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Abstract: Road traffic injury is currently the leading cause of death among children and young adults
aged 5–29 years all over the world. Measures must be taken to avoid accidents and promote the
sustainability of road safety. The current study aimed to identify risk factors that are significantly
associated with the severity in crash accidents; therefore, traffic crashes could be reduced, and the
sustainable safety level of roadways could be improved. The Apriori algorithm is carried out to mine
the significant association rules between the severity of the crash accidents and the factors influencing
the occurrence of crash accidents. Compared to previous studies, the current study included the
variables more comprehensively, including environment, management, and the state of drivers and
vehicles. The data for the current study comes from the Wisconsin Transportation crash database that
contains information on all reported crashes in Wisconsin in the year 2016. The results indicate that
male drivers aged 16–29 are more inclined to be involved in crashes on roadways with no physical
separation. Additionally, fatal crashes are more likely to occur in towns while property damage
crashes are more likely to occur in the city. The findings can help government to make efficient
policies on road safety improvement.
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1. Introduction

The number of road traffic deaths in the world remains unacceptably high and increases
continuously, reaching 1.35 million in 2016 [1]. However, the fact is, every one of those deaths
and injuries is avertible. Improving traffic safety levels is one of the great opportunities to save lives
around the world, which does not receive anywhere near the attention it deserves [2].

Traffic crashes can be decreased significantly and identifying the causes of a traffic crash is the
most critical procedure in adopting precautionary measures to reduce the severity and quantity of
traffic crashes. However, some previous studies estimated a model of crash frequency and severity
using only the volume of traffic as an explanatory variable, while clearly many other factors affect
the frequency and severity of crashes, such as environmental conditions, roadway geometrics, driver
characteristics, and so on. Due to the complex nature of traffic crashes, the policy decision makers must
consider numerous contributory factors when making decisions on the improvement of safety [3]. It is
vital for decision makers to find the most significant factors that affect the occurrence and consequence
of traffic crashes. After years of research, it is generally accepted that through recognizing risk factors
as shown in Figure 1, which affect the severity of a crash and corresponding coping strategies, the
impact of crashes can be significantly reduced [4–6].
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Figure 1. The causative mechanisms of traffic incidents/accidents. 
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occurrence and severity of traffic crashes through traffic data. Various approaches were proposed by 
these studies such as binary logit/probit models [7,8], multinomial logit models [9,10], nested logit 
models [11,12], log-linear models [13], artificial neural networks [14,15], spatial and temporal 
correlations [16], Markov switching models [17], and genetic algorithms [18], etc. Meanwhile, various 
contributing factors to frequency and severity of traffic crashes have been identified in the above 
literature, such as weather, gender and age of drivers, posted speed, roadway geometrics, condition 
of drivers, and so on. 

In recent years, the analysis of the various types of data using data mining techniques has been 
attracting more and more attention among researchers. Data mining technology has been employed 
in traffic crash analysis and achieved satisfactory results in areas such as assessing the inherent 
connection between crashes and road geometry [19–21], critical points identification [22], factors that 
contribute to the severity of traffic crashes [23], and the relationship between driver characteristics 
and traffic crashes [24]. Many studies have analyzed crash data with data mining techniques. 
Agrawal et al. utilized the data mining technique of association analysis for crash data analysis [25]. 
Golob and Recker used clustering analysis for relating prevailing traffic conditions on freeways with 
type of collision most likely to occur [26]. Prati et al. applied a decision tree technique and Bayesian 
network to predict the severity of bicycle crashes [27]. However, some of these studies are based on 
the hypotheses that these factors are independent of one another, which might misunderstand the 
contribution of every single factor. 

Among these data mining techniques, association rules mining is a valid technique to analyze 
traffic crashes since data mining methods do not rely on any hypothesis and can discover meaningful 
connections hidden in large datasets. There are three kinds of basic algorithms for association rules 
mining, which are the Apriori algorithm, an algorithm based on partition, and the Frequent Pattern 
tree algorithm. The Apriori algorithm is succinct and clear, which adopts an iterative method of layer-
by-layer search. Compared to the other two algorithms, the Apriori algorithm is more capable of 
processing large-scale datasets. In the current study, the Apriori algorithm was used to discover the 
significant rules between the factors and crashes in Wisconsin. 

