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Abstract: In recent years, due to the enforcement of the Feed-in tariff (FIT) scheme for renewable
energy, a large number of photovoltaic (PV) has been introduced, which causes fluctuations in the
supply-demand balance of a power system. As measures against this, the introduction of large
capacity storage batteries and demand response has been carried out, and the balance between
supply and demand has been adjusted. However, since the increase in capacity of the storage battery
is expensive, it is necessary to optimize the capacity of the storage battery from an economic point of
view. Therefore, in the power system to which a large amount of photovoltaic power generation has
been introduced, the optimal capacity and optimal arrangement of storage batteries are examined.
In this paper, the determination of storage battery placement and capacity considering one year is
performed by three-step simulation based on probability density function. Simulations show the
effectiveness of storage batteries by considering the introduction of demand response and comparing
with multiple cases.

Keywords: demand response; photovoltaic power systems; storage battery; unit commitment

1. Introduction

Recently, the introduction of renewable energy sources (RES) has been increasing significantly
due to the enforcement of Feed-in tariff (FIT) and the environmental impact of human activities.
However, the output of these types of power sources is greatly influenced by natural phenomena such
as solar radiation and wind speed, making it difficult to predict their power generation. In Japan, RES,
especially photovoltaic (PV) power generation, has been introduced on a large scale which further
increases the influences due to the large generated power error which causes the fluctuations of system
voltage and supply-demand balance.

In recent years, there are many researchers dealing with such renewable energy problems [1–6].
Furthermore, conventional day-ahead unit commitment (UC) is insufficient for safe operation of
power systems. Therefore, it is necessary to consider the uncertainty of output fluctuation when
a large amount of renewable energy electric power system is introduced. Various optimization
problems have been solved to cope with uncertainty due to renewable energy [7–12]. Moreover,
when predicting renewable energy output power on the previous day and making an operation
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plan, the prediction error will increase with the passage of time. The operation plan made on the
previous day is not possible to deal with forecasting error. In this way, with the massive introduction
of renewable energy power generation, it becomes difficult to predict power generation of the power
grid, therefore the consideration of uncertainty becomes an important issue. Moreover, it is necessary
to develop a model to balance demand supply including prediction error. Also, it will be necessary
to develop an effective approach to deal with the power generation prediction error of renewable
energy generation facilities. Conventionally, the power fluctuations caused by renewable energy
generation facilities have been compensated by thermal generators. However, there are restrictions on
the adjustable amount (up/down spinning reserves). When power fluctuations exceeding the limit of
the adjustable amount flow into the power system, the fluctuations of system frequency and system
voltage are caused. As a countermeasure for that, the introduction of large capacity storage batteries
and load demand adjustment (demand response) are considered [13–15]. It is possible to adjust the
disturbance of demand-supply balance due to prediction error of generated power from renewable
energy generation facilities by introducing storage batteries and demand response. Furthermore, it is
also possible to reduce operating costs by cooperative control of thermal power generator, storage
battery and demand response. However, since increasing the storage capacity of the storage battery is
expensive, it is necessary to optimize the capacity of the storage battery from the economical point
of view. The determination of optimum placement and the optimum capacity of the storage battery
have been solved by various methods. Y. Zheng et al. have used a cost-benefit analysis method
aimed at maximizing distribution companies (DISCO’s) profit from energy transactions, system
planning, and operational cost savings [16]. Mostafa Nick et al. solve the problem of minimizing the
storage battery installation-cost by using ADMM (Alternating Direction Method of Multipliers) [17].
C. H. Lo et al. have solved the optimization problem by an algorithm combining multi-path dynamic
programming (MPDP) and time-shift technique [18]. S. Kahrobaee et al. proposed a hybrid stochastic
method based on Monte Carlo simulation and particle swarm optimization, and decided the optimum
size of wind power generation and storage battery [19]. References [20,21] have optimized capacity
of storage batteries using bilevel program. References [22,23] introduce various situations, optimum
operation of storage batteries in various types of storage batteries, and methods of determining the size
of the storage battery. In addition, these papers have sized the storage battery by linear problem [24,25].

