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Abstract: The objective of this study is the classification of urban climate zones (UCZs) based
on spatial statistical approaches to provide key information for the establishment of thermal
environments to improve urban planning. To achieve this, using data from 246 automatic weather
stations (AWSs), air temperature maps in the summer of the study area were prepared applying
universal kriging interpolation analysis. In addition, 22 preliminary variables to classify UCZs were
prepared by a 100 m × 100 m grid. Next, six influential urban spatial variables to classify UCZs
were finalized using spatial regression analysis between air temperature and preliminary variables.
Finally, the UCZs of the study area were delineated by applying K-mean clustering analysis, and
each spatial characteristic of the UCZs was identified. The results found that the accuracy of the air
temperature of the study area ranged from ±0.184 ◦C to ±0.824 ◦C with a mean 0.501 root mean
square predict error (RMSPE). Elevation, normalized difference vegetation index (NDVI), commercial
area, average height of buildings, terrain roughness class, building height to road width (H/W)
ratio, distance from subway stations, and distance from water spaces were identified as finalized
variables to classify UCZs. Finally, a total of 8 types of UCZs were identified and each zone showed a
different urban spatial pattern and air temperature range. Based on the spatial statistical analysis
results, this study delineated clearer UCZs boundaries by applying influential urban spatial elements
that resulted from previous classification studies of UCZs mainly based on pre-determined spatial
variables. The methods presented in this study can be effectively applied to other cities to establish
urban heat island counter measures that have similar weather observation conditions.

Keywords: urban climate zones; spatial statistical analysis; air temperature; urban spatial variables

1. Introduction

The urban heat island (UHI) phenomenon has been recognized as a negative side effect of rapid
urbanization. The main causes of the urban heat island phenomenon include trapping of short
and long wave radiation between buildings, decreasing of long-wave radiative heat losses due to
building construction, increasing storage of sensible heat in the construction materials of buildings and
structures, anthropogenic heat released from human activities, and reduction of evapotranspiration
potential [1,2]. Various attempts have been made to mitigate UHI through urban planning and design.
In order to achieve effective urban heat island mitigation, it is necessary to understand and apply
urban climatic information in urban planning [3].
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In this regard, the urban climate zone (UCZ) concept is useful as a UHI mitigation measure
because it offers integrated information on climate characteristics and related spatial elements [4].
UCZs are homogeneously classified areas that distinguish climate characteristics based on urban
structure, land cover, urban fabric, and urban metabolism [5]. Considered fundamental research on
UCZ, Chandler [6], Auer Jr. [7], Ellefsen [8], and Oke [5] established the concept of UCZ and suggested
major variables including topography, land cover, building forms, etc., to classify UCZs. Recently, as
empirical studies, Houet and Pigeon [9] investigated the usefulness of the UCZ concept as a tool to
understand climate phenomena, and Lee and Oh [3] identified influential variables to classify UCZs
and delineated UCZs boundaries based on statistical analyses.

Meanwhile, in order to analyze the urban heat island phenomenon, precise air temperature maps
should be prepared as much as possible. In the case of Korea, due to its complex topographical
situations and diverse meteorological elements with much spatial and temporal variations, a large
number of stations are needed to quantitatively sense local climate characteristics. Since it is practically
difficult to prepare high resolution meteorological data by installing observation stations, interpolation
methods have been frequently employed. Generally, they calculate point data by weighing inversely
and proportional to the square of distance, assuming that the homogeneity of meteorological elements
decreases with distance. However, these methods alone have limitations in obtaining good quality,
precise, and high-resolution data. Most of the meteorological elements, including air temperature,
are affected not only by distance but also by the surrounding topographical environment, such as
elevation. Therefore, in order to prepare a precise and high-resolution air temperature map that can
represent local climate characteristics, it is necessary to develop a more effective spatial interpolation
method considering the influence of diverse meteorological elements such as topography in addition
to distance [10,11]. In this regard, interpolation methods that consider topographical factors such as
elevation, slope, and aspect are needed for urban heat island research [11].

