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Abstract: The sustainable development of urban growth is a mandatory challenge to be addressed,
as also highlighted in the Agenda 2030, and this requires suitable and sustainable planning strategies,
as well as systematic and timely monitoring of urban expansion and its effects. In this context, satellite
data (today also available free of charge) can provide both (i) historical time-series datasets, and (ii)
timely updated information related to the current urban spatial structure and city edges, as well
as parameters to assess urban features and their statistical characterization to better understand
and manage the phenomenon. Nevertheless, it is important to highlight that the identification and
mapping of urban areas is still today a complex challenge, due to the heterogeneities of materials,
complexity of the features, etc. Our approach, herein adopted, addresses the challenges in using
heterogeneous data from multiple data sources for change detection analysis to improve knowledge
and monitoring of landscape over time with a specific focus on urban sprawl and land-use change
around cultural properties and archaeological areas. Two significant test cases were selected: (i) one
in Egypt, the Catacombs of Mustafa Kamel in Alexandria, and (ii) one in Italy, the Aragonese Castle in
Baia–Naples. For both study areas, the changes in urban layers were identified over time from satellite
data and investigated using spatial analytic tools to statistically characterize them. The results of this
study showed that (i) the increase in urban areas is the main phenomenon around both heritage areas,
(ii) this increase is sharper in developing countries (e.g., Egypt) than developed countries (e.g., Italy),
(iii) the methodology herein adopted is suitable for both big and small urban changes as observed
around the Catacombs of Mustafa Kamel and the Aragonese Castle.

Keywords: urban sprawling; heritage management; free data; geographic information system (GIS);
satellite images

1. Introduction

Over the last few years, many archaeological sites suffered from many environmental risks
due to unplanned urbanization [1–6]. This study provides a short overview of space-based tools
today available for urban areas ranging from planning strategies to systematic monitoring activities.
In the last few decades, a rapid urbanization process occurred on the global scale, and it is still today
increasing. Actually, over half of the world’s population is living in urban areas and this is expected
to further increase to 70% by 2050. Therefore, the sustainable development of urban growth is a
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mandatory challenge to be addressed, and this requires suitable and sustainable planning strategies,
as well as systematic and timely monitoring of urban expansion and effects. To this aim, the availability
of reliable information on past and current conditions is a critical point for defining and planning
potential future scenarios.

Since the early applications of Earth observation around 50 years ago, the mapping of cities and
towns has been a critical challenge to address. In the 1970s, the availability of Landsat Multispectral
Scanner System (MSS) pushed the early mapping of broad-scale changes at the urban–rural fringe.
From the processing point of view, the most commonly used approaches were mainly based on simple
band ratios, image thresholds, and image differencing [7–10]. Despite the early successful applications,
the limited spatial resolution compared to aerial photographs prevented and limited the use of satellite
data for urban areas. Actually, potential end-users such as decision-makers, urban planners, and land
managers continued for a long time to exploit aerial photographs and field surveys [11,12].

Later, in the 1990s–2000s, the interest in global assessment of urbanization and its effects
pushed the use of medium to coarse resolution [13]. Moreover, additional scientific themes such
as climatology [14], hydrology [15], ecology [16], and public health [17] highlighted the importance of
using satellite in a global perspective to estimate the impacts of urban expansion on environmental
systems, and human health and well-being.

Subsequently, around the 2000s, the availability of very-high-resolution satellite data, such as
IKONOS (1–4 m) and Quickbird (0.6–2.4 m), provided improved technical capabilities to characterize
urban features with increased spatial detail [18,19]. Nevertheless, the cost of new acquisitions of VHR
scenes, along with the sparse coverage of archived data, strongly limited once again the diffusion of
satellite images for urban monitoring.

Actually, still today, medium-resolution (20–30 m) datasets such as Landsat and SPOT remain
the best compromise between the availability of historical datasets and spatial detail. In particular,
the Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land
Imager (OLI) satellite systems were and are the most widely used tools. Their extensive and accessible
archives available for free in a wide range of environments were and are quite attractive for several
urban applications. The recent availability of data from Sentinel missions opened new prospective in
the field of satellite remote sensing for urban areas. Earth observation can today provide reliable tools
for urban mapping from global down to a local scale by capturing the physical characteristics of urban
places which generate spatial and spectral signatures. Nevertheless, it is important to highlight that the
identification and mapping of urban areas is still today a complex challenge, due to the heterogeneities
of features and materials, as well as the complexity and variations in size and shape of buildings and
urban blocks which create mixtures within pixels.

