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Abstract: Under the concept of green development, accurately mapping ecological carrying capacity
to effectively evaluate regional sustainability has already become an important issue in China.
This study introduced ecological carrying capacity intensity (ECintensity) based on the revised
three-dimensional ecological footprint (3DEF) model to describe the temporal–spatial patterns
of three-dimensional ecological carrying capacity (EC3D) in Inner Mongolia in 2010–2016 and to
explore factors affecting socioeconomic sustainable development. The results showed that ecological
footprint size (EFsize) differed between cities/leagues but changed little during the study period.
Ecological footprint depth (EFdepth) far exceeded the original value of 1.00. Ecological carrying
capacity (EC) varied in cities/leagues, while ECintensity increased slowly with stronger potential for
regional development. Three-dimensional ecological deficits (ED3D) of cities/leagues were divided
into five categories: Hohhot, Hulunbuir and Banyannur were in larger ecological surplus; Hinggan
was in slight surplus; Baotou, Chifeng, Tongliao, Ulanqab, Xilin Gol and Erdos were in slight deficit;
Wuhai was in stronger deficit; and Alxa was in severely intense deficit. Woodland of cities/leagues
was continuously in slight ecological surplus, while cropland and grassland had crucial impacts on
deficit. There was a significant positive linear correlation between gross domestic product (GDP) and
footprint, while a negative correlation was seen with deficit. These results would help coordinate
resource utilization and industrial structure adjustment in Inner Mongolia.

Keywords: ecological footprint size; ecological footprint depth; ecological carrying capacity;
ecological carrying capacity intensity; three-dimensional ecological carrying capacity; Inner Mongolia
Autonomous Region

1. Introduction

With the acceleration of industrialization and urbanization, population expansion, resource
shortage, environmental pollution and ecological destruction have become prominent in recent
decades. With harsh natural conditions, fragile ecological status and frequent human activities,
there are more environment problems in Northwest China, which limit the regional socioeconomic
sustainable development. The ecological footprint (EF) model proposed by Wackernagel [1,2] provides
an effective tool to assess regional sustainable development and has been widely applied by scholars.
On the demand side, EF represents the natural capital and ecosystem service requirements of a given
population in terms of biologically productive areas. The area of EF depends on the population size,
material living standards, ecological productivity and technology level [2]. Correspondingly, on the
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supply side, ecological carrying capacity (EC) represents the renewing ability of ecosystems to produce
useful biological materials and to absorb wastes generated by humans using current management and
technologies. Herein, the total area of biologically productive land that can provide this ability for
a specific population is calculated as EC. EF and EC can be directly compared as they are measured
in the same units. ‘Ecological surplus’ (ES) refers to the case where EF is lower than EC. In this case,
we can export surplus resources to promote regional economic growth. Conversely, overshoot that
occurs is called ‘ecological deficit’ (ED). Under this circumstance, sustainable development can only be
maintained by importing resources or consuming local natural capital stock.

EF models have been continually modified for various purposes [3]. Net primary productivity was
integrated into an EF model by Venetoulis [4] to refine EF rather than using agricultural productivity.
Gernot [5] modified an EF model with the substitution of fossil energy by renewable energy carriers
for assessing sustainable energy supplies. An emergy-based EF framework was proposed regarding
the ability of environmental services to mitigate or eliminate impact of emissions [6]. Field surveys
were carried out in rural areas based on an EF model in Reference [7]. Researchers combined an EF
model with pinch analysis to devise the optimal energy mixes and quantify environmental pressures
for decreasing the carbon footprint [8]. EF and EC were evaluated and predicted based on the grey
model to provide effective inspiration for reducing ED in the Yangtze River urban agglomeration [9].
Monfreda [10] established national natural capital accounts based on detailed EF and EC assessments
by using more comprehensive data. The current means of EF accounting could not represent resource
depletion associated with resource flows [3].

Natural capital is the resource stock that yields flows of natural services and tangible
natural resources to serve human needs. Ecological footprint size (EFsize) and ecological footprint
depth (EFdepth) were introduced into the three-dimensional ecological footprint (3DEF) model by
Niccolucci [11,12] to distinguish the natural capital flows and stocks. Fang et al. [13,14] introduced
the 3DEF model to China and made optimizations to resolve the mutual offset problem of different
land uses. They also introduced two indicators, namely capital flow occupancy rate and stock flow
utilization ratio and evaluated the natural capital utilization of 11 countries. These two modified
indicators were selected to represent the provincial pattern of China’s natural capital use and then
cluster analysis was conducted to classify provincial regions. Li et al. [15] developed an ecological
footprint contribution index to evaluate the ecological security of the typical prairie in China.
Du et al. [16] observed that all 13 cities in the Beijing–Tianjin–Hebei urban agglomeration showed
ecological deficits and that EFdepth was affected by the quantity and structure of energy consumption.
Peng et al. [17] presented a multidimensional ‘ecology–equity–efficiency’ framework using the Gini
coefficient of EFsize and variation coefficient of EFdepth to characterize the equality of capital flow
consumption and capital stock occupation in Beijing. The occupation of regional natural capital flows
and stocks and differences between land types in other regions were calculated and estimated based
on 3DEF coupled with other prediction models [18–20]. The driving factors of EFsize and EFdepth
were also revealed and the relationship between economic development and EF was explored [18,20].
The 3DEF model was found to be more accurate for depicting regional development, while economic
level and energy consumption had substantial impacts on the footprint.