Meanwhile, statistical approaches applying multiple regression analysis have been applied to
identify the relationship between UHI and urban spatial characteristics. However, the statistical
approach has limitations in presenting several physical phenomena [12]. The major reason for the
limitation is that installing climate measurement devices in entire urban areas is impossible due to
space constraints, installation time, and expensive operating costs. This lack of observational data
makes it difficult to analyze the relationship between the urban heat island phenomena and urban
spatial characteristics. Another reason is that conventional regression analysis, such as the ordinary
least squares (OLS) model, is based on the assumption that observations are independent, resulting in a
failure to capture the spatial dependence of data when they are applied to geo-referenced datasets [13].
Therefore, spatial regression analysis has been recently used to explain UHI, according to spatial
neighborhood effects [1].

In order to classify UCZs more accurately, it is essential to conduct in-depth investigation on
the relationship between urban climate changes and urban spatial elements through systematic and
scientific analysis. Therefore, the aims of this study are to: (1) identify influential urban spatial elements
to classify UCZs based on spatial statistical analyses, (2) delineate UCZs boundaries, and (3) provide
key information for urban planning and design to establish UHI mitigation measures.

2. Materials and Methods

This study consists of four parts and each process is presented in Figure 1. First, observation data
were obtained from 246 automatic weather stations (AWSs), which were observed on cloudless days
with a gentle breeze speed (less than 5.4 m/s, based on Beaufort Wind Scale). Using these data, air
temperature maps of the study area were prepared by a universal kriging interpolation method. Next,
preliminary independent variables were prepared, including topography, land use, land cover, urban
form, human activities, and locational characteristics, to predict air temperature. Third, influential
urban spatial elements were identified to classify UCZs by spatial regression analysis. Finally, UCZ
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boundaries in the study area were delineated by K-mean clustering analysis. In addition, the spatial
characteristics of each UCZ were investigated.Sustainability 2019, 11, x FOR PEER REVIEW 3 of 13 
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246 weather stations, 26 of the AWSs were used to verify the air temperature analysis results. 
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Figure 2. The study area and automatic weather stations (AWS). 

Figure 1. Study workflow. UCZ is urban climate zone, AWS is automatic weather station.

A case study was conducted for Seoul, the capital of South Korea. Seoul is one of the densest cities
in the world in which 21.5% (about 11 million inhabitants) of the country’s total population reside.
Seoul is also a representative heat island city that has diverse spatial characteristics including land
cover, land use, building form, etc. In the case of South Korea, weather information was investigated by
26 AWSs (automatic weather stations), which are operated by the Korea Meteorological Administration
(KMA), and the average distance of each weather station is approximately 3 km in the study area. It is
very difficult to classify UCZs of metropolitan cities using such a resolution. Therefore, additional
weather data collected by 220 AWSs of a Korean private company (SK Weather Planet) were integrated
into the analysis in this study (Figure 2). Among the 246 weather stations, 26 of the AWSs were used to
verify the air temperature analysis results. Eventually, 220 of the AWSs were actually used to prepare
the air temperature map.
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2.1. Analysis of Air Temperature

Urban heat island intensity has commonly been defined as the temperature difference between
urban and rural places [14]. In a metropolitan city, the air temperature based UHI is reported to be
high and positive during nighttime (2–3 h after sunset) for cloudless days and light winds [15,16].
Considering such characteristics of an urban heat island, analysis time points were selected to classify
UCZs. In order to take into account the climate characteristics, three days per month in summer
(from June to August) with the lowest cloudiness and the lowest wind speed were investigated.
Subsequently, considering sunset times and weather conditions (under a cloudless sky and gentle
breeze wind speed), 10:00 p.m. and 11:00 p.m. of 9 days in each summer in 2015 and 2016 were chosen
for statistical analyses (Table 1).

Table 1. Weather conditions for the 18 days in 2015 and 2016.