In this paper, we solved Mixed-integer linear programming (MILP) problem dealing with DC
power flow calculation. Moreover, when determining the demand response and the capacity of the
storage battery, it is necessary to consider the adjustable amount in the case where the generated
power of the renewable energy generation facility greatly fluctuates. In this paper, the prediction
error is quantified using the machine learning model which is the most accurate, and the spinning
reserve that can correspond to the forecasting error which is decided on the previous day. Also,
in the power grid where solar power generation equipment was massively introduced, we study the
optimum capacity and optimum arrangement of grid storage batteries based on the dynamic operation
method. This study reports, an economically useful planning method that does not involve rapid
and significant operation change of thermal power generations via dynamically planning every 3 h.
The effectiveness of the proposed method is verified through one-year simulation of transmission
systems using MATLAB software.

In this paper, we propose a new method of determining the optimal arrangement and capacity for
storage batteries. By dividing the simulation into three stages, we determined the optimal placement
and capacity of the storage battery. This is derived from the idea of the three-stage battery capacity
determination method in the literature [26]. The first stage predicts PV output. In the second stage,
taking into account the PV prediction error, the optimum capacity and the optimum number of
storage batteries are obtained from the standard deviation. In the third stage, a one-year simulation is
conducted to confirm the effectiveness of the determined battery placement and capacity. By optimizing
storage battery capacity and layout, it is possible to calculate the optimum storage battery capacity for
economic improvement and introduce the optimum storage battery capacity, so that even when a large
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amount of renewable energy equipment is introduced, economic efficiency indicates that operations
that do not deteriorate can be performed. Also, we show that proposed method can achieve operation
which minimizes fuel cost and startup cost of the generator, and minimizes operation cost.

The paper is organized as follows: Section 2 explains the methodology for determining the optimal
placement and optimal capacity of the storage battery proposed in this paper, the objective function
for solving the simulation, and the formulation of constraints. Section 3 explains the conditions for
simulation to confirm the effectiveness of the optimal placement and capacity of the storage battery
determined in Section 2. In Section 4, the simulation results are presented as case studies. Section 5
concludes this paper.

2. Problem Formulations

Figure 1 shows the method for determining the capacity and location of the storage battery [26].
In the first stage, PV output forecasting is performed based on the data of 2015 using feedforward
neural network (FFNN) which is machine learning. In the second stage, the UC problem will be solved
on a daily basis in the 2016 load demand, using the optimal placement and capacity of storage batteries
as variables. In addition, the decision variable SoCmax

b is calculated for one year. It is assumed here that
the power demand forecast for 2016 is accurate. In addition, let standard deviation σSOC

b of SoCmax
b for

1 year be the storage battery optimal capacity in the bus b. In the third stage, a one-year simulation
is conducted using the load demand of 2017 in order to confirm the effectiveness of the determined
placement and capacity of storage batteries. The decision variable SoCmax

b is calculated for one year
from the one-day optimization problem with the following objective function and constraints. Let the
standard deviation σSOC

b of SoCmax
b for one year be the optimum capacity of the bus b.

σSOC
b =

√
1
n

n

∑
i=1

(SoCmax
b,i − SoCmax

b,i )2 (1)

SoCmax
b,i =

∑n
i=1 SoCmax

b,i

n
(2)

σ
PV

Forecast Stage Evaluation Stage Analysis Stage

σ
SOC

Use 2015 data Use 2016 data Use 2017 data

Figure 1. Optimal placement and optimum capacity.

2.1. Objective Function

The objective function Equation (3) is minimizing total cost (F) which includes fuel cost (FC),
start-up cost (SUC) and penalty cost of energy not served (ENS× Cens).

F =
NG

∑
i=1

24

∑
t=1

NB

∑
b=1

(FCitb + SUCitb) +
24

∑
t=1

(ENSt × Cens) +
NB

∑
b=1

(SoCmax
b × ICSoC) (3)

ICSoC is the installation cost of storage batteries converted in one day.

