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Abstract: Recently, data mining analysis techniques have been developed, as large spatial datasets
have accumulated in various fields. Such a data-driven analysis is necessary in areas of high
uncertainty and complexity, such as estimating groundwater potential. Therefore, in this study,
data mining of various spatial datasets, including those based on remote sensing data, was applied
to estimate groundwater potential. For the sustainable development of groundwater resources,
a plan for the systematic management of groundwater resources should be established based on a
quantitative understanding of the development potential. The purpose of this study was to map
and analyze the groundwater potential of Goyang-si in Gyeonggi-do province, South Korea and to
evaluate the sensitivity of each factor by applying data mining models for big data analysis. A total of
876 surveyed groundwater pumping capacity data were used, 50% of which were randomly classified
into training and test datasets to analyze groundwater potential. A total of 13 factors extracted from
satellite-based topographical, land cover, soil, forest, geological, hydrogeological, and survey-based
precipitation data were used. The frequency ratio (FR) and boosted classification tree (BCT) models
were used to analyze the relationships between the groundwater pumping capacity and related
factors. Groundwater potential maps were constructed and validated with the receiver operating
characteristic (ROC) curve, with accuracy rates of 68.31% and 69.39% for the FR and BCT models,
respectively. A sensitivity analysis for both models was performed to assess the influence of each
factor. The results of this study are expected to be useful for establishing an effective groundwater
management plan in the future.

Keywords: groundwater potential mapping; data mining model; boosted classification tree; big data;
goyang-si

1. Introduction

In recent years, spatial data collected from remote sensing platforms have accumulated in various
fields, and the use of large spatial datasets has spread widely. As data is created and managed in
a variety of ways, it becomes increasingly important to analyze the complexity of the data and to
understand the relationships within the data. Complex and uncertain data objects require analysis;
for such a data-driven analysis, data mining techniques have been developed that can enhance the
usability of big data and could be applied in various fields [1,2]. Groundwater potential is one of the
most difficult fields for estimation, as it is impossible to conduct direct measurements in all areas; the
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groundwater potential is the potential of an area to be an aquifer that could be used for groundwater
development. Therefore, in this study, we analyzed the relationships between the groundwater
potential and the remote sensing data based on various spatial data related to groundwater.

For an efficient groundwater quality management, areas with a high amount of developable
groundwater resources should be investigated first. The accurate estimation and prediction of
groundwater production characteristics are necessary for the efficient utilization and systematic
management of groundwater resources. To obtain exact measurements, conventional exploration
methods used for various groundwater-related factors must be considered, along with their complex
interactions. This method requires considerable time, money, and manpower for field research.
Additionally, the presence of groundwater in a particular area depends on factors catalogued in big
data: topography, geological structures, lithology, fracture density, connectivity, slope, groundwater
potential, and changes in these factors based on climatic conditions. Therefore, recently developed
big data methods, particularly data mining models, should be applied to the analysis of groundwater
potential. The regional groundwater potential could be easily assessed using data mining models prior
to field-based hydrogeological resistivity surveys to simplify the interpretation of the relationships
between the hydrogeological factors and the groundwater pumping capacity.

With regards to water management, water security is essential to actively deal with environmental
threats due to economic changes or natural disasters [3]. In particular, changes in environmental
conditions such as increased drought due to climate change, industrialization, urbanization, nuclear
power plant accidents, and other disasters have underscored the importance of ensuring sustainable
and high-quality water resources. Groundwater resources with high levels of safety against
environmental threats are considered a key future resource [4]. To effectively preserve and manage
groundwater resources in preparation for expected social and natural environmental changes, the
developable amount of groundwater must first be evaluated.

Korea uses around 3.7 billion tons of groundwater per year, accounting for about 10% of its total
water use, which is 35% of the developable amount of groundwater [5]; 50% is from the river water, and
40% is from the dam facility of the remaining 90% of the source. Developable groundwater, which is the
groundwater development potential, refers to the amount of groundwater that can be pumped from
the aquifer continuously within a range that does not destroy the water circulation system and does not
cause groundwater disturbances [6]. Changes in the land use and demand for groundwater in response
to industrialization and urbanization have led to regional biases in groundwater resources [7]. As a
result of pollution caused by natural and anthropogenic pollutants due to industrial development and
land use changes, the interest in maintaining and preserving high-quality groundwater in sufficient
quantities has increased. The effects of climate change, such as drought, floods, and sea level rise, affect
the supply of water underground [8]. Groundwater is not an infinite source of water, and once it is
polluted, considerable amounts of time and money are required to clean and restore it. It is necessary to
establish a plan for the efficient use and management of groundwater resources through an exploration
of their current status and usage [9].

The increasing demand for water along with the expected changes in aquatic environments due
to global climate change highlight the urgent need for a quantitative methodology that can represent
groundwater production. A groundwater potential model based on changes in temperature and
rainfall patterns was developed that evaluates the vulnerability of groundwater [10]. In addition,
studies on the sustainability of domestic groundwater resources [11] and changes in agricultural water
availability due to climate change [12] have been carried out at the regional level. However, due to
the uncertainty and complexity of groundwater potential, a groundwater productivity assessment
methodology has not yet been established. It is difficult for local government officials or policymakers
to determine groundwater management priorities. Thus, the sustainable and efficient management of
groundwater resources based on a data-driven analysis of groundwater potential is essential.

Numerous studies have used geographic information system (GIS) analysis methods to map
the groundwater potential with thematic layers such as topography, soils, lithology, and drainage
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patterns [13–16]. Aquifer potential maps have been developed in New Zealand, a country with a very
similar hydrogeological and meteorological landscapes to Korea [17]. Several countries have attempted
to develop an aquifer potential map, but they are complex and require large efforts. Therefore, the
data mining model is an effective way to estimate the groundwater potential.