According to the National Footprint Accounts, humanity’s EF initially surpassed the Earth’s
biocapacity in the early 1970s and recent results indicated 64% overconsumption in 2012 [21].
Current research showed that ED continued in past decades, causing a global overshoot and
potentially leading to a depletion of the underlying natural stocks [11,22]. The EF fails to recognize
factors such as consumer preferences and property rights which have a major influence on the
allocation and sustainable use of resources. EF is not simply linearly correlated with economic
development [18,23] and EF demonstrates robust influence on foreign direct investment. International
trade blurs the responsibility for the ecological effects of production and consumption [24].
The environmental Kuznets curve displays different tendencies for developed and developing
regions [25,26]. A bidirectional causality link between economic growth and EF was found to have
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a U-shaped Kuznets curve for China [25]. Rashid et al. [27] evaluated the living style standards
through questionnaires to calculate EF and found that urbanization in Pakistan was moving away
from sustainable development. The impact of the affluence and technology on regional EF could not
be ignored. The innovation activity and the degree of economic freedom would have a significant
direct influence on the variability of EF [24,28], while the conventional model may overestimate
ED during rapid socioeconomic development. Over the course of human history, our lifestyles and
concepts have changed along with institutions and culture, while the traditional EC is productivity
and carrying capacity represented in the past and present. We should take into account physical senses,
psychological perceptions, socioeconomic perspectives, process risk and associated aspects alongside
natural elements in working toward sustainable development [29]. Science and technology constitute a
primary productive force. The regional sustainable development is coupled with potential from social
capital as well as natural capital [30,31]. Thus, the actual EC is difficult to measure or evaluate. This
confuses the resource consumption threshold within the planetary boundaries [32]. No studies have yet
overcome this deficiency. Multiplicative-innovation synergies arise from combining greater proportions
of diverse technologies and their effects have longer duration [33,34]. Therefore, we introduced
one multiplicative technological factor, namely ecological carrying capacity intensity (ECintensity),
to represent the potential of regional carrying capacity more accurately.

The EF and EC of the Inner Mongolia Autonomous Region (IMAR) were calculated using resource
and environmental data based on an EF model. We calculated the three-dimensional ecological
carrying capacity (EC3D) during the period of 2010–2016 to improve the accuracy and reliability of EC.
Meanwhile, the supply and demand of different land types were described, the relationship between
ecological deficit and economy was analyzed and the limiting factors affecting carrying capacity
were explored. The results could provide basic data support for industrial structure adjustment and
ecological redline identification for regional development planning and management.

This paper is organized as follows: Section 2 describes the study area, Inner Mongolia. Section 3
introduces materials and revised methods, including data sources, the construction of the ECintensity

and the revised three-dimensional ecological footprint model. Section 4 presents results of the
temporal–spatial patterns of the three-dimensional ecological footprint, carrying capacity and
surplus/deficit in 12 cities/leagues. Analysis of factors influencing EFsize, EFdepth and ECintensity

are discussed comprehensively in Section 5. Finally, conclusions and proposed future work are
presented in Section 6.

2. Study Area

IMAR is located in the northern frontier of China, extending from the northeast to the southwest.
It has nine cities: Hohhot, Baotou, Wuhai, Chifeng, Tongliao, Erdos, Hulunbuir, Ulanqab and
Banyannur; and three leagues: Hinggan, Alxa and Xilin Gol (Figure 1). The total land area is
1.183 million square kilometers, accounting for 12.3% of the country’s total area. At the end of
2017, the permanent population of the whole region was 25.286 million, of which the urban population
was 15.628 million. Per capita arable land, grassland, forest area and mineral resources rank among
the top of regions of China and it is an important source of energy and raw materials in China.
In 2017, 11,701 patents were applied for and 6271 patents were granted. The region’s GDP reached
1610.32 billion yuan with an increase of 4.0% over the previous year calculated at comparable prices.
The GDP contributions of the three main industries were 10.2%, 39.8% and 50.0%, respectively [35].
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3. Materials and Methods

3.1. Materials

This research used primarily socioeconomic data mainly from the Inner Mongolia Statistical
Yearbook 2011–2017, Food and Agriculture Organization of the United Nations and Agrotechnical
Economics Manual (Revised). The data calculated for EF herein included biological resource and
energy consumption (Table 1). The biomass products were specifically agricultural products, animal
products, forest products and aquatic products; energy resources included coal, oil, gasoline, natural
gas, electricity and so forth. These indicators were chosen according to the actual conditions in IMAR
based on the World Wide Fund for Nature or World Wildlife Fund classification criteria. The selected
data covered most of the components needed for ecological footprint accounting. All biomass was
calculated by production volume and energy was calculated by consumption to conform to true
ecological pressure status. Thus, the import and export adjustment were not included herein.

Table 1. Biological and energy resource data selected for model calculation in the Inner Mongolia
Autonomous Region (IMAR).