2. Data Description and Processing 

2.1. Raw Data and Study Area 

The raw crash data for the current study was collected from the Wisconsin Transportation crash 
database that contains information about all reported crashes in Wisconsin in 2016. A reportable crash 
was a crash leading to injury or death of any person, total damage to property owned by any one 
person to an apparent extent of $1000 or more, or any damage to government-owned non-vehicle 
property to an apparent extent of $200 or more. 
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Some previous studies have been devoted to identifying the contributing factors that affect the
occurrence and severity of traffic crashes through traffic data. Various approaches were proposed
by these studies such as binary logit/probit models [7,8], multinomial logit models [9,10], nested
logit models [11,12], log-linear models [13], artificial neural networks [14,15], spatial and temporal
correlations [16], Markov switching models [17], and genetic algorithms [18], etc. Meanwhile, various
contributing factors to frequency and severity of traffic crashes have been identified in the above
literature, such as weather, gender and age of drivers, posted speed, roadway geometrics, condition of
drivers, and so on.

In recent years, the analysis of the various types of data using data mining techniques has been
attracting more and more attention among researchers. Data mining technology has been employed in
traffic crash analysis and achieved satisfactory results in areas such as assessing the inherent connection
between crashes and road geometry [19–21], critical points identification [22], factors that contribute
to the severity of traffic crashes [23], and the relationship between driver characteristics and traffic
crashes [24]. Many studies have analyzed crash data with data mining techniques. Agrawal et al.
utilized the data mining technique of association analysis for crash data analysis [25]. Golob and
Recker used clustering analysis for relating prevailing traffic conditions on freeways with type of
collision most likely to occur [26]. Prati et al. applied a decision tree technique and Bayesian network to
predict the severity of bicycle crashes [27]. However, some of these studies are based on the hypotheses
that these factors are independent of one another, which might misunderstand the contribution of
every single factor.

Among these data mining techniques, association rules mining is a valid technique to analyze
traffic crashes since data mining methods do not rely on any hypothesis and can discover meaningful
connections hidden in large datasets. There are three kinds of basic algorithms for association rules
mining, which are the Apriori algorithm, an algorithm based on partition, and the Frequent Pattern
tree algorithm. The Apriori algorithm is succinct and clear, which adopts an iterative method of
layer-by-layer search. Compared to the other two algorithms, the Apriori algorithm is more capable of
processing large-scale datasets. In the current study, the Apriori algorithm was used to discover the
significant rules between the factors and crashes in Wisconsin.

2. Data Description and Processing

2.1. Raw Data and Study Area

The raw crash data for the current study was collected from the Wisconsin Transportation crash
database that contains information about all reported crashes in Wisconsin in 2016. A reportable crash
was a crash leading to injury or death of any person, total damage to property owned by any one



Sustainability 2019, 11, 1925 3 of 14

person to an apparent extent of $1000 or more, or any damage to government-owned non-vehicle
property to an apparent extent of $200 or more.

The crash data included 129,051 crashes that occurred in Wisconsin and were described by 49
variables including calendar date on which the crash occurred, crash severity, type of crash, age of
the driver, etc. However, not all the reported crashes listed in the database are described by all the
49 variables, and not all the variables were necessarily significant for the crashes. Therefore, in the
current study the dataset needs to be pretreated with the following process as shown in Figure 2.
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2.2. Crash Data Processing

First, a clustering algorithm of k-means was used to clean the noise data, which were erroneous or
abnormal [28]. Meanwhile, each reported crash needed to be checked for missing values. A reported
crash would have to be removed if it had noise data or lacked key information, such as reasons of
crash, the condition of the road, weather condition, injury condition, driver information, etc.

Because the data for the current study came from crash and spot investigations with combing
meticulously, variables in the dataset were independent and the problem of data conflict does not exist.
There was no need to clean up the redundant data and integrate the data. In order to mine association
rules more efficiently, variables such as calendar date on which the crash occurred, the name of the
street, name of the highway, house, fire, railroad, or other numbers that contributed little to the traffic
crash were removed.