Probabilistic models have also been applied to groundwater potential mapping using a multi-
criteria decision analysis and weights-of-evidence modeling [18,19]. The weights of different factors
were measured and assigned based on personal judgment and local information [20]. Other assessments
using machine-learning models such as decision trees, fuzzy logic, and numerical modeling which
provided more sophisticated results [21–23]. To derive additional thematic layers, the integration of
remote sensing and geophysical surveys with GIS has been attempted [15,24,25]. A study based on
remote sensing data was also conducted for groundwater potential mapping [9,15,25,26]. However,
previous studies have been limited to the GIS analysis of groundwater potential rather than big data
methods. Spatial correlations could be derived when a number of interspersed spatial layers indicate a
relationship with a specific event such as the groundwater pumping capacity. In terms of being able to
analyze basic statistical trends of the big data, the frequency ratio (FR) models were applied in various
study areas [27–30]. Also, the FR model has been applied to assess the groundwater potential [18,19,31].
The FR model is a simple statistic method to analyze the correlation between the groundwater-related
factors and groundwater potential. Additional data mining models such as the boosted classification
tree (BCT) model and GIS-based approaches have not yet been used to describe the groundwater
potential. The boosted tree model is one of the big data analysis techniques applied to various fields in
recent years [32–35]. After the selection of the groundwater-related factors by FR model, a data mining
model of BCT model could derive the additional quantitative analysis of the relationships between the
groundwater-related factors and groundwater potential.

The purpose of this study was to map and analyze the groundwater potential in Goyang-si,
South Korea using the FR and BCT data mining models. The satellite-based thematic layers such
as topography, land cover, soil, and forest and the geological, hydrogeological, and precipitation
characteristics were analyzed. Thematic maps generated from remote sensing data as source data were
used; aerial photographs and satellite images including Kompsat-2 and Kompsat-3 were used to derive
the topographical, land use, soil, forest, and geological maps used in this study. Using spatial analysis
techniques, a correlation analysis was performed with the groundwater pumping capacity data, and
the characteristics of groundwater potential were derived from the hydrogeological characteristics.
Based on these results, the groundwater potential of Goyang-si was calculated and the groundwater
pumping capacity data were used for comparative test. The FR model simplified the probabilistic
relationships between the dependent and independent variables to quantify the relationships between
the reclassified hydrological factors and groundwater capacity. The relationships calculated using the
FR model enabled the easier interpretation of the groundwater potential indicated by the rating of
each factor. Also, the factors used in this study are derived based on remote sensing data, and the use
of remote sensing-based data could activate the application researches of remote sensing.

2. Study Area

The study area is Goyang-si which is the administrative district under Gyeonggi-do near the
Seoul metropolitan area (Figure 1). It is surrounded by Yangju-si to the northeast, Seoul metropolitan
city to the southeast, Kimpo-si to the southwest, and the Han River and Paju-si to the north. It is
located at 126◦40′ E to 126◦59′ E longitude, 37◦34′ N to 37◦44′ N latitude. Goyang-si covers an area of
267.36 km2 and has a population of 102,456 as of 2015. This area experiences 350 mm of rainfall per
month during the rainy season of July and August.
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The geology of Goyang-si is composed of granite gneiss in the south and crystalline gneiss in
the northeast. It is located in the lower Han River, and mostly consists of plains, but there is a steep
mountainous area in the eastern portion with a high average elevation, which is a branch of the
Gwangju mountain range, with the main mountain of Bukhansan (836 m). Thus, the study region is
composed of high mountainous areas in the east and lowland hills and riverbed sediments in the west.
The northeastern part of the study area contains low hills with mountainous forests in the middle area
and relatively large sedimentary plains in the west along the Han River and Gokrung stream. This
area includes diverse land uses, with urban and agricultural areas. However, currently, most of the
study area is city area, and there is little water imported from the outside for agricultural purposes.
The water supply system mainly services urban areas, whereas the outer city center and agricultural
areas use a considerable amount of groundwater for household and agricultural purposes. The system
supplies agricultural water through many wells and does not draw water from the outside of the city.

More than 9000 underground water exploitation facilities exist in Goyang-si. The rate of ground
water use of the city is approximately 1007.49 m3 per year, indicating that groundwater resources
have been actively developed and utilized [36]. The total amount of water resources in Goyang-si
was 343,266 × 103 m3 per year, of which 82,832 × 103 m3 per year or 24.13% was lost due to
evapotranspiration and 260.443 × 103 m3 per year or 75.87% was outflow. Based on an analysis
of the total outflow as the direct outflow, intermediate outflow, and base outflow, 176,811 × 103 m3

per year, corresponding to 51.51% of the total water resources, was discharged directly or through
intermediate leaching. The basin runoff corresponding to the amount of groundwater potential was
calculated as 83,637 × 103 m3 per year, which is 24.36% of the total water resources. The groundwater
potential depends on the distribution and reliability of the pumping capacity data as well as the
changes in the factors evaluated or the addition of pumping capacity data [37]. Therefore, it is
necessary to evaluate the groundwater potential to support the sustainable use of groundwater in the
study area and to prepare groundwater management measures based on the quantitative results of
this evaluation.

3. Spatial Datasets

To create a map of the groundwater potential in Goyang-si, a spatial database of the groundwater
data and related influencing factors was constructed. Various remote sensing-based data including
topographic, land cover, and forest maps were collected and utilized for data mining. Each dataset is
derived from aerial photographs and satellite images, and these datasets are independently managed
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by various agencies. In this study, we created a spatial database integrating numerous data types
provided by the governmental institutions.

Groundwater pumping capacity data were collected, and a groundwater location map was
generated from the basic groundwater survey report based on field observations of the Korea Rural
Community Corporation (Figure 2). This data was acquired during 2006–2009 as a result of the
pumping test, which is a test for observing changes in the head of aquifers in aquifers during a certain
period of time. Approximately 8700 pumping test data of groundwater were assembled from the field
observations, and among them, a total of 876 pumping capacity data were selected, accounting for the
top 10% of total pumping capacity data. The selected data were then randomly classified into a training
dataset of 438 (50%) aquifers, while the remaining 438 (50%) were used for test [33,38–41]. A total of
13 groundwater-related influencing factors were selected; these factors were extracted and calculated
from satellite-based data including topographic, land cover, soil, forest, and hydrological maps, as well
as Automatic Weather System (AWS) data obtained from the government and other organizations.
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A pumping test is a field experiment to determine the permeability coefficient and the storage
coefficient of an aquifer by interpreting the water-level response obtained from one or more observation
wells. The hydrogeological map was produced for this study area; the hydraulic conductivity and
storage coefficient were obtained based on the hydrogeological map from the basic groundwater
survey report that was published by the Korea Rural community Corporation [6]. Table 1 summarizes
the permeability coefficient and storage coefficient of each hydrogeological map.