ICSoC =
CSoC

h× 365
(4)
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2.2. Constraints

• System power balance
Equation (5) is a constraint that the sum of the power demand Dnet

tb and the amount of electricity
generated by the generator Pitb and ENSt become equal.

NG

∑
i=1

(Pitb × Xitb) + ENStb = Dnet
tb ∀t ∈ T, ∀b ∈ B (5)

• Generation output limits
The generation limits of each unit for each period are set as follows [27]

Pmin
i ≤ Pit ≤ Pmax

i (6)

Constraints Equation (6) bound the generation by the minimum power output and the maximum
available power output of unit i in period t.

• Up/down spinning reserve
Based on the following constraint formula, even when a forecast error occurs between ±2σPV in
the current day operation plan, change of the start/stop state of the generator decided in the next
day operation plan will not occur [28].

D− αPVµPV + 2σPV ≤
NG

∑
i=1

(Pmax
i × Xi) (7)

D− µPV − 2σPV ≥
NG

∑
i=1

(Pmin
i × Xi) (8)

• Ramp rate
Ramp rate constraints are constraints that limit the rate of change of generator output.

|Pit+1 − Pit| ≤ ∆Pmax
i (9)

• Transmission constraints
Transmission line restrictions are restrictions to ensure that the transmission capacity Slt flowing
through the transmission capacity limit Smax

l does not exceed.

Slt ≤ Smax
l (10)

• Minimum up/down time
Minimum up and down time constraints are first formulated as mixed-integer linear expressions
relying on binary variables associated with the startup, shutdown, and on/off states of
generating units.

Ton
i ≤ Xon

i (t) (11)

To f f
i ≤ Xo f f

i (t) (12)

The explanation of each variable is shown in abbreviation here.
• Demand response constraints

24

∑
t=1

Dnet
tb =

24

∑
t=1

(Dnet
tb + DRtb) (13)

− DRmax
tb ≤ DRtb ≤ DRmax

tb (14)
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where DRmax
tb is the maximum amount of demand response. In this research, DRmax

tb is 5% of the
total load demand.

• Storage battery constraints
Hereinafter, the storage battery restriction will be described [29]. where ch is the charge energy of
the storage battery, and dis is the discharge energy. Each storage battery output at time t must be
charge and discharge output within the range of chmin(dismin) and chmax(dismax). Also, charging
and discharging cannot be performed beyond the limit of the state of charge (SoC).

SoCt,b = SoCt−1,b + chtb − distb ∀t ∈ T, ∀b ∈ NB (15)

SoCtb ≤ SoCmax
b ∀t ∈ T, ∀b ∈ NB (16)

chtb ≤ chmax
b ∀t ∈ T, ∀b ∈ NB (17)

distb ≤ chmax
b ∀t ∈ T, ∀b ∈ NB (18)

chmax
b =

SoCmax
b

R
∀b ∈ NB (19)

In this section, assume that NaS batteries are used for storage batteries and R = 6 (see Table 2).

Also, the values of constraints in Equations (6), (9), (11) and (12) are described in Table 3. The value
of Smax

l in Equation (10) is shown in Table 4.

3. Simulation Conditions

The simulation conditions are shown in Table 1. “w/o ESS” is a case where a storage battery is
not placed. Re-predictive re-planning that iteratively solves the optimization problem of the finite
interval periodically in all cases (see Figure 2).

Table 1. Simulation conditions.

Case ESS αPV DR

w/o ESS (Case 0) × 1 ×
1 ◦ 1 ×
2 ◦ 2 ×
3 ◦ 2 ◦

Prediction Horizon P

Schedule at time t

Schedule at time t+1

Schedule at time t+2

Apply

t t+1 t+2 t+P t+P+1 t+P+2

Figure 2. Rolling horizon.