Our approach, herein adopted, addresses the challenges in using heterogeneous information from
multiple data sources for change detection analysis to improve knowledge and monitoring of landscape
over time, with a specific focus on urban sprawl and land-use change around cultural properties and
archaeological areas. In the last few decades, the rapid urbanization/urban redevelopment initiatives
globally observed posed real challenges and opportunities for cultural heritage. Urban change can be
a serious threat to cultural properties and landscape, for example, (i) urban sprawl erases the history
of places, and (ii) the increase in urban areas induces an increase in atmospheric pollution and this,
in turn, leads to the degradation of historical buildings, etc.

Cultural properties are particularly exposed to the negative effects of urban sprawl, considered
as one of the main threats to cultural heritage; see, for example, References [1,2] (https://
whc.unesco.org/en/factors/ and http://www.unesco.org/new/en/culture/themes/culture-and-
development/culture-for-sustainable-urban-development/). Moreover, “the 2030 Agenda’s 17
Sustainable Development Goals, SDG 11, on sustainable cities makes it clear that culture has an
essential role to play in realizing sustainable urban development, particularly through strengthened
efforts to protect and safeguard the world’s cultural and natural heritage” (http://www.unesco.org/
new/en/culture/themes/culture-and-development/culture-for-sustainable-urban-development/).

https://whc.unesco.org/en/factors/
https://whc.unesco.org/en/factors/
http://www.unesco.org/new/en/culture/themes/culture-and-development/culture-for-sustainable-urban-development/
http://www.unesco.org/new/en/culture/themes/culture-and-development/culture-for-sustainable-urban-development/
http://www.unesco.org/new/en/culture/themes/culture-and-development/culture-for-sustainable-urban-development/
http://www.unesco.org/new/en/culture/themes/culture-and-development/culture-for-sustainable-urban-development/
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To face this challenge, updated maps and related information are very important for urban
planners to design (urban and infrastructure) development plans sensitive to cultural heritage sites.
In particular, the use of satellite technologies today can suitably support the development planning
process, providing suitable free-of-charge tools useful for multitemporal analysis based on the past
and the current conditions, capturing changes at diverse temporal and spatial scales from global down
to a local level.

Our effort is a contribution to the definition of the best practices and experiences regarding the
production of critical information necessary for the preservation of cultural heritage and the necessary
redevelopment of urban areas. Our approach is based on the joint use of (i) historical and updated
data available from satellite technologies at a global scale free of charge, and (ii) data processing to
extract useful information from the investigated dataset. In particular, the use of statistical analysis
allowed us (i) to perform multiscale investigations of changes in urban areas in terms of both size and
distribution, and (ii) to better capture and characterize the impact of changes delimiting urban sprawl
boundaries, generally regarded as a key indicator (useful for policy measure) to control chaotic and
sparse urban expansion. In other words, the use of diverse static indicators, described in Section 2,
are herein proposed as tools to detect, compare, and capture the impacts of urban sprawl over time
in a quantitative, objective, and reliable way for diverse case studies as in the test areas we selected
(see Section 2), representative of diverse ecosystems and geographic areas in Mediterranean towns
in Europe, as in the case of the Italian case study, and a desert setting in Africa, as in the case of the
Egyptian area.