Various thematic maps derived from remote sensing data as source data were used in this study
(Table 2). For the topographical map, the geographical data is acquired by numerical mapping
using an analytical plotter from the aerial photographs taken from 2006; additional corrections were
performed and updated by a field survey with the enlarged image for the areas not readable in
aerial photographs. For the land use map, aerial photographs with 0.25 m of spatial resolution taken
in 2012 were classified into 22 medium classification level categories by using an automatic image
classification method. In addition, the classification accuracy was evaluated, and the quality was
examined by using Kompsat-2 with 1 m of spatial resolution and Kompsat-3 with 0.7 m of spatial
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resolution of spatial resolution image data and digital topographical map. Soil maps are produced by
conducting field surveys based on the basic map which is made by interpreting aerial photographs
using stereoscopic images, such as the color or texture. The forest map is also produced by aerial
photograph interpretation and with field investigations. The geological and hydrogeological maps are
generated through field surveys and office investigation focusing on the fundamental map generated
from aerial photographs.

Table 1. The groundwater characteristics by hydrogeological unit [6].

Category Division Paragneiss Unconsolidated Sediment

Permeability coefficient

Number of wells 50 6
Maximum 32.69 770.50
Minimum 0.04 4.43

Mean 4.31 176.20
Median 1.54 38.80

Standard Deviation 8.05 299.95

Storage coefficient

Number of wells 41 -
Maximum 0.2250 -
Minimum 0.0004 -

Mean 0.0420 -
Median 0.0216 -

Standard Deviation 0.0546 -

Table 2. The data layers describing the groundwater potential within the study region.

Category Factors Data Type Scale (Year) Source Data

Underground water
pumping capacity data a

Training
Test Point - Field survey

Topographic map b DEM (m)
Slope (◦) GRID 1:5000

(2006–2016) Aerial photograph

Land cover map c Land Cover Polygon 1:5000
(2012)

Aerial photograph,
Kompsat-2 and -3

Soil map d
Soil Drainage
Soil Texture
Soil Depth

Polygon 1:5000
(1998~2006)

Aerial photograph,
Field survey

Forest map e Timber type
Timber density Polygon 1:25,000

(2004–2006)
Aerial photograph,

Field survey

Geological map f Geology Polygon 1:50,000
(2004)

Aerial photograph,
Field survey

Hydrogeological map g
Hydrogeology

Unconsolidated Aquifer
Fractured Rock Aquifer

Polygon 1:50,000
(2009) Field survey

Precipitation h Accumulated Precipitation Point - AWS
a The training and test data from the basic groundwater survey report from field observations by the Korea Rural
Community Corporation. b The topographical factors were extracted from a digital topographic map by the National
Geographic Information Institute (NGII; http://www.ngii.go.kr). c The land cover map released by the Ministry
of Environment of Korea. d The detailed soil map produced by the Rural Development Administration (RDA;
http://www.rda.go.kr). e The forest map produced by the Korea Forest Service (KFS; http://www.forest.go.kr).
f The geological map produced by the Korea Institute of Geoscience and Mineral Resources (KIGAM; http://www.
kigam.re.kr). g The hydrogeological map produced by K-water (K-water; www.kwater.or.kr). h The accumulated
precipitation of 2008–2014 from 14 Automatic Weather System (AWS) observatories.

The elevation and slope of the topographical factors were extracted from the digital elevation
model (DEM) using a 1:5000 digital topographic map from the National Geographic Information
Institute (NGII), which was produced from aerial photographs acquired in 2015. Topography is
affected by erosion and sedimentation; thus, it is an important factor influencing many physical and
chemical environmental variables because it affects the composition and migration of groundwater,

http://www.ngii.go.kr
http://www.rda.go.kr
http://www.forest.go.kr
http://www.kigam.re.kr
http://www.kigam.re.kr
www.kwater.or.kr
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soil, and surface water [42]. The land cover data were extracted from the 1:50,000 land cover map
issued by the Ministry of Environment. The land cover maps were generated from aerial photographs
with Kompsat-2 and -3 satellite images and classified into 22 medium classification level categories.
Due to the size of the study area, it is difficult to show the medium level of classification categories so
that it is reclassified into seven categories: urbanized area, agricultural area, forest area, grassland area,
marsh area, bare ground area, and water area.

Drainage density is a factor related to permeability and surface runoff that indirectly affects the
groundwater potential of the study area. The higher the density of the drainage area, the lower the
permeability and the more surface runoff is produced [26]. Therefore, soil drainage, soil texture, and
soil depth factors were extracted from a detailed 1:25,000 soil map issued by the Rural Development
Administration (RDA). The soil data were produced by constructing cross-sectional data through
digging and layering by the RDA in Figure 3. Soil drainage is divided into five grades from very well
drained to poorly drained, and soil texture is divided into six classes: clay, silt, fine silt, fine coarse
loam, coarse loam, and sand. Soil depth was divided into four grades ranging from very shallow (less
than 20 cm) to very deep (more than 150 cm). The timber type and timber density factors were also
used for this study. Timber type affects the soil moisture since the different characteristics of the roots
determine the soil strength and moisture content, affecting the evapotranspiration. Also, the forest
soil is affected by the timber density since the intensity of radiation and the soil moisture is related to
the forest density [43]. The timber type and timber density were determined based on the 1:25,000
forest map produced by the Korea Forest Service (KFS). Based on previous digital forest mapping
data generated since 1996, this map was updated and supplemented with a database of forest aerial
photographs built from 2004 to 2006. Specifically, the map was modified based on the criteria of forest
classification, which was confirmed through local verification if necessary.
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This study considered lithology as a geological factor, which was extracted from 1:50,000 digital
geological maps created in 2004 by the Korea Institute of Geoscience and Mineral Resources (KIGAM).
Considering the types of lithology present, the lithology in the study area was divided into 11 groups
including limestone, dyke, alluvium, and gneiss. In addition, the geologic age was considered for
hydrological geology, and thus, the factors of paragneiss, unconsolidated sediment, and Triassic to
Jurassic acid intrusion were extracted. Alluvial and fractured rock aquifers were also extracted from
the hydrogeological map in a basic groundwater survey report that was published by the Korea Rural
community Corporation [6].