Biological Products/Energy Consumption Items Land Categories

Cereals, tubers, beans, oil-bearing crops, pork, poultry eggs Cropland
Beef, mutton, milks, sheep wool, goat wool, cashmere Grassland

Honey, wood, fruit Woodland
Aquatic products Water area

Coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, natural gas, electricity Construction land

The EF of all items were classified into 5 land types: cropland, grassland, woodland, water area
and construction land. Cropland, grassland, woodland and water area all provide a large number of
products as mentioned by the conventional ecological footprint model. Fossil energy land is used to
account for the land needed for local forests to absorb carbon dioxide. However, it is not just woodland
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that can absorb greenhouse emissions; in particular, prairie land is also important in this. Therefore,
fossil energy land and construction land were merged into construction land as calculated below.
The missing data of cities/leagues were processed and converted as follows. Cropland and grassland
EF were calculated according to statistical data of each item; honey and fruit products were distributed
according to the proportion of agricultural GDP in each city/league within IMAR and wood according
to the proportion of forestry GDP. The aquatic products were distributed according to the proportion of
fishery GDP and the total energy consumption of each city/league was calculated as construction land
EF. The energy component was directly estimated using standard coal consumption due to detailed
data being inaccessible for 12 cities/leagues. Meanwhile, in order to conveniently compare results with
other regions, the global average production data in 1993 extracted from the Food and Agriculture
Organization of the United Nations was used as the benchmark and the energy component was based
on the average calorific value of fossil energy [2,36].

Based on the integrity and accessibility of data, the yearly patent data of 12 cities/leagues were
extracted from the SOOPAT website (http://www1.soopat.com/Home/IIndex), while the scientific
and technological activities’ personnel and research funding were taken from the Inner Mongolia
Statistical Yearbook. The calculation of ECintensity was based on 1993 data in order to be conducive to
model unification.

Land use data were derived from the Land Survey Results Sharing Application Service Platform
(http://tddc.mlr.gov.cn/to_Login). The data were adjusted according to the connotations of EF based
on current land use classification. The cultivated land and grassland were categorized as cropland and
grassland, respectively. The garden land and forest land were merged into woodland. Urban villages,
industrial and mining land and transportation land were merged into construction land. Waters and
water conservancy facilities were combined as water area and other land (such as swamps, sands, etc.)
would not be considered.

3.2. Methods

EF is herein divided into cropland, grassland, woodland, water area and construction land.
Equivalence factors and yield factors are combined to align the measurement units. EC is the amount
of land supplied in the study area; ES/ED is the difference when comparing EF with EC to represent
the regional sustainability. The traditional EF model is shown below [1,2]:

EF = N × e f = N ×∑
i
(e fi × ri) = N ×∑

i
∑

j
(

Cij

Pij
× ri) (1)

ri =
∑j(Cij × γij)

Si
/

∑i ∑j(Cij × γij)

∑i Si
(2)

where N is the population (cap); e f is per capita EF (hm2/cap); i is land use type; j is an item produced
or consumed; ri is the equivalence factor; Cij is the production or consumption of i and j in the study
area (kg; m3; kW·h); Pij is the production or consumption of i and j in the world (kg; m3; kW·h);
γij is the average calorific value of i and j; and Si is the biological production area of i in the study
area (hm2).

The EC is calculated as follows:

EC = N × ec = N ×∑
i
(Si × ri × yi) (3)

yi =
∑j(Cij × γij)

Si
/

∑j

(
C′ij × γij

)
S′i

(4)

http://www1.soopat.com/Home/IIndex
http://tddc.mlr.gov.cn/to_Login
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where ec is per capita EC (hm2/cap); yi is the yield factor of i; C′ij is the production or consumption of i
and j in the upper level area (kg; m3; kW·h); and S′i is the biological production area of i in the upper
level area (hm2). Note that the equivalence and yield factors of construction land are adjusted to the
sum of 1/4, 1/4 and 1/2 of cropland, woodland and grassland, respectively, according to the actual
occupation of the land use type.

Based on the above EF model, EFsize and EFdepth are introduced to represent natural capital flow
occupancy and capital stock consumption, respectively. The formulas are as follows [11,14]:

EFsize = N × e fsize = N ×∑
i

min{e fi, eci} (5)

EFdepth = e fdepth = 1 + ∑i max{e fi − eci, 0}
∑i eci

(6)

EF3D = EFsize × EFdepth (7)

where EFsize, EFdepth, EF3D are ecological footprint size (hm2), ecological footprint depth and
three-dimensional ecological footprint(hm2), respectively. e fsize, e fdepth are per capita ecological
footprint size (hm2/cap) and ecological footprint depth, respectively. Smaller EFsize and larger EFdepth
indicate a lower capacity for regional sustainable development.

EC calculated above is representing current productivity not involved in the potential of science
and technology. We introduced a new metric, referred to as ECintensity, to estimate the EC3D needed to
absorb the technology productivity to give more accurate prediction.

ECintensity = 3

√
(1 +

Pk
P0

)× (1 +
Mk
M0

)× (1 +
Fk
F0
) (8)

EC3D = EC× ECintensity (9)

where ECintensity is ecological carrying capacity intensity; k is the city/league of IMAR; Pk, Mk, Fk are
the numbers of patent applications per capita, scientific and tech researcher ratio and funds per capita
ratio of R&D in the city/league (k), respectively; P0, M0, F0 are the numbers of patent applications,
scientific and tech researcher ratio and funds ratio of R&D in IMAR (relative to 1993 data), respectively;
and EC3D is three-dimensional ecological carrying capacity.

ED3D = EC3D − EF3D (10)

where ED3D is the three-dimensional ecological deficit, meaning ecological surplus if ED3D > 0 and
ecological deficit if ED3D < 0.