2. Materials and Methods

2.1. Study Area

The Roman historian Diodorus Siculus described Alexandria city (north of Egypt) as “the first
civilized city in all over the ancient world” [20]. The dates of Mostafa Kamel tombs return to the
late third and early second century before Christ (BC), the Greco-Roman era [21]. Mustafa Kamel
Necropolis lies to the northeast of Alexandra; this Necropolis lies about 150–200 m from the seashore,
and it is higher in topography than El-Shatbi and the new bibliotheca Alexandrina area. The structure
of the fist tomb includes rock-cut rooms and galleries. A broad stairway leads to a square court which
surrounded by Doric semi-columns, all cut into the walls, and leads to ten rooms distributed on the
four sides. On the other hand, the second tomb consists of a stairway leading to a central courtyard.
To the south stand, two Doric columns exist at the entrance of the room, which has luculi on both
sides. Another room, with two benches and luculi on both sides, is accessible. It was probably used for
prayer. At the end is a small room, in front of which a limestone offering table coated with colored
plaster in imitation of alabaster was found [22]. On the other hand, the site of Baia is considered one of
the most extensive submerged archaeological sites known in Italy. The site is characterized by urban
sites with residential houses, thermal baths, fisheries, and harbor buildings [23,24]. Baia Castle (Naples
in southern Italy) was built in 1495, under the Aragonese monarchy, upon important remnants of a
Roman villa. Presently, it hosts the Campi Flegrei Archaeological Museum [25] (Figure 1a). In this
paper, we exploited the integration of remote sensing, geographic information system (GIS), and
statistical analyses for the identification of changes and mapping of planned and unplanned urban
construction. To this aim, the datasets described in Table 1 were used for the analyses conducted in
study areas selected in Italy and Egypt.

The change detection we performed was based on the use of a heterogeneous optical imagery
dataset, made up Landsat TM satellite images and the more recent Sentinel 2, freely available from
the United States Geological Survey (USGS) European Space Agency (ESA) web site, respectively.
The approach we adopted consisted of several steps, as shown in Figure 1b, based on the multitemporal
analysis of satellite data, suitably preprocessed as in Reference [1], with particular reference to



Sustainability 2019, 11, 2110 4 of 18

(i) pre-processing, (ii) classification for the multidate analysis of urban expansion, and (iii) statistical
analyses of the multidate maps obtained from the satellite based categorization.Sustainability 2019, 11, x FOR PEER REVIEW 4 of 18 
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Figure 1. (a) Locations of the study areas Google Earth Courtesy, indicated by yellow arrows:
Aragonese Castle in Baia (Italy) and Catacombs of Mustafa Kamel in Alexandria (Egypt); (b) 
flowchart of the methodological approach. 
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Figure 1. (a) Locations of the study areas Google Earth Courtesy, indicated by yellow arrows: Aragonese
Castle in Baia (Italy) and Catacombs of Mustafa Kamel in Alexandria (Egypt); (b) flowchart of the
methodological approach.
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Table 1. Main satellite images properties.

Number Satellite Sensor Resolution (M) Acquisition Date Source

1 Landsat TM4 30 m July 1998, 1999 USGS
2 Landsat TM5 30 m July 2008 USGS
3 Sentinel 2A, 2B 10 m July 2018 ESA

In particular, we adopted (i) unsupervised classification for the identification of the prevailing
classes and their statistical distribution, (ii) supervised classification for the detection of urban areas,
(iii) comparison of the outputs from the diverse images acquired in diverse years for the extraction
and mapping of ongoing environmental changes with particular reference to urban sprawl, and
(iv) statistical analysis. After the categorization step, for the urban layer, statistical analyses were
applied in order (i) to perform multiscale investigations of changes in urban area in terms of both size
and distribution, and (ii) to better capture and characterize the impact of changes delimiting urban
sprawl boundaries, generally regarded as a key indicator (useful for policy measure) to control chaotic
and sparse urban expansion. To this aim, spatial analyst tools were used to identify (i) statistically
significant spatial clusters of high values (hot spots) and low values (cold spots), and (ii) the appropriate
scale of analysis. To assess the spatial dependence, the following tests were adopted: (i) local Getis-Ord
Gi* statistic, (ii) Local Moran’s I statistic, (iii) Ripley’s K function, and (iv) Global Moran’s I, which gives
five values: Moran’s I index, expected index, variance, z-score, and p-value. These values evaluate
whether the pattern expressed is clustered, dispersed, or random [26].