Some variables that had the same range of value such as NTFYHOUR (the one-hour range in
which the enforcement agency was notified of the crash) and POSTSPD (posted speed) were converted
into a different range of value as shown in Table 1. Boolean variables or discrete numeric variables
were required to mine association rules using the Apriori algorithm, so that the continuous numerical
variable AGE needed to be dispersed as shown in Table 2. Since the residents can get a driver's license
at the age of 16 in the United States, the age value of the first group was set by (0,15).

Table 1. Variable conversion.

Variable NTFYHOUR POSTSPD ROADCOND VEHDMG SAFETY

Initial data X (hour) e.g., 5 XX (mile/h) e.g., 55 SNOW NONE NONE
Converted data HX (hour) e.g., H5 SXX (mile/h) e.g., S55 SNOWY VNONE SNONE

Table 2. Variable discretization.

Initial Age (0,15] [16,25] [26,35] [36,45] [46,55] [56,65] [66,75] [76,85] [86,99]

Discretization A1 A2 A3 A4 A5 A6 A7 A8 A9
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2.3. Structured Dataset Construction

Twenty-one variables and 63,325 reported crashes were filtered from 129,051 reported crashes
by data processing. The description and range of value of the twenty-one variables are cataloged in
Table 3.

Table 3. Description and information field of corresponding variables.

NO. Variables Description Information Fields Percentage (%)

1 MUNITYPE The municipality type
• C = City 57.9
• T = Town 29.6
• V = Village 12.5

2 INTDIS
Intersection Distance in hundredths of a mile from

intersection location listed (1 = approx. 50 feet)
• 0 40.8
• [0,288] 59.2

3 MNRCOLL Manner (first harmful event) in which participants
collided in the crash

• ANGL = Angle 23.6
• HEAD = Head on collision 1.5
• NO C = No collision with
another vehicle 31.1

• REAR = Rear end 30.0
• RTR = Rear to rear 0.3
• SSO = Sideswipe/opposite
direction 2.8

• SSS = Sideswipe/same direction 10.7

4 RLTNRDWY
Location of first harmful event in relation to a

roadway

• GORE = Gore 0.2
• LTSH = Outside shoulder-left 4.8
•MED = Median 2.0
• OFF = Off roadway—location
unknown 0.8

• ON = On roadway 78.8
• PLOT = Private lot or private
prop 0.0

• RAMP = On ramp 0.7
• RTSH = Outside shoulder-right 9.1
• SHLD = Shoulder 3.6

5 HWYCLASS The type of road the crash took place on

• R CITY = City street rural 3.5
• R CTH = County trunk rural 8.4
• R IH = Interstate highway rural 3.2
• R STH = State highway rural 14.8
• R TOWN = Town road rural 6.8
• U CITY = City street urban 40.3
• U CTH = County trunk urban 0.1
• U IH = Interstate highway urban 5.1
• U STH = State highway urban 17.7

6 ACCDSVR
The worst level of the crash severity to life and

property

• FAT = Fatal accident 0.5
• INJ = Injury occurred 31.2
• PD = Property damage only 68.3

7 POSTSPD Posted speed for a vehicle unit at the location where
a crash occurred

• [S5; S10; S15; S20] mile/hour 1.0
• S25 mile/hour 26.5
• [S30; S35; S40; S45; S50]
mile/hour 43.3

• S55 mile/hour 19.2
• [S60; S65; S70; S77] mile/hour 10.0

8 TRFCWAY
Text describing areas designed for motor vehicle

operation

• ND = Not physically divided 60.7
• D/WO = Divided highway
without traffic barrier 21.5

• D/B = Divided highway with
traffic barrier 13.6

• OW = One-way traffic 4.2

9 AGE The age of the driver who causes the crash
• A1 0.3
• A2 35.3
• [A3, A9] 64.7

10 SEX The sex of the driver
•Male 57.4
• Female 42.6

11 VEHDMG The extent of the worst vehicle damage

• V MNR = Very minor 7.4
•MNR = Minor 19.1
•MOD = Moderate 38.6
• SVR = Severe 22.7
• V SVR = Very severe 8.3
• VNONE = None 3.8

12 ROADCOND Surface condition of the road

• DRY 67.9
•MUD 0.2
• SNOWY 14.0
• ICE 3.1
•WET 14.8
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Table 3. Cont.