4. Results

4.1. Analysis of Ecological Footprint

4.1.1. Ecological Footprint Size and Composition

EFsize represented the capital flow occupancy (Figure 2). EFsize of IMAR representing the region
average value showed a downward trend from 4.20 hm2/cap to 3.74 hm2/cap. The spatial differences
between cities/leagues were relatively large and varied little over time, except for Hohhot and Alxa.
Due to higher equivalence factors of cropland, EFsize in Alxa League was the highest, decreasing
from 64.26 hm2/cap to 41.11 hm2/cap; EFsize values for Hulunbuir, Xilin Gol, Banyannur and Erdos
were also higher than the average of IMAR, with different fluctuation ranges. Others that were lower
than the mean value of region indicated less occupation of capital flow. Among them, Hohhot had
the largest decline of 44.05%, while interannual fluctuations of Baotou, Tongliao and Ulanqab were
relatively small.
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The land use type EFsize values were further analyzed (Figure 3). Cropland EFsize of IMAR
constituted the highest proportion, representing 70.43–75.24%; grassland decreased from 21.63% to
16.42%; construction land showed a steady growth trend (6.79–7.98%); woodland decreased rapidly
from 0.98% to 0.15%; and the water area stabilized at around 0.20%. EFsize had different proportions of
land use in various cities/leagues. Grassland EFsize of Hohhot accounted for the highest proportion
and reduced from 79.68% to 68.86%. The dominant land use type with respect to EFsize in Baotou was
changed from grassland to cropland in 2014. Similarly, grassland EFsize of Ulanqab still dominated
during the study period and it was expected to be replaced by cropland in the subsequent few years.
Cropland EFsize in Hulunbuir, Hinggan, Tongliao, Chifeng, Erdos, Banyannur and Alxa accounted for
the largest proportion, at around 90.00% and the other land use types had minimal impacts. Grassland
EFsize of Xilin Gol accounted for the largest proportion (56.00%), followed by cropland, with an
inverted U-shaped trend (33.58%). Excluding a significant proportion (55.70–58.75%) of construction
land in Baotou due to its larger built-up area, the other land use types’ EFsize varied little over time.
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4.1.2. Ecological Footprint Depth

EFdepth indicated the degree of capital stock consumption. In the 12 cities/leagues, EFdepth values
all exceeded the original value of 1.00 (Figure 4). During the study period, the average EFdepth of IMAR
reached 7.00, indicating that capital flow was far from meeting the demand and that capital stock
was largely occupied. EFdepth differed significantly between cities/leagues, with features reduced
from west to east. EFdepth of Wuhai reached up to 71.52 and values for Alxa, Erdos, Baotou and
Xilin Gol were all higher than the average of IMAR. The minimum was 2.30 in Hohhot, with more
sustainable development relatively. Temporally, Wuhai held the largest EFdepth (50.03–81.15), with
a downward trend from 2015, indicating that its stock consumption rate was decreasing while still
remaining relatively high. Contrary to the trend of EFsize, EFdepth in Erdos and Baotou exceeded the
average depth of the region and stabilized in recent years. EFdepth of Xilin Gol was inverted with a
U-shaped trend, reaching a maximum of 10.79 in 2012. EFdepth in Ulanqab held the highest annual
growth rate (13.66%), indicating severely consumed capital stock. EFdepth in Hohhot was the smallest
and roughly weakened over time.
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4.1.3. Three-Dimensional Ecological Footprint

The EF3D analysis results were further analyzed. EF3D per capita of Alxa was the highest among
the 12 cities/leagues, with an average value of 985.60 hm2/cap. Wuhai, Xilin Gol and Erdos surpassed
the mean IMAR value of 28.03 hm2/cap. Hohhot held the smallest value of 6.07 hm2/cap, which
was consistent with the spatial distribution of EFsize. Temporally, EF3D in Alxa decreased from
965.47 hm2/cap in 2010 to 901.87 hm2/cap in 2013, then rebounded to 986.88 hm2/cap, which was
determined by EFsize reduction and EFdepth increase; EF3D of Wuhai and Erdos were on the rise, while
the former’s rate (10.26%) was much higher than the latter’s (4.29%). Xilin Gol first increased and
then decreased and reached the highest value of 70.32 hm2/cap in 2013. The fluctuation trend was
greatly affected by EFdepth. The remaining eight cities/leagues’ values were lower than the average
EF3D value of IMAR. The trend of Hulunbuir, Tongliao, Tongliao and Hinggan fluctuated similarly
and tended to be flat after steady growth. Hohhot reached a peak of 7.43 hm2/cap in 2011 and rapidly
dropped to 4.48 hm2/cap in 2016 and was the only city with EF3D decreased due to the reduced EFsize.
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4.2. Analysis of Ecological Carrying Capacity

4.2.1. Ecological Carrying Capacity

EC indicated the current carrying capacity of the existing land and the trends were obtained.
The per capita EC of IMAR showed a downward trend from 4.69 hm2/cap in 2010 to 3.94 hm2/cap in
2016. The differences between cities/leagues were remarkable. Temporally, EC of each city/league
except Hohhot and Alxa varied little over time. Alxa had the highest value (65.32–41.65 hm2/cap),
mainly being affected by the large equivalence factors of cropland and construction land and was
consistent with the EFsize curve. EC of cities/leagues were similar to their EFsize ranking. EC in Hohhot
gradually declined from 4.24 hm2/cap to 2.17 hm2/cap, indicating that its unsustainable state was
becoming more severe; Ulanqab and Baotou held the lowest EC, with downward trends. Different
cities/leagues held significantly different proportions of land use types. The trend curves of the EC
ratios were roughly similar to EFsize, except for woodland.