2.2. Optimized Hotspot Analysis

The spatio-temporal hotspot detection was based on the use of Getis-Ord Gi* statistic to statistically
characterize and capture hot, non-significant, and cold spots. It is regarded as a useful tool for
supporting monitoring activities, early warning, and sustainable management [27] strategies. In more
detail, the optimized hotspot analysis identified statistically significant spatial clusters of high values
and low values using the Gi_Bin field to identify statistically significant hot and cold spots, for multiple
testing and spatial dependence using the false discovery rate (FDR) method. Features in the +/−3 bins
(features with a Gi_Bin value of either +3 or −3) were statistically significant at the 99% confidence
level; the clustering for features with 0 for the Gi_Bin field was not statistically significant, and the
features in the +/−2 bins reflected a 95% confidence level; features in the +/−1 bins reflected a 90%
confidence level [28].

2.3. Cluster and Outlier Analysis (Anselin Local Moran’s I)

Anselin Local Moran’s I statistic [29] identifies statistically significant hot spots, cold spots,
and spatial outliers. This tool creates a new output feature class with Local Moran’s I index, z-score,
p-value, and cluster/outlier type (COType). Feature by feature, the z-scores and p-values are measures
of statistical significance which inform us whether or not to reject the null hypothesis. Furthermore,
this tool indicates whether the apparent similarity (a spatial clustering of either high or low values) or
dissimilarity (a spatial outlier) is more pronounced than one would expect in a random distribution.
In more detail, a high positive z-score for a feature indicates that the surrounding features have similar
values (either high values or low values). In the same way, The COType field in the output feature
class will be HH for a statistically significant cluster of high values and LL for a statistically significant
cluster of low values. A low negative z-score (for example, less than −3.96) for a feature indicates a
statistically significant spatial data outlier. On the other hand, the COType field in the output feature
class will indicate if the feature has a high value and is surrounded by features with low values (HL)
or if the feature has a low value and is surrounded by features with high values (LH) [30].
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2.4. Multi-Distance Spatial Cluster Analysis (Ripley’s K Function)

Ripley’s K function definition is a tool which characterizes the spatial structure of a point or
polygon patterns by graph. It is widely used in urban and vegetation studies by testing its points or
polygon values against a null hypothesis. The test returns the p-value to reject the null hypothesis of
independence between point or polygon locations [31]. The K Function Graphic Usage tool requires
projected data to accurately measure distances. The tool output is a table with fields, whereby
ExpectedK and ObservedK contain the expected and observed K values, respectively. When the L(d)
transformation is applied, the ExpectedK values will always match the Distance value. On the other
hand, the K function will optionally create a graph layer summarizing the results.

From the interpretation point of view, for a given distance (which denotes the scale of analysis),
if the observed K value is larger than the expected K value, the distribution is more clustered than
random, whereas, when the observed K value is smaller than the expected K value, the distribution is
more dispersed than random distribution at that distance (scale of analysis). Nevertheless, when the
observed K value is larger than the HiConfEnv value, the spatial clustering is statistically significant
for that distance (scale). Finally, when the observed K value is smaller than the LwConfEnv value,
spatial dispersion for that distance is statistically significant [32].

2.5. Spatial Autocorrelation (Global Moran’s I)

Moran provided one of the first contributions to the discipline of spatial dynamics, and his index
is a statistical tool useful for (i) analyzing spatial behavior, and (ii) describing how density-independent
factors are correlated across wide regions [33]. In GIS software, the Spatial Autocorrelation tool gives
five values: Moran’s I index, expected index, variance, z-score, and p-value. This tool evaluates
whether the pattern expressed is clustered, dispersed, or random. For indicating whether or not to
reject the null hypothesis, this tool calculates a z-score and p-value. Optionally, when the z-score or
p-value indicates statistical significance, a positive Moran’s I index value indicates tendency toward
clustering. On the other hand, a negative Moran’s I index value indicates tendency toward dispersion.
Alternatively, the null hypothesis means that the feature values are randomly distributed across the
study area [34].

3. Results and Discussion

3.1. Accuracy Assessment Result

The accuracy assessment of the classification step was performed using 200 points as reference;
among them, 50 points were related to urban area, 50 points were related to the Barren area, 50 points
were related to vegetation, and finally 50 points were related to the water bodies. For both study
areas, the classification accuracy was estimated considering these points as regions of interest (ROIs);
the kappa coefficient and overall accuracy were also computed (and shown in Table 2) using a
comparison with Google Earth satellite images.