The precipitation data in millimeter units were calculated from the average precipitation in
2008–2014 based on 14 AWS stations. AWS is a system to observe the weather elements such as
precipitation in real time at certain areas; the precipitation data from 14 AWS stations were used in
this study from the Korea Meteorological Administration and Gyeonggi-do Provincial Government:
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Gangseo (9450), Mapo (9645.3), Eunpyung (10,079.5), Gimpo (8499 and 9003), Goyang (9606.5 and 9869),
Paju (7985.5, 10,000.5, and 9303.5), Geumgok (9712.5), Geumchon (9346), Dorasan (9746.5), and Juksung
(8846). The 14-point precipitation averages for the 7 years before and after the construction of thematic
maps for the spatial database were rasterized using an inverse distance weighting (IDW) interpolation.

The DEM, slope, and accumulated precipitation were reclassified into 10 classes each, and the
remaining categorical factors were used as described above. The groundwater characteristics and
influencing factors used in this study were constructed as a spatial database with a spatial resolution of
5 m using ArcGIS 10.3. The spatial database to which the FR and BCT models were applied is shown
in Figure 4.
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(c) Land cover; (d) Soil drainage;(e) Soil texture; (f) Soil depth; (g) Timber type; (h) Timber density; (i)
Geology; (j) Hydrogeology; (k) Unconsolidated Aquifer; (l) Fractured Rock Aquifer and (m) Accumulated
Precipitation.
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4. Methodology

The estimation of the groundwater potential was performed using a big data analysis based on
increasingly complex data related to accumulated groundwater. Specifically, among various big data
analysis methodologies, the data mining techniques of FR and BCT were applied to the geospatial
dataset constructed in this study; also, a sensitivity analysis was performed. The pumping test data
were limited due to the economic and regional situation of the study area. Therefore, in this study,
an estimation of the values in regions without data was performed through the use of a probabilistic
model based on hydrogeological factors. The methodology of this study is outlined in Figure 5.Sustainability 2019, 11, x FOR PEER REVIEW  11  of  22 
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FR is a standard statistical model used for basic correlation analyses between data. The FR model
was used to calculate probabilities from the groundwater pumping capacity data in each class of each
factor. The BCT model is a classification tree model that uses an ensemble learning method to connect
several weak classifiers and to adjust their weighting to enhance the prediction ability. The advantage
of BCT is that it easily measures the relative importance of each factor. The BCT model was applied
to quantify the factors of groundwater potential and their relationships with each hydrogeological
factor in this study. Therefore, for the data-based analysis, the precedence correlation analysis was
performed through the statistical analysis method of FR first, and the BCT was applied based on the
selected groundwater related factors.

The groundwater pumping capacity data described above were used as dependent variables,
whereas the groundwater-related influencing factors were considered independent variables.
Groundwater pumping capacity data derived from the pumping test were gathered, and all data
except the top 10% were removed. Only the values representing a pumped water quantity over
54 (m3/day) were extracted based on the upper 10% criterion so that an amount of groundwater is
considered to be sufficient. To apply the data mining models FR and BCT, the top 10% of groundwater
pumping capacity data were assigned a value of 1, whereas the other data were represented by 0. The
groundwater pumping capacity data were randomly extracted with their statistical properties and
divided into training and test datasets with 438 points, half of the well points that met the upper 10%
criterion, in each dataset. For the training step, a 3-fold cross-validation methodology was used. Three
random samples were generated from the training samples, and two of the three sample sets were



Sustainability 2019, 11, 1678 11 of 21

used to model the classification tree. The remaining one sample set was used for the validation to
provide accuracy for the prediction and to adjust the BCT, and this process was repeated. The models
used in this study are described in detail below.

4.1. FR Model

The FR model, a bivariate statistical method, was used as a geospatial evaluation tool to determine
the probabilistic relationships between dependent and explanatory variables [45]. The FR model is
defined as the probability ratio of nonoccurrence to occurrence of a given element [46]. In this study,
the FR model was defined as the ratio of the area where groundwater wells with an amount of water
above a certain reference level were located to the total study area. The FR model was based on
the correlation between the distribution of groundwater locations and groundwater-related factors
and the observed relationship. To apply the FR model, groundwater-related influencing factors were
classified into ten classes using the quantile classification technique. The FR values for each grade of
groundwater-related influencing factors are described by Equation (1) [47].

FR =
Rtrn

Rtotal
, (1)

where Rtrn is the ratio of the number of wells in the class of each factor to the total number of wells
above the reference value and Rtotal is the ratio of the number of pixels in the class of each factor to the
number of pixels in the entire study area.

The FR value was calculated according to Equation (1) by dividing the ratio of each factor by
the ratio of the class of the factor to the total area. An FR value of 1 represents the mean, and values
higher than 1 indicate that the correlation between groundwater and groundwater-related factors is
stronger than average, whereas smaller values represent lower correlations [48]. The final FR value of
the groundwater potential was calculated by merging all the FR values of groundwater-related factors
using the overlay function in the ArcGIS software.