NO. Variables Description Information Fields Percentage (%)

13 WTHRCOND The weather condition at the time of a crash

• CLR = Clear 49.1
• CLDY = Cloudy 31.5
• RAIN = Rain 7.7
• SNOW = Snow 10.0
• FOG = Fog/smog/smoke 0.5
• SLET = Sleet/hail 0.7
•WIND = Blowing
sand/dirt/snow 0.4

• XWIND = Severe crosswinds 0.0

14 DRVRDO What the driver of unit was doing at the time of
the crash

• BACKING = Backing up 3.4
• CHG LN = Changing lanes 3,7
• GO STR = Going straight 55.4
• IL PRK = Illegally parked 0.0
• LG PRK = Legally parked 0.0
• LT TRN = Making left turn 13.4
•MERGING = Merging into
traffic 1.4

• NEGCRV = Negotiating curve 7.0
• NPASZN = Violate no pass zone 0.1
• OVT LT = Overtaking on the left 0.7
• OVT RT = Overtaking on right 0.4
• PARKNG = Parking maneuver 0.3
• RT TRN = Right turn 5.9
• RTOR = Right turn on red 0.0
• SL/ST = Slowing or stopped 7.3
• STOPED = Stopped in traffic 0.3
• UTURN = U turn 0.7

15 DRVRPC
The possible driver contributing circumstances

(Driver Factors) in a collision

• DC = Driver condition 2.2
• DIS = Physically disabled 0.0
• DTC = Disregard traffic control 3.4
• FTC = Following too close 11.1
• FTY = Failure to yield 20.8
• FVC = Failure to keep vehicle
under control 13.6

• IC = In conflict 0.0
• ID = Inattentive driving 24.2
• IO = Improper overtake 1.4
• IT = Improper turn 2.5
• LOC = Left of center 1.1
• SPD = Exceed speed limit 2.6
• TFC = Too fast for conditions 14.5
• UB = Unsafe backing 2.6

3. Methodology

3.1. Basic Conceptions

In the current study, the item set is a set of items and it includes at least one reported crash. An
item is one element of an item set, which represents a reported crash. A k-item set is defined as an item
set consisting of k items. A frequent pattern means that the same combination of eigenvalues occurs
a certain number of times in the dataset [29]. The association pattern represents the association and
correlation between several items. Association rules are association patterns that satisfy user-specified
support [30].

Given a finite set of items I = {i1, i2 . . . . . . , im}. Let D be a dataset including plenty of transactions
that are subsets of I [31]. An extracted association rule is an implication of the form X⇒ Y, where X
is the antecedent, and Y is the consequent. X and Y are item sets, which belong to D, and A ∩ B = ∅.
Support and confidence are the two most commonly used criteria for measuring the importance of
association rules. The support indicates the frequency of the association rule in the transaction set
containing X and Y, which is defined as Sup (X⇒ Y) = P (X ∩ Y):

Sup(X⇒ Y) =
|X∪ Y|
|D| (1)
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|D| is the total number of transactions, while |X∪ Y| is the number of transactions that include
both item sets X and Y.

The confidence indicates the credibility of the association rule X ⇒ Y, which is defined as
Con f (X⇒ Y):

Con f (A⇒ B) =
|X∪ Y|
|X| =

Sup(X∪ Y)
Sup(X)

(2)

|X| is the number of transactions that only contain item set X, while |X∪ Y| is the number of
transactions that include both item sets X and Y. The association rules whose value of support and
confidence are equal to or bigger than the threshold defined by users are valid rules, which deserve to
be analyzed.

To avoid generating a great number of uninteresting association rules, many algorithms for
mining association rules use criteria based on minimum support and minimum confidence. Due
to lacking consideration of correlation between the support of X and the support of (X, Y), useless
association rules may still be generated when the support value of the consequent is too high. In order
to solve this problem, previous researchers have proposed several valid measures. Lift is the most
widely used measure of them, which is defined as

lift(X ⇒ Y) =
Con f (X ⇒ Y)

Sup(Y)
(3)

Conf(X⇒Y) is the confidence of association rule (X⇒ Y), while Sup(Y) is the support value of
item set Y. There is no correlation between item set X and Y with lift = 1, while the occurrence of item
set X is exclusive to item set Y with lift < 1. Only if lift > 1, the association rules are recognized as
valuable rules.