Table 2. Results of kappa coefficient and overall accuracy of the regions of interest (ROIs) for each of
the investigated areas between 1998 and 2018.

Year
Alexandria Area Baia Area

Kappa Coefficient Overall Accuracy Kappa Coefficient Overall Accuracy

1998, 1999 96.2558% 0.9238 98.8012% 0.9739
2008 96.4044% 0.9374 97.1354% 0.9395
2018 92.8251% 0.8871 89.8701% 0.7896
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Results obtained for the Alexandria study area showed that the kappa coefficient and the overall
accuracy were (i) around 96.2558% and 0.9238, respectively, for 1999 data, (ii) around 96.4044% and
0.9374 for 2008 data, and (iii) around 0 92.8251 and 0.8871 in 2018.

For the study area of Baia, the kappa coefficient and the overall accuracy were around (i) 98.8012%
and 0.9739, respectively, in 1998, (ii) around 97.1354% and 0.9395 in 2008, and (iii) around 89.8701 and
0.7896 in 2018.

For both study areas, the values of the kappa coefficient and overall accuracy decreased over time
due to higher spatial resolution (and in turn higher heterogeneity) of the Sentinel 2 data compared
to TM.

3.2. Change Detection

The result from the analysis conducted using Landsat TM4 1998–1999, Landsat TM5 2008, and
Sentinel-2A-B 2018 imagery revealed that, for both study areas, the urban cover increased continuously
over the whole investigated period (1998 to 2018; see Table 3). In more detail, for Alexandria, the urban
sprawl increased by around 1.96 km2 from 1999 to 2008, and it increased by around 2.39 km2 from
2008 to 2018 (Figure 2). For Baia, the urban expansion increased by around 0.61 km2 from 1998 to 2008,
and it continued increasing by around 0.51 km2 from 2008 to 2018 (Figure 3).

Table 3. Total changes in urban area (expressed in km2) between 1998 and 2018 in Baia and Alexandria.

Class Study Area 1998, 1999
(km2)

Change
Detection ± km2 2008 (km2)

Change
Detection ± km2 2018 (km2)

Alexandria 16.44 1.96 18.4 2.39 20.79
Change % 45.06% 54.94%

Urban
Baia 3.58 0.61 4.19 0.51 4.7

Change % 54.46% 45.54%
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Figure 3. Graph of the increase in urban area around the Catacombs of Mustafa Kamel (Alexandria,
Egypt) and Aragonese Castle (Baia, Naples, Italy).

As a whole, between 1998 and 2018 both investigated areas showed an increasing trend of urban
areas; nevertheless, the changes observed for Alexandria were actually enormous and more random
than those observed for the Baia case study.

3.3. Spatial Statistcs

The optimized hotspot analysis tool was used to calculate the pattern of spatial distribution in the
urban areas of Alexandria and Baia. The Gi_Bin field identified the statistically significant hotspots,
along with the non-significant and cold spots, which indicate the type of clusters for the urban layers.
In the case of Alexandria, the Gi_Bin field showed that the urban space around the archaeological area
was characterized by cold spots and non-significant types, whereas the hotspots were localized in the
edge of the study area and especially in the south side of the heritage property in 1999 (Figure 4a).

The area of Aragonese Castle was surrounded by non-significant cluster types, whereas the cold
spots were located in a small area on the north side of the heritage property, and the hotspot clusters
were spread in five small areas on the north, south, and west sides in 1998 (Figure 4b).

Progressively, the situation observed for both study areas totally changed. In more detail, for
Alexandria, the non-significant cluster type decreased and changed to hotspots in 2008 (Figure 5a)
and similar behavior was also observed for the urban area around Aragonese Castle (Figure 5b).
Furthermore, the urban areas around both culture properties moved from a non-significant type to
hotspots in 2018 (Figure 6a,b) in the case of Alexandria, this trend was more clearly focused compared
to Baia.
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The optimized hotspot analysis tool was coupled with the cluster and outlier analysis (Anselin
Local Moran’s I) to assess the pattern of spatial distribution measuring the similarity of nearby features
around the Catacombs of Mustafa Kamel in Alexandria and the Aragonese Castle in Baia.