4.2.2. Ecological Carrying Capacity Intensity

ECintensity indicated the potential carrying capacity of resources and social capital. In all
12 cities/leagues, ECintensity exceeded the basic value of 1.00, representing higher potential support
(Figure 5). This showed that the social capital can help regional development to meet the higher
EC. During the study period, the average ECintensity value of IMAR reached 5.20, indicating that the
potential carrying capacity of IMAR was not yet fully developed. ECintensity differed significantly
between cities/leagues; the values in central IMAR were higher than others. As the capital and science
and education center of IMAR, ECintensity in Hohhot reached 10.54, indicating that the potential for
the development of current technology had increased by more than tenfold compared to 1993 under
the same conditions; the next was Erdos (5.78), being directly related to its GDP ranking and higher
patent possession per capita. ECintensity of other cities/leagues without obvious variation difference
were lower than the regional value. The smallest were Hinggan (2.70) and Ulanqab (2.52), with lower
patent ownership, technician numbers and funding, resulting in low technological innovation capacity.
With the progress of socioeconomic level, the technological level improved significantly. The overall
mean ECintensity of IMAR continued to increase from 3.82 in 2010 to 6.65 in 2016. Hohhot had the
highest value, rising from 7.80 to 10.54, being much higher than that of other areas with slightly
slowing growth rates; ECintensity of Baotou rapidly increased from 3.42 to 7.48 and the per capita
patent ownership even surpassed that of Hohhot in some years and investment in research funding
had also rapidly increased, indicating great potential for regional development; ECintensity values of
Tongliao, Hulunbuir and Chifeng were relatively close and had similar trend curves; the lowest values
in Hinggan (2.06–3.24) and Ulanqab (1.92–3.18) showed a upward trend in line with lower per capita
patent ownership and GDP.

4.2.3. Three-Dimensional Ecological Carrying Capacity

The EC3D results could be divided into three levels. Alxa was much higher than the others
(220.05 hm2/cap), as influenced by its high EC. Hohhot, Xilin Gol, Hulunbuir, Erdos and Banyannur
were distributed in the range of 20.00–40.00 hm2/cap and the remaining ones fell into the range of
5.00–10.00 hm2/cap. Excluding Hohhot, the spatial distribution of EC3D was relatively consistent
with EC. Temporally, the EC3D of Hohhot reached a peak of 43.68 hm2/cap in 2015 and plummeted to
28.61 hm2/cap in 2016. Increased ECintensity did not reverse the downward trend of EC, resulting in
Hohhot being the only city reduced in EC3D during the study period; Xilin Gol and Hulunbuir showed
a steady growth trend with average annual growth rates of 18.40% and 8.14%, respectively. Erdos and
Banyannur experienced a stepwise fluctuation and reached their maximum EC3D values in 2016. With
no change during the period of 2010–2014, EC3D in Wuhai grew rapidly and surpassed Ulanqab due
to increasing ECintensity.
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4.3. Three-Dimensional Ecological Deficit Analysis

ED3D was further analyzed compared EC3D with EF3D. As shown in Figure 6, the green color
represents a lower ecological deficit or surplus, while the yellow and red colors represent a higher
deficit value. There was no obvious agglomeration effect on the spatial pattern. ED3D of Alxa was the
highest and the average value reached 765.55 hm2/cap. Values for Wuhai, Erdos, Xilin Gol and Baotou
exceeded the average value of IMAR (5.70 hm2/cap). Chifeng, Ulanqab and Tongliao stayed in deficit,
while Hohhot, Banyannur, Hulunbuir and Hinggan possessed a surplus. Temporally, ED3D in IMAR
decreased from 5.74 hm2/cap in 2010 to 3.65 hm2/cap, indicating that the sustainability improved
but it was still in a deficient state during the study period; ED3D of Alxa fell from 810.95 hm2/cap
to 757.52 hm2/cap, indicating that it had a tendency to turn deficit into surplus; ED3D in Wuhai
showed a significant increasing trend from 47.74 hm2/cap to 86.90 hm2/cap, which should be paid
more attention. Xilin Gol had a U-shaped trend reaching a maximum of 44.28 hm2/cap (2012) and
decreasing to 7.89 hm2/cap (2016). Hinggan was the only area that reversed deficit into surplus
during the research period (2013) and possessed continuous surplus related to abundant natural
resources. The surplus of Hulunbuir changed linearly from 5.12 hm2/cap (2010) to 1.75 hm2/cap
(2013) and then rapidly increased to 12.28 hm2/cap in 2016; Hohhot’s surplus was the highest, rising
from 26.82 hm2/cap (2010) to 38.48 hm2/cap (2015) but fell to 24.13 hm2/cap, which was related to the
very steep decline of EC3D in 2016.