4.2. BCT Model

Boosting is an ensemble learning methodology that creates strong learners through the use
of multiple weak learners and is a binary response classification algorithm [49]. It combines the
predictions from a set of weak classifiers, and eventually their average predictions form a strong
classifier. A single-split classification tree is a weak classifier used in the AdaBoost algorithm, which
forms a sequence of trees using updated data with new weighting. Each data case is classified in the
current tree sequence, and the weights are determined from this classification to create the next tree.
A misclassified case is assigned a higher weight than a correctly classified case, resulting in the largest
weight being given to cases where classification is difficult. This process increases the probability of
correct classification based on weights. The final classification step is determined by the importance
of that classification across the tree sequence. AdaBoost can be examined from a statistical point of
view, which clarifies the boosting process and allows it to become a function in approximation-based
or additive models [50]. In addition, gradient boosting is similar to AdaBoost but with the addition of
a classifier to compensate for errors. However, gradient boosting is a method used for training a new
model to reduce the residual error in the pre-learning phase rather than for updating the weight of the
data sample at each learning step. A boosted tree constructed using gradient boosting was found to be
a very accurate predictor with a complex dataset, and therefore, the BCT model in the STATISTICA
10.3 software was applied for groundwater potential mapping.

The BCT is performed as follows. After generating a coded variable for each class with a value of
1 or 0, a different boosting tree is fitted to each category or class of categorical dependent variables
to determine whether the observations show an appropriate result. The residual for the subsequent
boosting step is calculated through logistic transformation. Finally, logistic transformation is applied to
the prediction for each value of 1 and 0 to calculate the associated classification probability [51]. For the
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BCT model in STATISTICA 10.3, the learning rate was set to 0.01. The tree complexity was set to 5,
and the bag fraction was set to 0.5. Given the training set, BCT calculates the prediction probability
through Equation (2).

P(y = 1|x) = 1
1 + exp(−∑M

m=1 hm(x))
, (2)

where hm(x) represents a single decision tree and M is the number of iterations with an input dataset
of Z = {(X1, Y1), . . . , (Xn, Yn)}.

f0(x) = log
p1

1− p1
, (3)

where f0(x) is the initial approximation and p1 is an object in the first class used for optimal initial
approximation of the sigmoid function. The gradient of L is calculated iteratively.

gi =
dL(yi, fm(xi))

d fm(xi)
, (4)

where gi is the target, i.e., the groundwater pumping capacity data in this study. To calculate the
maximum of Equation (4), the gradients of all objects in the dataset are calculated, moving in the
direction of the gradient. A new decision tree hm(x) is created and added to the ensemble so that the
composition maximizes likelihood.

5. Result

5.1. Relationships between Groundwater Potential Area and Related Factors

Table 3 shows the correlations between groundwater pumping capacity data and
groundwater-related influencing factors calculated using the FR model. The FR value is a statistical
proportional representation of the position of the well with a capacity above a certain level. Factors
driving the spatial location of high FR values are a priority for groundwater management, since it has
a high portion of groundwater use from the well. In the case of topographical factors, the value of FR
was highest at 1.6 when the elevation was higher than 25 m and less than 35 m, and this factor highly
correlated with the potential for groundwater. Similarly, for elevation, the correlation slope was 1.41 in
the class of 5.17–6.90◦.

Table 3. The frequency ratios of the groundwater potential and related factors.

Factor Class No. of GP % of GP No. of Pixels in
Domain

% of Pixels
in Domain

Frequency
Ratio

DEM (m)

0–6.32 6 1.37 738,934 6.93 0.2
6.32–12.84 62 14.16 1,750,252 16.42 0.86

12.84–19.37 73 16.67 1,268,615 11.91 1.4
19.37–25.90 67 15.3 1,020,539 9.58 1.6
25.90–35.69 73 16.67 1,156,821 10.86 1.54
35.69–48.74 74 16.89 1,142,494 10.72 1.58
48.74–68.33 44 10.05 1,052,033 9.87 1.02
68.33–104.23 26 5.94 900,333 8.45 0.7

104.23–192.34 12 2.74 828,311 7.77 0.35
192.34–812.44 1 0.23 797,734 7.49 0.03

Slope (◦)

0–0.86 33 7.53 937,309 8.8 0.86
0.8–1.72 45 10.27 799,379 7.5 1.37
1.72–2.58 62 14.16 1,274,518 11.96 1.18
2.58–3.73 56 12.79 1,334,139 12.52 1.02
3.73–5.17 76 17.35 1,260,977 11.83 1.47
5.17–6.90 59 13.47 1,019,036 9.56 1.41
6.90–9.49 42 9.59 1,100,972 10.33 0.93

9.49–12.94 28 6.39 990,821 9.3 0.69
12.94–18.41 31 7.08 987,761 9.27 0.76
18.41–73.35 6 1.37 951,155 8.93 0.15
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Table 3. Cont.

Factor Class No. of GP % of GP No. of Pixels in
Domain

% of Pixels
in Domain

Frequency
Ratio

Land Cover

Urbanization area 99 22.6 1,869,095 17.54 1.29
Agricultural Area 145 33.11 3,032,552 28.46 1.16

Forest Area 119 27.17 3,940,217 36.98 0.73
Grassland Area 36 8.22 783,324 7.35 1.12

Marsh Area 1 0.23 204,700 1.92 0.12
Bare Ground Area 37 8.45 623,063 5.85 1.44

Water Area 1 0.23 203,116 1.91 0.12

Soil Drainage

Very Well-Drained 11 2.51 1,385,869 13.01 0.19
Well-Drained 188 42.92 4,019,512 37.72 1.14

Moderately Well-Drained 62 14.16 1,209,355 11.35 1.25
Somewhat poorly drained 155 35.39 3,230,237 30.31 1.17

Poorly drained 11 2.51 226,266 2.12 1.18
Rocky/Water 11 2.51 584,828 5.49 0.46

Soil Texture

Clay 0 0 33,538 0.31 0
Silt 123 28.08 2,434,625 22.85 1.23

Fine Silt 37 8.45 831,562 7.8 1.08
Fine Coarse Loam 34 7.76 1,215,505 11.41 0.68

Coarse Loam 228 52.05 5,444,552 51.09 1.02
Sand 5 1.14 111,457 1.05 1.09

Rocky/Water 11 2.51 584,828 5.49 0.46

Soil Depth

<20 7 1.6 925,332 8.68 0.18
20–50 23 5.25 752,235 7.06 0.74
50–100 140 31.96 3,126,839 29.34 1.09
>100 257 58.68 5,266,833 49.43 1.19