In 1999, the cluster/outlier type (COType) results showed that the study area of Alexandria
included non-significant states around the heritage area. The high/high cluster area was presented
in the edge of the study area, and the high/low outlier type was spread across many points around
the heritage area. Finally, the low/low cluster type appeared on the southeast side of the heritage site
(Figure 7a). On the other hand, the non-significant type was the dominant status in 1998 in the Baia
area, while the high/high cluster type was focused in some of the areas around the heritage area in
Baia. In the same year, the high/low outlier type was presented in little areas around the heritage area
(Figure 7b). Gradually, the increase in the Anselin Local Moran’s I value was the dominant status in
both study areas in 2008. The non-significant type decreased around the heritage area at the Catacombs
of Mustafa Kamel. Furthermore, the high/high cluster area increased in Alexandria on the edge of
the study area, while the high/low outlier type increased across many points near the heritage area.
Finally, the low/low cluster type remained as in the previous status (Figure 8a). Concerning the Baia
area in the same year, the level of increase in high/high clusters continued in the same direction,
while the high/low outlier and non-significant status decreased in 2008 (Figure 8b). Furthermore,
the increases in the high/high cluster and high/low outlier types were the dominant statuses in both
study areas in 2018 (Figure 9a,b).
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Figure 9. High and low clusters in the urban layer using the cluster outliers tool in 2018: (a) the gradient
between the significant, high, and low clusters in the urban land around the heritage area of Mustafa
Kamel tombs in Alexandria, Egypt; (b) the significant, high, and low levels in the urban area around
Aragonese Castle in Baia, Italy.

Finally, the results obtained from both the optimized hotspot analysis (based on Getis) and outlier
analysis (based on Moran) clearly pointed out that changes in the urban lands between 1998 and 2018
were more random and unplanned in the case of Alexandria than in the Baia study area.

Ripley’s K function tool was used to estimate the urban distribution according to the relationship
between the clustered and dispersed factors. In more detail, this tool can calculate (i) the statistically
significant clustering at smaller distances, and (ii) the dispersion at larger distances for the urban
distributions over the years. The results from Ripley’s K function showed that the observed spatial
pattern started and finished with the statistically significant dispersion at larger distances in a short
space. On the other hand, there was statistically significant clustering at smaller distances in the larger
space in the Alexandria area in 1999 (Figure 10a). Furthermore, the observed spatial pattern had
the same status as previously with a statistically significant dispersion at larger distances in a short
space. In contrast, for the highest value in the L(d) and distance, the observed spatial pattern exhibited
statistically significant clustering at smaller distances in the Alexandria area in 2008 (Figure 11a). On the
other hand, in 2018, the observed spatial pattern presented the status of statistically significant with
clustering at smaller distances and dispersion at larger distances in the Alexandria area (Figure 12a).

In the case of Baia, the result of Ripley’s K function showed that the statistically significant
clustering at smaller distances presented the dominant status in 1998 (Figure 10b). In the same
direction, the observed spatial pattern had statistically significant clustering at smaller distances
between the clustered pattern and dispersed pattern factors in the Baia area in 2008 (Figure 11b).
Furthermore, the observed spatial pattern had statistically significant clustering at smaller distances in
the general view between the clustered pattern and dispersed pattern factors (Figure 12b).
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Figure 10. Relationship between the building areas and the open spaces according to the space between
the red line “observed spatial pattern” and blue line “random spatial pattern”: (a) K function value
according to the spaces inside and between the built-up areas around the Catacombs of Mustafa Kamel,
Alexandria, Egypt in 1999; (b) K function results according to the output of the built-up areas around
the Aragonese Castle, Baia, Italy in 1998.

Sustainability 2019, 11, x FOR PEER REVIEW 13 of 18 

 
(a) 

 
(b) 

Figure 10. Relationship between the building areas and the open spaces according to the space 
between the red line “observed spatial pattern” and blue line “random spatial pattern”: (a) K function 
value according to the spaces inside and between the built-up areas around the Catacombs of Mustafa 
Kamel, Alexandria, Egypt in 1999; (b) K function results according to the output of the built-up areas 
around the Aragonese Castle, Baia, Italy in 1998. 