The land use type ED3D values were further analyzed. Cropland ED3D of IMAR constituted the
highest proportion, representing 86.93–102.70%. The deficit of cropland in 2015–2016 was even higher
than the total deficit, followed by grassland, accounting for 24.66%. The deficits of construction land
and water area were small and basically unchanged. Woodland surplus was showing a downward
trend (1.79–1.32 hm2/cap). The surplus/deficit of land use types between cities/leagues were quite
different. All land use types in Hohhot were surplus and grassland surplus was the largest, followed by
construction land and cropland. ED3D of Hinggan turned deficit into surplus in 2014, while woodland
held a surplus during study period. The land use types, except for woodland, of seven cities/leagues,
namely Baotou, Xilin Gol, Ulanqab, Tongliao, Chifeng, Erdos and Alxa, were insufficient, as influenced
by cropland and grassland deficits. Wuhai only held a surplus in 2015–2016. Construction land
deficit accounting for the largest proportion (56.61–59.04%) was directly related with high urbanization
rate (94.7%).
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5. Discussion

5.1. Analysis of Factors Influencing EFsize

Herein, GDP1, GDP2 and GDP3 respectively represent the GDP of primary, secondary and tertiary
industry. Abundant resources tend to have higher EFsize with larger GDP1. EFsize of construction land,
cropland and grassland in IMAR were relatively large, representing high occupancy of natural capital
flows. As an important energy base and the main grain-producing area in China, energy consumption
(construction land) and mutton (grassland) had large EF, indicating high resource utilization. Mutton
production was important to grassland EFsize, reflecting a climate suitable for stockbreeding. There
were slight differences in various land use types between cities/leagues. The increases of EFsize in
Hinggan and Xilin Gol were explored; the continuously improved yield factors of cropland, being the
dominant land use type, were the main factor in Hinggan. Rapid increases of built-up area in Xilin
Gol contributed to an increase of construction land EFsize, even with downward equivalence factors,
resulting in a steady increase in EFsize. Also, we revised the local equivalence and yield factors in
various cities/leagues in order to directly improve accuracy of the results [37].

Population density (POPdensity) in the 12 cities/leagues can be ranked as follows: Wuhai > Hohhot
> Baotou > Tongliao > Chifeng > Ulanqab > Hinggan > Banyannur > Erdos > Hulunbuir > Xilin Gol >
Alxa. POPdensity changed little during the study period and was significantly negatively correlated with
EFsize in various cities/leagues, as found using SPSS 23 software. Pearson correlation coefficient was
−0.294 (Table 2) and the regression equation was most suitable with the power function (R2 = 0.84).
Areas with lower POPdensity correspondingly tend to have higher EFsize per capita. Population
concentration should be controlled to improve EFsize, especially in industrial regions.
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Table 2. Pearson correlation coefficients between GDP/POPdensity and footprint, capacity and deficit.

Coefficient EFsize EFdepth EF3D EC ECintensity EC3D ED3D

GDP1 −0.036 −0.639 **1 −0.169 −0.026 −0.200 −0.044 0.201
GDP2 0.602 ** 0.388 ** 0.645 ** 0.596 ** 0.176 0.595 ** −0.651 **
GDP3 −0.014 0.216 *2 0.058 −0.020 0.745 ** 0.106 −0.044
GDP 0.416 ** 0.333 ** 0.471 ** 0.410 ** 0.436 ** 0.463 ** −0.467 **

POPdensity −0.294 ** 0.776 ** −0.182 −0.298 ** 0.261 * −0.255 * 0.159
1 ** Significantly related at the 0.01 level (both sides). 2 * Significantly related at the 0.05 level (both sides).

EFsize per unit of GDP could be used to characterize the demand of natural capital in the local
economy. The relationship between GDP per capita and EFsize per capita was further explored (Table 2).
It was found that EFsize was extremely significantly correlated with GDP, with a Pearson correlation
coefficient of 0.416. There was no significant correlation with GDP1 and GDP3, while there was a
significant positive correlation with GDP2, with a still-higher correlation coefficient (0.602). Therefore,
the structure of the second industry should be prioritized for improving energy efficiency to increase
EFsize.

5.2. Analysis of Factors Influencing EFdepth

Larger EFdepth indicated that capital stock consumption had intensified and factors affecting
the changes in various cities/leagues were explored. Construction land and cropland EF were the
dominant sources for the ED. Herein, all energy consumptions were compiled to calculate construction
land EF, resulting in the highest EFdepth far exceeding the original value (1.00). Due to high-yield
production, especially of grain and lack of sufficient arable land, cropland EFdepth also contributed a
larger proportion of total EFdepth. Among them, grain (cropland) and mutton (grassland) had higher
EF, while the factors affecting the EFdepth between cities/leagues were slightly different. For Wuhai,
Alxa and Baotou, construction land was absolutely dominant in EFdepth, while croplands had more
influence in Hinggan and Tongliao. An analysis of changes in woodland EFsize and EFdepth during
the period of 2010–2016 revealed a significantly negative correlation (R2 = 0.42). That indicated the
achievement of protecting forest resources to improve woodland EC. Construction land EF3D and
EFdepth changes were significantly positive, with a larger linear regression coefficient (R2 = 0.62), which
was consistent with other studies [16,18]. Control of energy consumption can effectively relieve natural
capital stock depletion. Energy reduction requires decreasing the amount of energy consumption
and optimizing of the energy consumption structure. This essay used energy consumption instead of
production to characterize EF in order to be more realistic, while the energy use such as through coal
was transmitted to Central China and North China through trade and energy EF was still high in the
total amount. Economically developed regions can make up for ED through import. It is difficult to
reduce the total amounts of energy needed for social and economic development nowadays. Priority
should be given to adjust the industrial structure, improve the utilization of clean energy and improve
energy efficiency.

As a new industrial city, Wuhai had a higher energy consumption and its EFdepth was the highest.
Xilin Gol and Erdos possess rich mineral resources, such as coal and natural gas; therefore; the resource
exploitation is the major driving force for increasing EFdepth. In 2012, the renewable energy microgrid
demonstration project and grid-connected photovoltaic power generation project carried out in Xilin
Gol were of great significance for energy efficient utilization. The EFdepth was reduced since 2013, with
obvious effects of energy saving and emission reduction.