3.2. Association Rule Mining

Extracting important and hidden information from a large dataset by mining association rules is
one of the most common tasks in data mining [32]. The association rule mining can be described as a
two-step process [33]:

• Generating frequent item sets—find all frequent item sets whose support value is equal to or
greater than the minimum support value;

• Generating association rules—generate association rules from frequent item sets under the
condition of minimum confidence.

Figure 3 shows the process of association rule mining.
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The association rules mining algorithms include Apriori, SETM [34], ECLAT [35], Pincer
Search [36], and MAFIA [37], which are based on a support-confidence framework proposed by
Agrawal and Srikant. The Apriori algorithm is succinct and clear, which adopts an iterative method of
layer-by-layer search. In the current study, the Apriori algorithm was used to discover the significant
rules between the factors and crashes in Wisconsin.

3.3. Validity Test of Association Rules

An extreme risk of type-I error exists because of the large number of association rules, which
needs a process of validity tests to evaluate the statistical significance of the rules obtained [38].



Sustainability 2019, 11, 1925 7 of 14

The validation process is generally distinguished in two ways. The first approach is the direct
adjustment approach, which requires all association rules to pass statistical tests at the adjusted critical
value. The second approach is the holdout approach, which divides the data into exploratory data for
generating association rules without regard for the problem of multiple testing and holdout data for
statistical tests.

In the current study, a direct adjustment approach was applied to test the validation of association
rules, as it has an advantage of data usage for both association rule discovery and statistical
evaluation [38]. Meanwhile, no more statistical tests will be required under this approach than
under the holdout approach. A number of direct adjustment approaches were employed to perform
multiple hypothesis tests, such as Bonferroni correction [39], sequentially rejective Bonferroni [40],
adaptive Benjamini–Hochberg algorithm [41], and so on. The Bonferroni correction states that if an
experimenter is testing n independent hypotheses on a set of data, then the statistical significance
level that should be used for each hypothesis separately is 1/n times what it would be if only one
hypothesis was tested. Because of the principle and characteristics of Bonferroni correction, it made
the results more rigorous with a tight upper bound. Thus, the method of Bonferroni correction was
applied in the current study. The definition of Bonferroni correction is as follows:

Let H1, H2,..., Hn be a family of hypotheses and p1, p2, . . . , pn be their corresponding p-values.
The n is the total number of null hypotheses, while n0 is the number of true hypotheses. The familywise
error rate (FWER) is the probability of rejecting at least one true Hi; in other words, of making at least
one type I error. The Bonferroni correction rejects the null hypothesis for each pi ≤ α/n, while α is the
global significance level. Proof of this control follows from Boole's inequality, as follows:

FWER = P
{

n0∪
i=1

(
pi ≤

α

n

)}
≤

n0

∑
i=1

{
P
(

pi ≤
α

n

)}
= n0

α

n
≤ n

α

n
= α (4)

4. Results and Discussions

Through the procedure of data pretreatment, 63,325 pieces of valid reported crashes data were
filtrated. Among them, there were 43,239 pieces of property damage only (PD) crashes, 19,766 injuries
occurred (INJ) crashes, and 320 fatal crashes (FAT) as in Figure 4. Based on the dataset, the current
study then used the mathematical programming software Python 3.5 on a Lenovo laptop with Intel
Core i5-5200U 2.20GHz CPU and 8 GB RAM to generate association rules. There were 766 pieces of
association rules that were obtained with filter criteria of minimum support equal to 0.1, minimum
confidence equal to 0.14, and minimum lift greater than 1.0, as shown in Figure 5.
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The current study estimated the smallest p-value for the association rules based on the upper
bound of 0.1/766 that equals 1.3*10−4, while 766 pieces of association were obtained with a minimum
support value that equals 0.1 [42]. Only two rules had p-values higher than 1.3*10−4—the p-value of
rule WET, MALE⇒ ND is 0.012 and the p-value of rule LT TRN⇒ PD is 0.029. The reason for the
extremely low number of false discoveries is that the support, confidence, and lift threshold already
do an excellent job of pruning out most rules that are not statistically significant.