 
(a) 

 
(b) 

Figure 11. Relationship between the building areas and the open spaces according to the space 
between the red line “observed spatial pattern” and blue line “random spatial pattern” in 2008: (a) K 
function value according to the spaces inside and between the built-up areas around the Catacombs 
of Mustafa Kamel, Alexandria, Egypt; (b) K function results according to the output of the built-up 
areas around the Aragonese Castle, Baia, Italy. 

 
(a) 

 
(b) 

Figure 12. Relationship between the building areas and the open spaces according to the space 
between the red line “observed spatial pattern” and blue line “random spatial pattern” in 2018: (a) K 
function value according to the spaces inside and between the built-up areas around the Catacombs 
of Mustafa Kamel (Alexandria, Egypt); (b) K function results according to the output of the built-up 
areas around the Aragonese Castle at Baia (Naples, Italy). 

Figure 11. Relationship between the building areas and the open spaces according to the space between
the red line “observed spatial pattern” and blue line “random spatial pattern” in 2008: (a) K function
value according to the spaces inside and between the built-up areas around the Catacombs of Mustafa
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Figure 12. Relationship between the building areas and the open spaces according to the space between
the red line “observed spatial pattern” and blue line “random spatial pattern” in 2018: (a) K function
value according to the spaces inside and between the built-up areas around the Catacombs of Mustafa
Kamel (Alexandria, Egypt); (b) K function results according to the output of the built-up areas around
the Aragonese Castle at Baia (Naples, Italy).
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As a whole, according to the total results of Ripley’s K function, the changes between 1998 and
2018 in the built-up areas were clearer and more random for Alexandria than Baia.

The results obtained from the pattern analyses performed using Global Moran’s I for Alexandria
and Baia are shown in Tables 4 and 5, respectively. The key elements for the interpretation of these
tables are shown in Figure 13.

Table 4. Urban distribution patterns obtained from spatial autocorrelation for the area around the
Catacombs of Mustafa Kamel between 1999 and 2018.

Year Moran’s Index z-Score Type of Spatial Distribution

1999 0.236786 66.648117 Clustered
2008 0.131808 49.497299 Clustered
2018 0.114997 56.709045 Clustered

Table 5. Urban distribution patterns obtained from spatial autocorrelation for the area around
Aragonese Castle between 1998 and 2018.

Year Moran’s Index z-Score Type of Spatial Distribution

1998 0.057303 9.354977 Clustered
2008 0.051683 8.473026 Clustered
2018 0.063031 10.685925 Clustered
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Figure 13. Graph of Global Moran’s I using the spatial autocorrelation technique for the urban layer,
describing the changes between the significant and random status and the gradient between the
dispersed, random, and clustered status.

In particular, Table 4 shows that, for 1999, the z-score was around 66.64, and Moran’s index was
around 0.23, and the type of spatial distribution was clustered. These values decreased in 2008 to be
49.49 for the z-score and 0.13 for Moran’s index, while the spatial distribution had the same status
as a cluster type (Table 4). In contrast, the value of z-score increased in 2018 to 56.7, and the value of
Moran’s I decreased again to 0.11, while the spatial distribution type remained as the clustered type
(Figure 13).

The result of Global Moran’s I for Baia showed that z-score was 9.35, Moran’s index was 0.057,
and the type of spatial distribution was clustered in 1998. These values decreased in 2008 to be 8.47 for
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z-score and 0.051 for Moran’s index, while the spatial distribution had the same status as a cluster type
(Table 5). The value of z-score increased in 2018 to 10.68, and the value of Moran’s I increased also to
0.063, while the spatial distribution type remained as the clustered type (Figure 13).

As a whole, outputs from our investigations pointed out that the use of both global and
local spatial analyses allowed us to perform multi-scale analyses of changes identified from the
multi-temporal satellite-based investigations. The use of the diverse statistical indicators/tools enabled
us (i) to better characterize the impact of changes over the investigated time window in terms of size
and distribution, and (ii) to capture clusterization and randomness of the observed urban distribution.