Min Air
Temperature

Max Air
Temperature

Mean Air
Temperature

Mean Wind
Speed

Mean Amount of
Cloud (1–10)

2015

6 June 18.8 ◦C 31.1 ◦C 24.4 ◦C 2.4 m/s 1.4

14 June 18.3 ◦C 37.7 ◦C 22.5 ◦C 3.3 m/s 3.9

30 June 21.2 ◦C 30.2 ◦C 25.3 ◦C 2.7 m/s 3.4

4 July 21.6 ◦C 32.3 ◦C 26.8 ◦C 2.4 m/s 3.6

27 July 21.4 ◦C 30.6 ◦C 25.0 ◦C 1.9 m/s 4

29 July 30.1 ◦C 33.5 ◦C 28.6 ◦C 2.5 m/s 2.5

8 August 26.1 ◦C 30.6 ◦C 26.1 ◦C 3.8 m/s 2.1

28 August 19.8 ◦C 30.7 ◦C 25.1 ◦C 2.2 m/s 1.6

30 August 19.9 ◦C 30.7 ◦C 24.6 ◦C 1.9 m/s 2.4

2016

5 June 17.3 ◦C 32.2 ◦C 24.7 ◦C 1.7 m/s 3.5

9 June 17.8 ◦C 31.3 ◦C 24.1 ◦C 2.0 m/s 1.4

19 June 20.3 ◦C 29.3 ◦C 1.90 ◦C 2.7 m/s 4.4

8 July 27.3 ◦C 21.2 ◦C 2.4 ◦C 1.8 m/s 0.1

9 July 27.7 ◦C 23.2 ◦C 33.1 ◦C 1.8 m/s 3.1

19 July 20.9 ◦C 32.4 ◦C 27.1 ◦C 1.5 m/s 3.6

5 August 26.5 ◦C 36.0 ◦C 31.2 ◦C 1.8 m/s 1.9

10 August 26.1 ◦C 34.8 ◦C 29.4 ◦C 1.9 m/s 4.4

17 August 25.1 ◦C 34.7 ◦C 29.9 ◦C 1.9 m/s 2.4

Meanwhile, the average spacing of the AWSs in the case study area is 1087 m, which is much
shorter than other metropolises. To analyze the air temperature, statistical interpolation methods are
commonly used to prepare temperature maps using point-based measurements. IDW (Inverse Distance
Weighting) of Shepard [17], Kriging [18], and Spline [19] are representative statistical interpolation
methods. However, although the average spacing of the AWSs is much shorter than in other cities, these
methods still have limitations in that they do not effectively reflect the heterogeneity of urban spatial
characteristics that include the influence of land cover and elevation on temperature. Therefore, in this
study, the universal kriging interpolation method based on the GPR (Gaussian process regression)
model was applied in order to consider variables such as altitude, distance to coast or river, and water
space area ratio besides the distance between measurement points. The universal kriging, an unbiased
linear estimator with minimum estimation variance properties, was used based upon the theory of
regionalized variables [20]. The GPR model is generally constructed as follows:

y = Fβ + Z(X) + e (1)
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where F is the designed matrix, B is the regression coefficient, Z(X) is the Gaussian stochastic process,
which shows an average of 0, and σ2

ZR(X) the variance–covariance matrix, and e is the normal
distributed observational error that shows an average of 0 and σ2

e variance. Based on the GPR model,
additional explanatory variables were inputted in the universal kriging interpolation method and the
equation is as follows:

y = β0 + β2(elevation) + β2(distance f rom water space) + β3(water space area ratio) + Z(X) + e (2)

The Z(X) is determined by latitude and longitude coordinates. To determine the appropriate
interpolation methods, data from 220 AWSs were interpolated using universal kriging interpolation
methods and they were compared with data from 26 AWSs. The results found that the root mean
square predict error (RMSPE) by the universal kriging interpolation method ranged from ±0.184 ◦C to
±0.824 ◦C with a mean 0.501 ◦C. Among the 36 analysis time points, 10 time points that showed the
relatively low RMSPE (less than 0.45) were selected to delineated air temperature (Table 2). Thus, 10 air
temperature maps of 2 and 3 h after sunset were prepared, and finally, an average air temperature map
was calculated from these maps.

Table 2. Ten time points to prepare air temperature analysis (RMSPE < 0.45).