High support rules indicate a high frequency of association rules (i.e., events that occur frequently
in a crash), while high confidence indicates the probability of occurrence of a consequent event when
the antecedent item occurred (i.e., the antecedent event is more likely to occur when the antecedent
event happens in a crash). Rules with high lift value, which are greater than 1.0, are valid rules and
indicate strong associations between the factors (i.e., there is a strong positive correlation between
the two events in a crash). The current study screened out the top 20 support association rules of the
highest value as in Table 4, the top 20 confidence association rules of the highest value as in Table 5,
and the top 20 lift association rules of the highest value as shown in Table 6.

Table 4. Top 20 support association rules of the highest value.

Rules Antecedent Consequent Support Confidence Lift

1 PD S25, 0 0.68 0.15 1.01
2 PD S25, CLR 0.68 0.15 1.05
3 PD U CITY, CLR, ND 0.68 0.15 1.01
4 PD S25, M 0.68 0.16 1.08
5 PD MOD, A2 0.68 0.16 1.13
6 PD U CITY, ND, M 0.68 0.16 1.04
7 PD TFC 0.68 0.16 1.08
8 PD REAR, M 0.68 0.17 1.02
9 PD 0, MOD 0.68 0.17 1.05

10 PD S25, U CITY, ND 0.68 0.18 1.07
11 PD MOD, U CITY 0.68 0.18 1.09
12 PD F, U CITY 0.68 0.19 1.01
13 PD MOD, F 0.68 0.19 1.10
14 PD MOD, CLR 0.68 0.20 1.06
15 PD S25, U CITY 0.68 0.20 1.07
16 PD A2, M 0.68 0.20 1.02
17 PD U CITY, M 0.68 0.22 1.03
18 PD MOD, GO STR 0.68 0.23 1.07
19 PD MNR 0.68 0.23 1.21
20 PD MOD, M 0.68 0.24 1.11
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Following are the analysis of results from Table 4:

• Due to the PD (property damage only) crashes having a proportion of 68.3% in the whole dataset,
the top 20 support association rules of highest value are all related to PD. It indicates that most
of the crashes are not related to injury and fatalities, which is consistent with the findings of the
Global status report on road safety 2018 [1].

• The significant factors for the high value of support association rules are the type of road, the
extent of the worst vehicle damage, posted speed, male drivers, and a roadway with no physical
separation, weather, location, and age of drivers.

• It is obvious that the extent of vehicle damage is more likely to be moderate (MOD) in a property
damage only crash (rule 5, 9, 11, 13, 14, 18, and 20).

• The crashes mostly occurred in urban areas (rule 11, 12, and 17) with no physical separation (rule
3 and 6), while Abdel-Aty and Radwan found that highway geometry is the second important
factor in occurrence of traffic crashes [24], and a lower posted speed (rule 15). Especially, the
rule PD → S25, U CITY, ND (support = 0.68, confidence = 0.18, lift = 1.07) clearly expresses the
relationship between them. Through the revelation of the above rules, decision makers can reduce
the occurrence of crashes by setting up physical separations on crash-prone sections.

• Male drivers are more prone to be associated with property damage only traffic crashes than
female drivers, which can be observed from the rules (4, 6, 8, 16, 17, and 20) and rules (12 and
13). On the one hand, male drives are more likely to drive drunk and/or speed than female
drivers [43]. On the other hand, it is probable that male drivers are less likely to comply with
traffic rules and are generally overconfident while driving [44].

Table 5. Top 20 confidence association rules of the highest value.

Rules Antecedent Consequent Support Confidence Lift

1 FTC REAR 0.14 0.95 3.17
2 S55, NO C ND 0.12 0.89 1.46
3 S25, GO STR ND 0.14 0.87 1.44
4 S25, U CITY, PD ND 0.14 0.87 1.43
5 S25, U CITY ND 0.19 0.87 1.43
6 S25, CLR ND 0.14 0.86 1.42
7 ANGL, GO STR 0 0.12 0.86 2.10
8 S25, PD ND 0.19 0.86 1.41
9 S25, M ND 0.14 0.85 1.41