Rocky/Water 11 2.51 584,828 5.49 0.46

Timber type

Mixed forest of soft and
hardwood 48 10.96 1,560,969 14.65 0.75

Non-stocked forest land 0 0 644 0.01 0
Pinus koraiensis 1 0.23 11,616 0.11 2.09

Pinus rigida forest 7 1.6 137,954 1.29 1.23
Leftover area 2 0.46 429,236 4.03 0.11

Pine forest 0 0 5,841 0.05 0
Broadleaved forest 8 1.83 867,186 8.14 0.22

Grassland 0 0 877 0.01 0
Chestnut forest 0 0 2474 0.02 0

Needleleaf artificial forest 0 0 450 0 0
Farmland 1 0.23 43,431 0.41 0.56
Non-forest 371 84.7 7,595,389 71.28 1.19

Timber density

Loose 0 0 450 0 0
Moderate 1 0.23 90,263 0.85 0.27

Dense 63 14.38 2,491,760 23.38 0.62
Non-forest 374 85.39 8,073,594 75.77 1.13

Geology

Amphibolite 1 0.23 819 0.01 29.71
Quartzite 0 0 802 0.01 0

Quartz porphyry 0 0 1690 0.02 0
Limestone 0 0 1196 0.01 0

Dyke 0 0 18,984 0.18 0
Alluvium 244 55.71 4,908,462 46.06 1.21

Gneiss 5 1.14 542,931 5.1 0.22
Granite gneiss 10 2.28 104,290 0.98 2.33
Biotite gneiss 173 39.5 3,928,106 36.86 1.07
Biotite granite 3 0.68 668,298 6.27 0.11

Granite 1 0.23 90,001 0.84 0.27
Water 1 0.23 390,488 3.66 0.06

Hydrogeology
Paragneiss 192 43.84 4,610,939 43.27 1.01

Unconsolidated sediment 241 55.02 5,298,742 49.73 1.11
Triassic to Jurassic acid

Intrusion (−) 5 1.14 746,386 7 0.16

Unconsolidated
Aquifer

<30 0 0 21,078 0.2 0
30–60 43 9.82 738,562 6.93 1.42
60–90 79 18.04 1,406,735 13.2 1.37
90–120 110 25.11 2,880,996 27.04 0.93
>120 15 3.42 284,918 2.67 1.28

Non-alluvium 191 43.61 5,323,778 49.96 0.87
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Table 3. Cont.

Factor Class No. of GP % of GP No. of Pixels in
Domain

% of Pixels
in Domain

Frequency
Ratio

Fractured Rock
Aquifer

<30 1 0.23 679,504 6.38 0.04
30–60 5 1.14 408,955 3.84 0.3
60–90 46 10.5 1,695,695 15.91 0.66
90–120 337 76.94 7,113,573 66.76 1.15
>120 49 11.19 758,077 7.11 1.57

Non-rubble land 0 0 263 0 0

Accumulated
Precipitation

8558–9009 21 4.79 1,068,593 10.03 0.48
9009–9309 50 11.42 1,066,356 10.01 1.14
9309–9423 78 17.81 1,063,003 9.98 1.79
9423–9473 26 5.94 1,095,211 10.28 0.58
9473–9499 62 14.16 1,050,592 9.86 1.44
9499–9523 48 10.96 1,055,219 9.9 1.11
9523–9549 64 14.61 1,068,927 10.03 1.46
9549–9588 40 9.13 1,080,629 10.14 0.9
9588–9629 36 8.22 1,056,204 9.91 0.83
9629–9839 13 2.97 1,051,333 9.87 0.3

Land cover showed the highest value and a strong correlation with groundwater potential of
1.44 in bare ground areas. The soil drainage factor had a value of 1.25 in the moderately well-drained
class. For soil texture, silt (1.23) had the highest FR value. The underground depth potential and FR
value were highest at 100 cm and above (1.19). Among the forest-related factors, Pinus koraiensis (2.09)
exhibited a high correlation, and a trend of a higher timber density associated with a higher FR value
was observed, reaching 0.62 in the dense class excluding non-forest areas.

Among the geological factors, with amphibolite (29.71) excluded due to its small area, the value
was highest for granite gneiss (2.33). An analysis related to the geological factors was performed based
on the geological map produced by the research institute KIGAM. The type of geological data was
analyzed according to the geological type classified by KIGAM [45,52–54]. Among the hydrogeological
factors, a value of 1.11 was calculated in unconsolidated sediment. Unconsolidated and fractured
rock aquifers had almost no pumping capacity at values of 30 or less. Unconsolidated aquifer FR was
1.42 between 30 and 60 at the highest, whereas fractured rock aquifer reached 1.57 at values over 120.
Lastly, the cumulative rainfall precipitation had an FR of 1.79 when the accumulated precipitation was
in the class of 9309–9423 mm.

The results of the correlation analysis between the groundwater pumping capacity data and
groundwater-related influencing factors using the BCT model are shown in Table 4. The geology
(lithology) factor had the relatively highest predictor importance value of 1.0. All predictor importance
values are scaled to a maximum of 1.0. The second most important factor, timber type, had a value
over 0.5, whereas the timber density, elevation, and accumulated precipitation showed predictor
importance values above 0.2. The relative slope, soil texture, soil depth, and land cover exhibited the
lowest predictor importance values of less than 0.1.

Table 4. The predictor importance values for the boosted classification tree (BCT) analysis.