In particular, results from the optimized hotspot analysis tool, used for calculating the pattern
of spatial distribution, pointed out that the changes in the urban areas between 1998 and 2018 were
more random and unplanned in the case of Alexandria than in the Baia study area. The optimized
hotspot analysis tool was coupled with the cluster and outlier analysis (Anselin Local Moran’s I) to
capture clusterization and randomness of the observed urban distribution. As a whole, the optimized
hotspot analysis tool indicated whether high or low values were concentrated over the study area, and
cluster and outlier analysis indicated if they tended to be clustered. The results obtained from both the
optimized hotspot analysis (based on Getis) and outlier analysis (based on Moran) fit each other well
and coherently and clearly pointed out that changes in the urban lands between 1998 and 2018 were
more random and unplanned in the case of Alexandria than in the Baia study area. The investigations
were complemented by the application of Ripley’s function tool, herein used for estimating the urban
distribution according to the relationship between the clustered and dispersed factors. The results
obtained from Ripley’s function showed that the changes between 1998 and 2018 in the built-up lands
were clearer and more random for Alexandria than Baia, thus confirming the trend already observed
from the analysis carried out using both the optimized hotspot analysis (based on Getis) and outlier
analysis (based on Moran).

Finally, the global analysis, conducted using the spatial autocorrelation statistic, quantified the
impact of the change on the whole area; thus, from the variation over time, we obtained information
on the compactness/randomness of the urban layer as a general global indicator.

The approach herein proposed enabled us to automatically identify and characterize the impact of
changes (via the global analysis) and also to better delimit the urban sprawl boundaries (via the local
analysis) and their characteristics, generally regarded as a key indicator to control chaotic and sparse
urban expansion. In fact, the local analyses allowed us to assess, for example, if sprawl was due to
augmented urban size or decreased urban compactness, and this can allow a practical implementation
of policy and decision processes addressed to a sustainable urban development. Moreover, results from
our investigations highlighted that both local and global indices were suitable for both case studies
selected, as one was representative of diverse urban small towns, as in the case of the Italian case study,
and one was representative of big cities, as in the case of the Egyptian area. The use of both global and
local statistics enabled us to identify sprawl, applying the diverse indicators herein proposed as tools
to detect, compare, and capture the impacts of urban changes over time in an automatic way.

4. Conclusions

The main purpose of this research was to set up low-cost and reliable tools useful for monitoring urban
growth. The integration between remote sensing and GIS techniques and the joint use of analytical
statistical methods for quantitative assessment enabled the identification and characterization of
changes and the mapping of planned and unplanned urban construction in the two case studies
selected in Italy and Egypt. Our approach addresses the challenges in using heterogeneous data
from multiple data sources for change detection analysis to improve knowledge and monitoring of
landscape over time, with a specific focus on urban sprawl and land-use change around cultural
properties and archaeological areas. The change detection we performed was based on the use
of a heterogeneous optical imagery dataset, made up of satellite Landsat TM imagery and the
more recent Sentinel 2 data, freely available from the ESA web site. The approach we adopted
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consisted of (i) unsupervised classification for the identification of the prevailing classes and their
statistical distribution, (ii) supervised classification for the detection of urban areas, (iii) comparison
of the outputs from the diverse images acquired in diverse years for the extraction and mapping of
ongoing environmental changes, with particular reference to urban sprawl. The classification accuracy,
estimated for the regions of interest selected in Italy and Egypt, was higher than 98%. Outputs from
our investigations clearly highlighted that satellite data can provide very useful tools for (i) capturing
land-use changes, along with impact induced by human activities at a site level, and (ii) monitoring
environmental problems with a particular attention addressed to the urbanization and changes in land
use/land cover in close proximity with archaeological areas and cultural property/ landscape, thereby
providing reliable tools to identify changes from a global view down to a local scale.

As a whole, we can conclude that the recent availability of data from Sentinel missions opened a
new prospective in the field of satellite remote sensing for urban areas. In particular, outputs from our
investigations pointed out that significant improvements can be achieved from the increased spatial
detail of Sentinel 2 compared to Landsat, and from the joint use of Earth observation (EO)-based
geo-spatial products and geo-information. EO can provide (i) reliable analysis of current settlement
patterns and their impact, with detailed information on spatial and temporal urbanization processes,
and (ii) effective tools for supporting decision-makers and the future planning of urban expansion.
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