The POPdensity was significantly positively correlated with EFdepth, with the Pearson correlation
coefficient reaching 0.776 (Table 2) and regression equation was most suitable with a parabolic
polynomial function (R2 = 0.68). Areas with lower or higher POPdensity tended to have higher
EFdepth values. It indicated that the medium-density population was most suitable and population
concentration should be controlled reasonably, which was similar with compact cities’ results [38].
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The relationship between per capita GDP and EFdepth was evaluated (Table 2). It was found
that EFdepth was positively correlated with GDP and the Pearson correlation coefficient was 0.333.
EFdepth was very significantly negatively correlated with the GDP1, while being positively correlated
with GDP2 and GDP3; Pearson correlation coefficient was 0.388 and 0.216, respectively. The linear
regression equation of EFdepth and GDP1, GDP2 and GDP3 was: EFdepth = 38.183 − 45.875 * GDP1 +
1.619 * GDP2 − 2.211 * GDP3 (R2 = 0.47). It showed that adjusting the industrial structure and reducing
the GDP2 played an important role in reducing EFdepth.

Lower GDP1 and large GDP2 indicated that natural resources are scarce and energy consumption
is vigorously consumed. Among the cities/leagues, GDP2 in Wuhai, Alxa, Baotou and Erdos accounted
for the highest proportion, which corresponded to high EFdepth. Xilin Gol and Erdos have national key
coal-fired power bases, reflecting relatively larger EFsize and lower EFdepth. The rapid economic growth
in IMAR was largely due to the rapid development of the secondary industry. Therefore, we should
continue to adjust the industrial structure, adhere to the new agricultural and animal husbandry
industrialization and urbanization strategies, enlarge and strengthen the dominant industries and
constantly upgrade the industrial level to enhance the vitality of economic development.

To further explore the relationship between per capita EF3D and GDP, a significantly positive
correlation was found, with a high Pearson correlation coefficient (0.471) and higher coefficient (0.645)
for GDP2. The linear regression equation of EF3D and GDP was: EF3D = 2.939 − 59.529 * GDP1 +
71.34*GDP2 − 65.169 * GDP3 (R2 = 0.58). It showed that improving the primary and tertiary industries
would weaken EF3D. Moreover, the annual GDP2 change had a significantly negative correlation with
EF3D change, indicating that the rapid growth of the economy contributed to a higher decline rate
of EF3D.

Further analysis of the relationship between EF3D and GDP during the period of 2010–2016
produced inflection points similar to those in the Kuznets curve (Figure 7). It indicated that there may
be an inverted N-type curve between EF3D and economic development in IMAR, which was different
compared with the results of Shandong [18], as proved by the ecosystem services footprint model [39].
EF3D and GDP were negatively correlated when per capita GDP was and GDP were negatively
correlated when per capita GDP was <5.29 and >16.37 and possessed an upward trend between 5.29
and 16.37. The decrease in EF3D in the former was related to energy efficiency improvement and clean
energy expansion through high technology levels. EF3D was continually reduced in the earlier years.
When GDP reached a certain level, prospects for improvements in energy efficiency would stagnate,
resulting in an increase of EF3D, while the latter one was more contributed to energy transmission
to other regions, such as East China, as discussed above. It should be noted that resources were
still being consumed for economic prosperity and this trend could not change in the near future due
to the National Energy Strategy. Although the relationship between economy and EF3D should be
verified further, the results still could guide population migration, formulation of industrial policies
and rational development of energy in IMAR.
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5.3. Analysis of Factors Influencing ECintensity

Due to comprising the primary productive forces, the science and technology level has a crucial
impact on ECintensity besides the natural endowments of the region. The input of human and financial
resources is most closely related to the region’s economy, science and education and talent policies. This
paper selected the input of scientific and technical personnel and funding coupled with patent output
to construct the factor. ECintensity showed an upward trend during the study period and the capital city
of Hohhot had more advantages. The per capita patent ownerships of Baotou, Hohhot and Erdos were
the highest, indicating that the technological output capacity was relatively stronger. The proportion of
researchers in Hohhot was much higher than in other cities/leagues and the sharp rise of researchers in
Xilin Gol in 2014 led to a rapid increase of ECintensity, which was directly related to talent policies. As for
per capita funding, Hohhot and Baotou showed a steady rise, while Erdos showed a downward trend
and the increase rate of investment was slightly lower than that of researchers. From the geographical
analysis, it was found that cities/leagues with higher ECintensity had a significant industrial location
effect related to the concentration of national key laboratories and high-tech zones. Meanwhile,
it was related to the promotion of interregional scientific and technological activities. The innovation
capability of IMAR will be stronger with implementation of the Medium and Long-Term Talent
Development Plan and “Prairie Talents.”

Upon further exploration of the relationship between ECintensity and GDP (Table 2), it was found
that ECintensity was positively correlated with per capita GDP and especially with GDP3. It showed that
economic prosperity had a positive effect on ECintensity. Also, it reflected the promotion function of the
mutual transformation of economic and technological interaction. Adjusting the industrial structure
and increasing GDP3 plays an important role in EC3D improvement.