Category Predictor Importance Value

Geology 1.000
Timber type 0.522

Timber density 0.295
DEM (m) 0.257

Accumulated Precipitation 0.237
Soil Drainage 0.185

Unconsolidated Aquifer 0.141
Hydrogeology 0.120

Fractured Rock Aquifer 0.107
Slope (◦) 0.098

Soil Texture 0.096
Soil Depth 0.083

Land Cover 0.074
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5.2. Groundwater Potential Mapping and Its Test

Based on the results presented in Table 3, a groundwater potential map was created by substituting
and adding the FR values calculated for each class of groundwater influencing factor (Figure 6a).
The groundwater potential data on maps generated through the FR model were sorted into 5 classes
from very low to very high using the quantile classification technique. In terms of the areal distribution
of each classification class, the very high class covered 52.72 km2, accounting for 19.79% of the total
area. Likewise, based on BCT results, the entire study area was classified into five groups using
the quantile classification method (Figure 6b). On the BCT-derived groundwater potential map, the
area with a very high potential for groundwater was 53.16 km2 (19.95%), slightly larger than that on
the groundwater potential map created using FR (Table 4). Also, the groundwater potential maps
from both models spatially shows similar patterns with the factor of the unconsolidated aquifer. The
influence of each factor can be estimated through the similarity of the spatial pattern.Sustainability 2019, 11, x FOR PEER REVIEW  16  of  22 
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The maps resulting from groundwater potential mapping using the FR and BCT models were
compared and tested using receiver operating characteristic (ROC) curves. The ROC curve is a
widely used method of graphical plot that shows the capabilities of data mining models with certain
thresholds [55,56]. The ROC curve is a method used to evaluate the performance of a classification
model that has two categories, with a sensitivity on the x-axis and 1 − specificity on the y-axis. In this
study, the categories were divided into data classes, indicating a pumping capacity above a certain
level and other classes. The ROC curve method includes a success rate curve and a prediction rate
curve. The success rate curve is created using the training data and indicates how well the model
reflects the location of groundwater pumping capacity data used in the study. The prediction rate curve
is generated using the test data and shows how well the model predicts the potential for groundwater
pumping capacity [31]. The performance of the model was evaluated by calculating the area under
the ROC curve (AUC), which is classified as excellent when the AUC value is 0.9–1.0, good when
0.8–0.90, and worthless when 0.7–0.8 [57]. Thus, higher values of AUC indicate a higher accuracy.
The groundwater potential map prepared using FR had an accuracy of 0.6831 and that of the map
prepared using the BCT model was 0.6939 (Figure 7).
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5.3. Sensitivity Analysis

A sensitivity analysis was performed to assess the difference in the effect of each factor on the
groundwater potential. The suitability of the test results in the previous step was assessed through the
analysis. For FR and BCT models, each factor of the 13 related factors were removed from the input
dataset, respectively. The degree of accuracy reduction allowed us to determine the degree of influence
of each factor. As a result of the FR model, it showed about 0.46% of increase when the soil depth
factor was removed from the spatial dataset (Table 5). Also, the test rate decreased when topographic,
geology, and other factors were removed, including DEM (−1.07) accumulated precipitation (−0.98),
unconsolidated aquifer (−0.58), land cover (−0.32), geology (−0.25), soil texture (−0.24), fractured
rock aquifer (−0.12), slope (−0.07), and hydrogeology (−0.04); these results indicate that these factors
have low influences in the FR model. For the BCT model, when the timber type factor was removed,
the test rate showed a 69.45% accuracy, which is a 0.06% increase. On the other hand, there was no
difference when the soil depth, timber density, and hydrogeology factors were removed. For the other
factors, it showed a reduced accuracy while fractured rock aquifer and land cover showed over 1% of
reduction. The sensitivity analysis showed that there was no significant change even if each input data
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was removed. In other words, the accuracy result of this study was considered to be the best result of
applying the data mining technique in this study area.

Table 5. The predictor importance values for the boosted classification tree (BCT) analysis.

Category Percent Accuracy of Each Model

FR Model Variation BCT Model Variation

All factors 68.31 69.39
DEM (m) 67.24 −1.07 68.69 −0.70
Slope (◦) 68.24 −0.07 69.32 −0.07

Land Cover 67.99 −0.32 68.32 −1.07
Soil Drainage 68.44 0.13 69.14 −0.25
Soil Texture 68.07 −0.24 68.90 −0.49
Soil Depth 68.77 0.46 69.39 0

Timber type 68.51 0.20 69.45 0.06
Timber density 68.67 0.36 69.39 0

Geology 68.06 −0.25 69.20 −0.19
Hydrogeology 68.27 −0.04 69.39 0

Unconsolidated Aquifer 67.73 −0.58 69.12 −0.27
Fractured Rock Aquifer 68.19 −0.12 68.24 −1.15

Accumulated Precipitation 67.33 −0.98 68.86 −0.53

6. Discussion and Conclusions

In this study, the groundwater potential was predicted using data mining and big data methodologies
based on remote sensing data products.

A spatial database was first constructed, containing groundwater pumping capacity data and
groundwater-related influencing factors. The data for each factor were produced from remote sensing
products including aerial photographs and satellite images. The groundwater potential distribution for
Goyang-si was generated using FR and BCT data mining models, and the results from the two models
were compared. For groundwater pumping capacity data, a total of 876 data were used, of which 438
(50%) were employed as training data and 438 (50%) as test data. A total of 13 groundwater-related
influencing factors were obtained and calculated from thematic maps distributed by governments
and other organizations, including DEM, slope, land cover, soil drainage, soil texture, soil depth,
timber type, timber density, geology, hydrogeology, unconsolidated aquifer, fractured rock aquifer,
and accumulated precipitation.

An FR analysis showed how each factor correlated with the groundwater pumping capacity.
The class with the strongest correlation in each factor could be used to prioritize the sites for
groundwater management. In addition, the BCT model reduced the spatial uncertainty and identified
the predictor importance of various factors, indicating the priority of groundwater-related factors.
Therefore, through a spatial comparison of the BCT and FR results, the accuracy of groundwater
potential estimation could be improved in areas with high potentials, and such areas could be managed
as high priority sites.

For the BCT model, geology, timber type, timber density, DEM, and accumulated precipitation
showed high predictor importance, in descending order. FR also had a strong correlation with Pinus
koraiensis (2.09) in the timber type factor and was highly related to a dense forest cover. The DEM
showed a possibility of high groundwater potential within approximately 10–50 m with FR values of
1.4 or higher. The accumulated precipitation showed its highest correlation at 9309–9423 mm.