Min (◦C) Max (◦C) Mean (◦C) SD RMSPE

2015

12 p.m., 6 June 15.330 24.021 21.890 1.320 0.390
10 p.m., 1 July 15.124 23.133 21.569 1.034 0.439
10 p.m., 27 July 22.330 29.242 27.897 0.921 0.428
11 p.m., 27 July 24.356 28.327 27.258 1.021 0.435
10 p.m., 30 July 24.745 29.756 27.235 1.243 0.325

2016

10 p.m., 5 June 16.312 25.021 22.814 1.245 0.371
10 p.m., 8 July 16.532 25.721 23.024 1.221 0.390

11 p.m., 10 August 29.751 29.751 28.019 1.251 0.184
10 p.m., 17 August 31.211 31.211 29.149 1.383 0.203
11 p.m., 17 August 30.714 30.714 27.571 1.320 0.260

2.2. Selection of Preliminary Variables

Adopting the research of Lee and Oh [3], this study classified urban spatial elements into
6 categories including topology, land use, land cover, building characteristics, human activity, and
locational characteristics. The number of total preliminary variables was 22 (Table 3). Meanwhile,
determining spatial resolution was important in order to identify influential variables and delineate
UCZs boundaries. Considering the research of Houet and Pigeon [9] and Lee and Oh [3], this study
prepared preliminary variables to classify UCZs using a 100 m grid resolution.

Table 3. The preliminary variables for the air temperature predicting model (adopted from Lee and
Oh [3]).

Categories Variables (Unit)

Topography Slope (degree), elevation (m)

Land use Residential, commercial, industrial, green space, water space area ratio (%)

Land cover Impervious surface area ratio (%), albedo (0 to1), NDVI (0 to 1)

Urban form
Average width of buildings (m), average height of buildings (m), the number of

buildings, building surface fraction (%), floor area ratio (%), H/W ratio
(number), terrain roughness class (number)

Human activities Population (person), number of vehicles (number)

Locational characteristics Distance from green spaces (m), distance from water spaces (m), distance from
subway stations (m)
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2.3. Identification of Influential Urban Spatial Elements to Classify UCZs

To select independent variables for an air temperature prediction model, correlation analysis
was conducted to investigate the interrelationship between preliminary variables and air temperature.
The potential multi-collinearity among the preliminary variables were also identified. Based on
correlation analysis, ordinary least squares (OLS) regression analysis was applied. In order to reduce
the heteroscedastic effect of wide ranging preliminary variables, the logarithm of the dependent
variable, Ln (air temperature), was used. A step-wise regression analysis method (forward selection
approach) was applied to find influential variables that would affect air temperature. Since the air
temperature map was delineated by the interpolation method, the spatial lag model (SLM) was next
estimated to control the effects of air temperature in neighboring grids.

2.4. UCZ Classification

Using the influential urban spatial elements identified, the UCZs of the study area were classified
by mean clustering analysis. Since this study had a large number of samples (N: 52,961), K-mean
clustering analysis was applied due to its efficacy of ascertaining clusters within large quantities of
data [21]. For the K-mean clustering analysis, the Z-scores of the influential variables identified by
regression analysis were calculated. The calculated Z-scores were inputted as parameters for cluster
analysis, and iterative calculations were performed until the adjustment of the centroids of the clusters
did not occur after setting the centroids of the initial clusters.

On the other hand, one of the most important points in applying K-mean cluster analysis is
determining K (the appropriate number of clusters). Oke [5] classified UCZs as 7 categories, and in
the case of Ellefsen [8] UTZs (urban terrain zones) were classified as 9 categories. Considering such
previous studies, the preliminary number of classes for K-mean clustering analysis (K) was determined
from 6 to 12 (total 7 cases), and the appropriate number of K was chosen by sensitivity analysis using
the ANOVA test. Thus, in the ANOVA test, the dependent variables were Ln (air temperature), and
factorial variables were the cases of clusters. The F values of 7 ANOVA tests were investigated to
determine whether the distribution of Ln (air temperature) in each cluster were statistically significant.
A case with the highest F value among the 7 cases was chosen as the final K to classify the UCZs. Then,
characteristics of each UCZ were determined based on the chosen K-mean clustering analysis results.
Finally, the UCZs maps were prepared to explain the actual air temperature phenomenon.

