p < 0.001

y=1.27 × 10-12 exp(0.376x), R2=0.9854,  p < 0.001
b)a)

y=0.0045exp(0.157x), R2=0.3032,  p < 0.001

Figure 4. Relationships between soil water-filled pore space (WFPS) and field N2O flux (a) and
laboratory N2O peak concentration (b).

4.3. Implications for N2O Mitigation

Our results show that nitrite denitrification triggered by fertilization and irrigation is the process
responsible for N2O emission bursts from Chinese greenhouse soils. These findings may help us
to develop more effective N2O emission mitigation strategies. First, optimizing the fertilization
rate, especially the manure application rate, may be a straightforward measure, by reducing the
substrates of the denitrification process. The effectiveness of this option for N2O mitigation has been
demonstrated by several field experiments conducted in Chinese vegetable greenhouses [20,49,50].
Second, improvements in irrigation management also showed considerable potential for reducing
N2O emissions. A value of 60% WFPS is widely recognized as the threshold of strongly increased N2O
emissions from soils [42,45,51,52]. This implies that maintaining soil moisture at a higher level than this
critical WFPS level, by adopting reasonable water management strategies may significantly depress
denitrification and thus N2O production [53–58]. Ye et al. found that drip irrigation decreased N2O
emissions by approximately 50% in greenhouse fields [58]. Third, avoiding simultaneous fertilization
(e.g., manure-N and/or chemical-N) and irrigation may also be used as a promising strategy for
decreasing N2O emission in Chinese greenhouse vegetable fields. Based on our results, this measure
could limit nitrite denitrification, and thereby decrease N2O emission bursts.

5. Conclusions

Excessive manure and irrigation loadings caused concurrent N2O emission pulses that contributed
76.7% to the annual N2O emissions in the investigated vegetable greenhouse. The nitrous oxide
concentration changed synchronously with the soil NO2

− during the experimental incubation and
increased exponentially with the soil WFPS under both field and laboratory conditions. The statistical
analysis of the gas emission and soil properties indicated that nitrite denitrification under high
WFPS was the major driving process for the observed N2O emission bursts. Therefore, significant
N2O emission mitigation could be achieved in solar greenhouse vegetable fields through optimized
water and N management. In this case, decreasing the manure application rate, drip irrigation and
asynchronous manure and water inputs can be used as promising measures to reduce the transit
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denitrification process, and therefore, N2O emissions. Future studies should focus on screening these
measures intended to reduce N2O emissions from greenhouses.
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