Among the other factors, the FR analysis showed a high tendency of 1 or more with slopes of
around 1–7 degrees in the topographical factor. In particular, DEM showed a strong relationship from
19 to 25 m, with an FR value of 1.6. For the land cover factor, the highest value was 1.44 for bare
ground, providing a good indication of groundwater location characteristics. For very well-drained
soil, the groundwater potential rate showed a small correlation. The groundwater potential was also
correlated with increasing soil depth. The geological and hydrological influences included strong
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correlations with granite gneiss (2.33) and unconsolidated sediment (1.11). Unconsolidated aquifer
and fractured rock aquifer had the highest correlations at 30–60 and over 120, with values of 1.42 and
1.57, respectively.

The groundwater potential map generated in this study was tested using the ROC curve and
the predicted curve. The AUC value of the resulting map was around 70% for both models; the BCT
model had a slightly higher accuracy rate than the FR model. The FR model is a simple and easy
method for analyzing groundwater potential. Although the BCT model is more difficult to apply
than the FR model, it allows the quantitative analysis of the relationships between the groundwater
pumping capacity and groundwater-related influencing factors by predicting the degree of uncertainty.
In addition, a sensitivity analysis was performed to show that there is little change even if each data is
removed from input dataset.

The groundwater potential map created in this study could be used to survey the groundwater
resources in Goyang-si in a more effective and economical way. It could also be used to establish
a groundwater management plan for the sustainable use of groundwater resources. The accuracy
of the groundwater potential map can be improved by examining additional factors in the study
area in the future, such as hydrometeorological characteristics and groundwater usage. In addition,
natural environmental data related to groundwater contamination and visualization information can
be quantitatively analyzed in this geospatial data format.

Nevertheless, this study has some limitations. First, there is a lack of the groundwater level data,
the amount of groundwater data, and the groundwater quality data available for research purposes.
The information about the groundwater observation data in the present study area was collected from
governmental organizations based on regular water quality inspection data for groundwaters included
in the private groundwater survey. Ongoing research and the evaluation of the current infrastructure
based on the results of groundwater potentials are essential and should be reflected in policymaking
to overcome these limitations.

The relationships between the class of each groundwater-related factor and the groundwater
potential should be generalized and combined in future studies. This approach could be used as
a guideline to determine the thresholds for Korean groundwater management. Additionally, it is
possible to collectively assess the groundwater potential in other areas in Korea, and information from
this study could be used to select groundwater monitoring sites and to plan future groundwater use.
With the big data methodologies, the cumulative management of groundwater pumping test data will
enable groundwater potential mapping across national units with larger scale.

Author Contributions: Conceptualization, M.-J.L. and Y.H.; methodology, M.-J.L. and S.L.; software, S.L.;
validation, S.L.; formal analysis, M.-J.L., Y.H. and S.L.; investigation, M.-J.L. and S.L.; resources, Y.H.;
writing—original draft preparation, S.L.; writing—review and editing, M.-J.L.; visualization, S.L.

Funding: This research was conducted at Korea Environment Institute (KEI) with support from the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2018R1D1A1B07041203).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lytras, M.; Visvizi, A. Who uses smart city services and what to make of it: Toward interdisciplinary smart
cities research. Sustainability 2018, 10, 1998. [CrossRef]

2. Lytras, M.D.; Raghavan, V.; Damiani, E. Big data and data analytics research: From metaphors to value space
for collective wisdom in human decision making and smart machines. Int. J. Semant. Web Inf. Syst. 2017, 13,
1–10. [CrossRef]

3. Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.;
Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature
2010, 467, 555. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/su10061998
http://dx.doi.org/10.4018/IJSWIS.2017010101
http://dx.doi.org/10.1038/nature09440
http://www.ncbi.nlm.nih.gov/pubmed/20882010


Sustainability 2019, 11, 1678 19 of 21

4. Oki, T.; Kanae, S.J. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072.
[CrossRef]

5. Lee, J.W.; Jung, C.G.; Kim, D.R.; Kim, S.J. Assessment of future climate change impact on groundwater level
behavior in Geum river basin using SWAT. J. Korea Water Resour. Assoc. 2018, 51, 247–261.

6. Korea Institute of Civil Engineering and Building Technology. Groundwater Management Basic Plan; Korea
Institute of Civil Engineering and Building Technology: Gyeonggi-do, Korea, 2007.

7. Graniel, C.; Morris, L.; Carrillo-Rivera, J.J. Effects of urbanization on groundwater resources of Merida,
Yucatan, Mexico. Environ. Geol. 1999, 37, 303–312. [CrossRef]

8. Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.;
Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol.
2014, 518, 250–266. [CrossRef]

9. Bera, K.; Bandyopadhyay, J. Ground water potential mapping in Dulung watershed using remote sensing &
GIS techniques, West Bengal, India. Int. J. Sci. Res. Publ. 2012, 2, 1–7.

10. Lee, M.-J.; Lee, J.-H. Coupled model development between groundwater recharge quantity and climate
change using GIS. J. Korean Assoc. Geogr. Inf. Stud. 2011, 14, 36–51. [CrossRef]

11. Woo, N.C. Climate change and groundwater sustainability in Korea for next decade. J. Soil Groundw. Environ.
2013, 18, 1–5. [CrossRef]

12. Song, S.-H.; Choi, K.-J. An appropriate utilization of agricultural water resources of Jeju island with climate
change (I). J. Soil Groundw. Environ. 2012, 17, 62–70. [CrossRef]

13. Mokadem, N.; Boughariou, E.; Mudarra, M.; Brahim, F.B.; Andreo, B.; Hamed, Y.; Bouri, S. Mapping potential
zones for groundwater recharge and its evaluation in arid environments using a GIS approach: Case study
of North Gafsa Basin (Central Tunisia). J. Afr. Earth Sci. 2018, 141, 107–117. [CrossRef]

14. Nayak, P.; Rai, A.K.; Tripathy, S. Evaluating groundwater prospects using GIS techniques. Sustain. Water
Resour. Manag. 2017, 3, 129–139. [CrossRef]

15. Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. Delineation of groundwater potential zones in the
Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique.
Appl. Water Sci. 2017, 7, 503–519. [CrossRef]
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