3. Results

3.1. Air Temperature

Figure 3 presents air temperature maps of the study area. Air temperatures ranged from 24.14 ◦C
to 30.46 ◦C with an average value of 27.23 ◦C. The maximum temperature differences were analyzed
and found to be more than 6.32 ◦C. This confirmed that the urban heat island phenomenon was
relatively severe in the study area.

3.2. Identification of Influential Urban Spatial Elements to Classify UCZs

Table 4 shows the correlation analysis results of air temperature and urban spatial elements.
The most positively correlated variable was the impervious surface area ratio, whereas the elevation
showed the most negative correlation. In order to create a model to predict air temperature, variables
that had strong correlations were inputted for step-wise regression analysis. In order to create a model
to predict air temperature, the variables that had strong correlations were inputted for the step-wise
regression analysis using the statistical software (SPSS 21). The estimated model showed 0.603 of
R2 and eight variables were found to be significant at the 99% level and had signs consistent with
the results of the correlation analysis. In addition, due to the multi-collinearity diagnosis, all VIFs
of the dependent variables were found to be less than three, and it was confirmed that there was no
multi-collinearity problem in the models.
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Table 4. Correlation analysis results between air temperature and urban spatial elements.

Categories Correlation Coefficients

Topography Elevation (−0.681 **), slope (−0.621 **)

Land use Green space (−0.501 **), commercial (0.310 **), residential (0.284 **), industrial (0.037 **)

Land cover Impervious surface area ratio (0.552 **), NDVI (−0.603 **), albedo (−0.461 **)

Urban form
Sky view factor (SVF) (−0.400 **), average width of buildings (0.356 **), average height of
buildings (0.309 **), the number of buildings (0.331 **), building surface fraction (0.437 **),

terrain roughness class (0.559 **), H/W ratio (0.187 **)

Locational
characteristics

Distance from green spaces (0.411 **), distance from subway stations (−0.670 **),
distance from water spaces (−0.047 **)

N: 52,961, **: p < 0.01.

However, as a result of the Lagrange multiplier diagnostics for spatial dependence, it was found
that the OLS error terms were spatially auto-correlated. In order to reduce this spatial auto correlation,
SLM was next estimated to control the effects of air temperature in neighboring grids. The results
showed that R2 of SLM increased to 0.828, and coefficients of the independent variables had the same
signs as in the OLS models. In addition, eight variables were all significant at the 1% level. Therefore,
eight variables, including elevation, NDVI, commercial area, average height of buildings, terrain
roughness class, H/W ratio, distance from subway stations, and distance from water spaces were
included as significant variables to classify UCZs (Table 5).
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Table 5. Results of regression analysis (OLS and SLM).

OLS SLM

Coefficient t Coefficient z

T Elevation −1.914 × 10−4 *** −85.345 −9.936 × 10−5 *** −58.788
LU Commercial 4.252 × 10−7 *** −15.332 1.775 × 10−7 *** 4.435
LC NDVI −0.036 *** −15.332 −0.015 *** −10.655
UF TRC 0.027 *** 45.107 0.010 *** 27.525

AHB 8.861 × 10−5 *** 8.548 3.561 × 10−7 *** 4.938
H/W 1.982 × 10−4 *** 6.504 1.982 × 10−4 *** 4.585

LoC DS −1.775 × 10−5 *** −69.509 −7.893 × 10−5 *** −44.6821
DW 4.204 × 10−6 *** 19.503 2.544 × 10−6 *** 17.2331

constant 3.353 *** 3783.853 1.542 162.049
$ - 0.540 190.521

Log-likelihood 112,643 133,591
R2 0.603 0.828

N: 52,961, ***: Statistically significant at the 1% level. (T: Topography, LU: Land Use, LC: Land Cover, UF:
Urban Form, LoC: Locational Characteristics, TRC: Terrain Roughness Class, AHB: Average Height of Buildings,
DS: Distance from Subway Station, DW: Distance from Water spaces).