With continuous development and optimization of the EF model, numerous studies have been
performed on the relationship between EF and economy. Studies have shown that the economy has
a significant impact on EFdepth and that drives relationships that can be used to effectively alleviate
environmental pressures arising from economic development [40,41]. However, due to the relatively
limited number of years selected in the cross-sectional data, the relationship between economic
development and EFdepth requires further verification, especially considering technological innovation
and talent cultivation. The policy formulation of the industrial system toward a sustainable future
should be made, taking into account the balance between EFdepth and ECintensity.
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5.4. Method Comparison and Policy Suggestions

The occupancy ratios of natural capital stock and flow in the study area are identified based
on the 3DEF model. The contradiction between resource consumption and supply can be more
intuitively represented, which compensates for the shortcomings of the traditional two-dimensional
model on human environmental impact assessment. It can reflect laterally that there is still room for
improvement in EC when coupled with ECintensity. On the one hand, it emphasizes the ecosystem
function integrity and quality of land use; on the other hand, it is more directly related to the human
production lifestyle. In a certain sense, it corrects the shortcomings of only paying attention to the
quantity of land in the traditional model. Compared with previous evaluations of the 3DEF model,
developed regions [16,28,40] are more unsustainable, which is inconsistent with the actual nature of the
social and economic development, while using net primary production or emergy [6,42] for calculating
EF and EC still ignores the impacts of social and economic factors. The introduction of ECintensity as
part of the carrying capacity plays an important role in reducing the research gap. Essentially, it is the
correction of equivalence and yield factors coupling with social components. We hope to work together
with scholars to identify the natural EC boundary under the framework of the social–economic–natural
complex ecosystem.

Increased carrying capacity for sustainable development should stem from reducing EFdepth
and elevating EFsize and ECintensity. EFsize is significantly affected by natural endowments, EFdepth is
widely affected by resource consumption and ECintensity is largely affected by science and technology.
Therefore, it is necessary to correspondingly reduce the energy consumption, optimize the industrial
structure and improve the technological innovation ability. Numerous studies have shown that IMAR
was unsustainable at the time of research. However, previous studies did not consider the human
subjective initiative in social development. This study conducted an empirical study taking the
potential productivity of science and technology into account. Gobi-land cultivation systems and
rotational grazing systems could be sustainable management tools for IMAR [43,44]. Different farming
methods produced different results, particularly in the carbon footprint, besides grain production
and soil carbon storage [45]. As an example, semi-intensive pond farming is more sustainable than
intensive cage farming in Lake Kariba [46]. When promoting the economy, each city/league should
engage in development opportunities and optimize industrial and energy structures based on local
conditions. For instance, Hulunbuir and Xilin Gol should implement the guiding concepts ‘lucid
waters and lush mountains are invaluable assets’ based on their current natural resources in order to
maintain carrying capacity.

6. Conclusions

Using the revised 3DEF model, we calculated the per capita EFsize and EFdepth of 12 cities/leagues
in IMAR in 2010–2016 and analyzed the factors influencing these values. ECintensity was introduced
when calculating EC3D as a potential intensity for sustainable development to avoid excessively
conservative estimates. In different cities/leagues, the results indicated a state of ecological
surplus/deficit; most of them held relatively high ecological pressure, even considering the potential
productivity of technology. EFdepth and ECintensity all sharply exceeded the original value of
1.00. Capital flow deficit led to heavy capital stock consumption, while technological innovation
could improve potential carrying capacity. Resource overutilization continued even with the high
technological level in eight cities/leagues in Midwest Inner Mongolia. The surplus/deficit was
determined by population density, industrial structures and scientific and technological level besides
natural endowment. Meanwhile, based on the spatial scale of the city/league, it is more appropriate to
focus on the interregional trade adjustment and industrial upgrading than to evaluate a provincial
administrative region separately. The revised model emphasizes the subjective initiative of human
beings, which explains to some extent that the sustainability of cities is superior to rural areas, which
is obviously more in line with the reality of social and economic development. The results can support



Sustainability 2019, 11, 2002 16 of 18

decision-making regarding the distribution and regulation of urban populations, industrial layout and
economic policy in regions such as IMAR.

The inventory and driving factors for EC3D should be further studied. Scientific and technological
activities in enterprises accounted for about half of the related industry in IMAR, as we constructed
ECintensity only using the government’s personnel and funds. There still remains a problem regarding
accessing the data in common databases which would be beneficial to apply to other regions with
essential datasets. It is necessary to establish the EF inventory and more accurate results of EC3D

should be estimated with long-time series data. Simultaneously, spatial correlation characteristics need
to be further analyzed. The global effects of material circulation, energy transmission and information
exchange must be considered. It is difficult to identify the dynamic source and sink relationship of each
city/league due to the inaccessibility of internal and external trade data. Generally, as the developed
animal husbandry and key national energy base, IMAR plays an important ‘source’ role for other
regions. The results are significant for the rational allocation of resources, optimization of industrial
structures and promotion of socioeconomic development to achieve harmony between nature and
human beings.
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Nomenclature

Acronyms
EF ecological footprint
EC ecological carrying capacity
ES ecological surplus
ED ecological deficit
EFsize ecological footprint size
EFdepth ecological footprint depth
EF3D three-dimensional ecological footprint
ECintensity ecological carrying capacity intensity
EC3D three-dimensional ecological carrying capacity
ED3D three-dimensional ecological deficits
GDP Gross Domestic Product
GDP1 GDP of primary industry
GDP2 GDP of secondary industry
GDP3 GDP of tertiary industry
POPdensity population density
IMAR Inner Mongolia Autonomous Region
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