10 S25 ND 0.27 0.85 1.41
11 S25, F ND 0.12 0.85 1.40
12 MNR PD 0.19 0.83 1.21
13 S25, 0 ND 0.15 0.82 1.36
14 FTY, ANGL 0 0.15 0.78 1.92
15 0, FTY ANGL 0.15 0.78 3.31
16 ND, FVC NO C 0.14 0.78 2.5
17 MOD, A2 PD 0.14 0.77 1.13
18 S55 ND 0.19 0.76 1.25
19 FTY, ND ANGL 0.14 0.75 3.20
20 MOD, M PD 0.21 0.75 1.11

Following are the analysis of results from Table 5:

• The highest confidence value rule FTC (following too close) → REAR (rear end) (support = 0.14,
confidence = 0.95, lift = 3.17) indicates that following too close will lead to rear ending between
cars, which is widely known.

• Same as the result from Table 4, low posted speed and roadways with no physical separation (rule
3, 4, 5, 6, etc.) are significant elements that affect the occurrence of crashes. The large deviation
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of speed, which is generated by drivers that ignore the posted speed and speed a lot, is perhaps
the reason why crashes happen in the location with low posted speed. Elvik found that lower
posted speed is prone to lead to a crash as a result of a high deviation of speed [45]. Roadways
with no physical separation often cause the problem that drivers sometime occupy the opposite
lanes, which probably leads to a collision.

• In comparison with other drivers, the drivers aged 16–25, which are presented by A2 in
Tables 4 and 5, are most likely to be involved in crashes (rule 5, 16 in Table 4, rule 17 in Table 5),
because drivers aged 16–25 are a large proportion of the whole drivers, and they are more likely
to violate driving rules. Decision makers can strengthen traffic safety education for drivers aged
16–25 to reduce the occurrence of traffic crashes.

• ‘0’ indicates that the crash occurred at an intersection. Four rules (rule 7, 13, 14, and 15) show
that crashes are more likely to occur at an intersection. The intersection is a convergence
area of city traffic flow and flow of people, which have complex traffic conditions and are
more likely to lead to a crash. Wang et al. found that a crash is more prone to occur at an
intersection [46]. An appropriate organization of intersection flow might help decision makers
control the occurrence of crashes effectively.

• Following too close (FTC), failure to yield (FTY), and failure to keep the vehicle under control
(FVC) are perhaps the significant driver-contributing circumstances in a crash (rule 1, 14, 15, 16,
and 19). Abdel-Aty and Radwan found that driver conditions were the most important factors in
the occurrence of traffic crashes [24].

Table 6. Top 20 lift association rules of the highest value.

Rules Antecedent Consequent Support Confidence Lift

1 0, FTY ANGL 0.15 0.78 3.31
2 FTY 0, ANGL 0.21 0.57 3.23
3 FTY, ND ANGL 0.14 0.75 3.20
4 FTC REAR 0.14 0.95 3.17
5 S55 ND, NO C 0.19 0.54 2.52
6 ND, FVC NO C 0.14 0.78 2.50
7 M, FVC NO C 0.14 0.73 2.36
8 FVC, GO STR NO C 0.14 0.72 2.33
9 M, NO C FVC 0.20 0.53 2.31

10 FVC NO C 0.23 0.71 2.30
11 PD, FVC NO C 0.15 0.71 2.28
12 ND, S55 NO C 0.15 0.71 2.27
13 U CITY, PD, ND S25 0.20 0.59 2.24
14 FVC ND, NO C 0.23 0.48 2.24
15 FVC PD, NO C 0.23 0.47 2.21
16 S25 U CITY, ND 0.27 0.62 2.16
17 U CITY, ND S25, PD 0.29 0.42 2.14
18 ANGL, GO STR 0 0.12 0.86 2.10
19 0, GO STR ANGL 0.21 0.50 2.08
20 0, U CITY ANGL 0.22 0.49 2.05

Following are the analysis of results from Table 6:

• High lift values suggest a strong interdependence between the antecedent and the consequent.
Three rules with high lift values indicate that drivers failing to yield, crash occurring at the
intersection, and the collision type of angle have a strong connection [24].