3.3. The Results of UCZ Classification

The seven cases of ANOVA test results showed that each clustered result was in a statistically
different group. In the case of the variations of F values, it was confirmed that the F values were the
highest when the number of cluster (K) was eight. In addition, when the number of clusters was
larger than nine, it was found that the F values decreased (Appendix A). Based on the results of this
sensitivity analysis, this study found that the appropriate number of clusters for UCZs was eight.
Based on the selected clustering analysis results (Table 6 and Figure 4), UCZs could be classified into
mountainous areas (cluster 1), hilly areas and urban forest (cluster 4), high-rise built up areas with very
a high H/W ratio (cluster 3), mid-rise built up areas with a high H/W ratio (cluster 5), mid-rise built
up areas without green spaces (cluster 6), high-rise built up areas with a high H/W ratio (cluster 2),
high-rise built up areas with various building heights (cluster 7), and commercial areas without green
spaces (Figure 5). As a result, the classification of UCZs in this study showed similar spatial patterns
with the air temperature analysis results.

Sustainability 2019, 11, x FOR PEER REVIEW 9 of 13 

Table 6. Classification results of UCZs. 

Cluster 
Factor 

Cluster 
1 

(N: 4868) 
2 

(N: 40) 
3 

(N: 183) 
4 

(N: 13,843) 
5 

(N: 1214) 
6 

(N: 20,007) 
7 

(N: 4280) 
8 

(N: 8526) 
Elevation 2.583 −0.000 −0.039 0.121 −0.183 −0.390 −0.444 −0.506 

DS 1.988 0.062 −0.075 0.412 −0.203 −0.400 −0.468 −0.599 
TRC −1.154 −0.187 −0.155 −1.164 0.142 0.616 0.522 0.825 
DW 0.471 0.113 0.052 −0.173 0.220 0.102 −0.405 −0.058 

NDVI 1.483 0.621 0.501 0.957 0.048 −0.573 −0.411 −0.870 
H/W ratio −0.491 18.211 9.461 −0.410 2.692 0.050 0.200 0.056 

Commercial −0.525 −0.528 −0.460 −0.500 −0.432 −0.284 −0.311 2.010 
AHB −0.749 3.673 2.157 −0.639 1.546 −0.066 2.415 0.125 

 
Figure 4. Air temperature distribution of UCZs. 

 

Figure 4. Air temperature distribution of UCZs.



Sustainability 2019, 11, 1915 9 of 12

Table 6. Classification results of UCZs.

Cluster Factor

Cluster

1
(N: 4868)

2
(N: 40)

3
(N: 183)

4
(N: 13,843)

5
(N: 1214)

6
(N: 20,007)

7
(N: 4280)

8
(N: 8526)

Elevation 2.583 −0.000 −0.039 0.121 −0.183 −0.390 −0.444 −0.506
DS 1.988 0.062 −0.075 0.412 −0.203 −0.400 −0.468 −0.599

TRC −1.154 −0.187 −0.155 −1.164 0.142 0.616 0.522 0.825
DW 0.471 0.113 0.052 −0.173 0.220 0.102 −0.405 −0.058

NDVI 1.483 0.621 0.501 0.957 0.048 −0.573 −0.411 −0.870
H/W ratio −0.491 18.211 9.461 −0.410 2.692 0.050 0.200 0.056

Commercial −0.525 −0.528 −0.460 −0.500 −0.432 −0.284 −0.311 2.010
AHB −0.749 3.673 2.157 −0.639 1.546 −0.066 2.415 0.125Sustainability 2019, 11, x FOR PEER REVIEW 10 of 13 
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Through a series of statistical analyses, this study identified more detailed and clearer UCZ
boundaries (100 m × 100 m) and explained statistically significant urban spatial characteristics to
understand urban climate phenomena. Through spatial regression analyses, influential urban spatial
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elements causing air temperature increases and their effects were concretely investigated. In addition,
the potential areas where urban heat islands occur were delineated using UCZ maps.

The UCZ classification based on spatial statistical analyses conducted in this study has usefulness
as follows: First, this study produced an air temperature map that shows relatively high accuracy
using an interpolation method. Due to a lack of observation data, the conventional interpolation
method to delineate urban air temperature was robust. As a result, it was difficult to analyze the
relationship between air temperature and urban spatial characteristics. In fact, most of the previous
studies used land surface temperature data in identifying the effects of urban spatial characteristics.
By applying a number of AWS data, this study overcame such a limitation, and the actual sensed
effects on air temperature were investigated. In addition, using a number of AWS data, applying
the universal kriging interpolation method, which considers the effects of elevation and water space,
more accurate air temperature maps (RMSPE: from ±0.184 ◦C to ±0.824 ◦C) were delineated. Such an
air temperature analysis method will enhance the efficiency and accuracy of investigating climate
phenomena. Since some interpolated results showed a relatively high RMSPE, there is some need for
improvement of the universal kriging interpolation methods presented in this study of 100 m spatial
resolution at AWS spacing of 1087 m. In order to reflect the heterogeneity of urban spaces, the spacing
of AWSs still should be shortened. Recently, with advances and the dissemination of more economic
smart sensing technologies, more AWSs are being installed. If such data is accumulated and obtained,
accuracy and precision by universal kriging methods are expected to be further improved.

Second, by applying spatial regression analysis, influential variables that affect air temperature
were identified, and their effects on air temperature were investigated. Thus, this study suggested
integrated information on climate characteristics and related urban spatial elements. The outcomes
of this study can provide urban planners with practical information to improve the urban thermal
environment. Moreover, the results of this study will enable urban planners to determine what kind of
mitigation alternatives should be employed to reduce urban heat islands.

Finally, statistical analyses allowed more concrete and accurate delineation of UCZ boundaries
than previous studies regarding UCZ classification based on pre-determined urban spatial variables.
Since urban spatial variables that affect air temperature can vary city by city, the usage of fixed spatial
variables can cause inaccurate UCZ classifications. By considering that the distribution of influential
variables has an effect on air temperature, more detailed UCZs boundaries were delineated, and the
spatial characteristics of each UCZ were investigated. Through the entire process, potential urban heat
islands areas and the causes of their occurrence were identified. Such results will enable urban planners
to determine which areas should be preferentially managed to enhance the thermal environment.

The methods based on statistical approaches presented in this study can be effectively applied
to other cities that have similar weather observation conditions. If more urban spatial characteristics,
including slope, vegetation, and soil are known, more accurate air temperature analysis will be possible.
Furthermore, if other spatial regression models are applied, a more concrete relationship between
air temperature and urban spatial characteristics will be understood. Furthermore, if other climate
factors, including wind speed and relative humidity, are considered in the classification of UCZs, more
accurate and useful information can be provided for developing UHI mitigation measures in urban
planning and design processes.
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Appendix A

Table A1. The sensitivity analysis results applying ANOVA test.

The Number of
Cluster (K) Statistics Sum of

Squares DF Mean
Square F Sig.

6
Between groups 44.909 5 8.982 7197.526 0.000
Within groups 66.083 52,955 0.001

Total 110.992 52,960

7
Between groups 44.915 6 7.486 5999.098 0.000
Within groups 66.077 52,954 0.001

Total 110.992 52,960

8
Between groups 56.294 7 8.042 7785.344 0.000
Within groups 54.698 52,953 0.001

Total 110.992 52,960

9
Between groups 56.528 8 7.066 6869.698 0.000
Within groups 54.465 52,952 0.001

Total 110.992 52,960

10
Between groups 56.575 9 6.286 6116.699 0.000
Within groups 54.417 52,951 0.001

Total 110.992 52,960

11
Between groups 56.563 10 5.656 5502.639 0.000
Within groups 54.429 52,950 0.001

Total 110.992 52,960

12
Between groups 61.069 11 5.552 5888.141 0.000
Within groups 49.924 52,949 0.001

Total 110.992 52,960
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