• The rule with highest lift value is 0, FTY→ ANGL (support = 0.15, confidence = 0.78, lift = 3.17).
The support value shows that 15% of crashes result from failing to yield at an intersection [46].
The confidence value proves that 78% of the crashes occurred due to angle collision. The ratio of
angle collision crashed was 3.17 times the ratio of other types of collision.
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• The crash is more likely to happen when drivers go straight (rule 8, 18, and 19), because drivers
might tend to be more relaxed with their vigilance during going straight than when crossing
a curve.

• There are nine rules with NO C = no collision as a consequent, which indicates that most of the
crashes with no collision happened between vehicles because most of the vehicles had a collision
with a physical barrier.

• Male drivers are more prone to fail to keep the vehicle under control. Das et al. also found a
higher number of males are associated with crashes [47].

With the percentage of fatal crashes (0.5%) being too small, it is impossible to produce high values
of support and confidence. To discuss the influence factors of fatal crashes, the dataset applied only
included fatal crashes. Twelve pieces of association rules that were obtained with filter criteria of
minimum support that equaled 0.5, minimum confidence that equaled 0.5, and minimum lift that was
greater than 1.0 is shown in Table 7.

Table 7. Association rules related to fatal crashes.

Rules Antecedent Consequent Support Confidence Lift

1 T M 0.68 0.76 1.02
2 M T 0.75 0.69 1.02
3 DRY CLR 0.84 0.69 1.14
4 CLR DRY 0.60 0.96 1.14
5 M ND 0.75 0.77 1.02
6 ND M 0.76 0.76 1.02
7 M DRY 0.75 0.87 1.03
8 DRY M 0.84 0.77 1.03
9 T ND 0.68 0.86 1.13
10 ND T 0.76 0.77 1.13
11 V SVR ND 0.68 0.76 1.02
12 ND V SVR 0.75 0.69 1.02

The following are the analysis of results from Table 7:

• The significant factors for fatal crashes are location, male drivers, the extent of the worst vehicle
damage, roadway with no physical separation, weather and road surface condition.

• Different from property damage only crashes, fatal crashes are more likely to occur in town instead
of the city. Compared with the city road, there are fewer vehicles, police, and less supervision in
town. Drivers tend to be more relaxed with their vigilance and speeding.

• Male drivers are prone to be involved in fatal crashes, which has the same reason with other types
of crashes.

• Drivers are more likely to get involved in fatal crashes when the weather condition is clear, and
the road surface condition is dry. It is perhaps because drivers would pay more attention to
driving when the weather and road surface condition are dangerous. Karlaftis and Yannis suggest
a negative relationship between adverse weather and road safety, mainly because drivers are not
used to driving under adverse weather conditions and consequently adjust their behavior by
driving more carefully [48].

• Roadways with no physical separation have always been a problem threatening traffic safety.

5. Conclusions

Due to the complicated interaction among different factors—the situation of the driver, the
condition of vehicle and road, environment and management—a traffic crash is a complex and
systemic problem. In order to decrease the number of traffic crashes, fundamental reasons, which are
the basis for promoting measures, need to be systematically analyzed. A large number of researchers
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have made efforts to identify the vital factors that influence the severity and frequency of traffic
crashes during recent years, in order to formulate effective safety countermeasures to enhance traffic
sustainability [47].

In the current study, the Apriori algorithm was implemented to identify characteristics and factors
impacting traffic crashes in Wisconsin, United States. By setting an appropriate threshold value of
support and confidence, essential information of traffic crash characteristics can be gained to analyze
the fundamental causes of a traffic crash. The association rules, which were generated in the current
study, suggest a couple of significant factor groups: posted speed, driver condition, weather condition,
road surface condition, distance from the intersection, a roadway with no physical separation, an
administrative grade of crash location, male drivers, and the age of drivers. Taking these factors into
account, the government can make countable measures to improve the sustainable level of traffic safety.
The majority of the findings are consistent with previous studies. The variables considered are more
comprehensive, including environment, management, and state of drivers and vehicles, which is the
critical contribution of the current study.

Note that the present study did not optimize the parameters with any optimization method,
for the current study obtained objective and significant results in the current size of the database.
For future directions, efforts could be made on incorporating genetic algorithms and particle swarm
optimization with the Apriori algorithm to optimize the values of the parameters, and to obtain
significant results with high efficiency in analyzing large-scale databases.
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