The optimization period is 24 h, the sample time is 3 h, and the unit commitment at the time
of prediction is updated every 3 h in real time. Table 2 shows the storage battery parameters used
in this paper. Table 2 is quoted from the details of the storage battery published by NGK Insulators,
Ltd., Nagoya, Japan, a Japanese company [30]. The power system assumed in this paper is shown in
Figure 3.
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Table 2. NAS battery parameter.

NAS Battery

Output 0.8 MW
Capacity 4.8 MWh
Cost 1.92 Billion yen
Lifespan 15 year

GB

GA

GC

GD

GE

12

3

4

5

6

7

8

L1

L2

L3

L4

(1, 2)

(3, 4)

(5, 6)

(7, 8, 9)

(10, 11, 12)

Figure 3. Power system model.

The generator parameters are shown in Table 3. Table 3 uses data published by ”The Okinawa
Electric Power”, a Japanese electricity company in Okinawa Prefecture. In Table 3, a, b and c are the
fuel cost characteristic constant of each generator. GA ∼ GE in Figure 3 are generator installation bus
lines, and the numbers described in parentheses are the numbers of generator G in Table 3. Table 4
shows the transmission capacity assumed by the author. Resistance value R is simply 0 for DC power
flow calculation [31]. Table 5 assumes the power demand of each load bus based on the population in
Okinawa prefecture of Japan [32]. It is assumed that load demand can be predicted with high accuracy
and only PV output is predicted. To verify the effectiveness of the proposed method in this research,
we simulate a year from January 2017 to December 2017 (Analysis Stage). To solve this problem,
MATLAB mixed integer programming (intlinprog) was used. Figure 4a,b show the actual demand of
load demand and PV output (σPV = 1) for two years from January 2016 to December 2017, respectively.
Figure 4a is the same source as [31]. Figure 4b is calculated using FFNN based on the data of solar
radiation in 2015 in Okinawa prefecture in Japan [33].
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Figure 4. Load demand curve and PV output. (a) actual demand of load demand and (b) PV output.

Annual simulation is not efficient because it takes a lot of time. Therefore, by using clustering,
we try to shorten the simulation time. Figure 5 shows the net load demand in 2016 (the demand from
which PV output is subtracted from load demand).
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Table 3. Generator’s data.

G1 G2 G3 G4 G5 G6

Use fuel Coal Coal Oil Oil Coal Coal
Pmax[MW] 220 220 125 103 156 156
Pmin[MW] 84 84 60 50 60 60
a [yen] 80,000 80,000 632,000 632,000 80,000 80,000
b [yen/MW] 4000 4000 9200 9200 4000 4000
c [yen/MW2] 0.4 0.4 2.1 2.1 0.4 0.4
∆Pmax

i [MW] 44 44 62.5 51.5 31.2 31.2
SUC[yen] 1,100,000 1,100,000 375,000 309,000 780,000 780,000
Ton/o f f [h] 8 8 6 6 6 6

G7 G8 G9 G10 G11 G12

Use fuel LNG LNG LNG Oil Oil Oil
Pmax[MW] 251 251 35 125 60 103
Pmin[MW] 122 122 17 60 30 50
a [yen] 132,000 132,000 132,000 632,000 632,000 632,000
b [yen/MW] 4400 4400 4400 9200 9200 9200
c [yen/MW2] 5.0 5.0 5.0 2.1 2.1 2.1
∆Pmax

i [MW] 84 84 35 62.5 30 51.5
SUC[yen] 753,000 753,000 105,000 375,000 180,000 309,000
Ton/o f f [h] 8 8 4 6 4 6

Table 4. Transmission line parameters.

From Bus To Bus R [pu] X [pu] Limits [MVA]

1 2 0.0 0.1 300
2 3 0.0 0.1 480
3 4 0.0 0.1 280
3 6 0.0 0.1 250
4 5 0.0 0.1 480
5 7 0.0 0.1 500
6 7 0.0 0.1 500
7 8 0.0 0.1 700

Table 5. Load demand data.

Load No. L1 L2 L3 L4

Bus No. Bus 1 Bus 3 Bus 7 Bus 8
Ratio 9% 24% 24% 43%

0 5 10 15 20 25

Time t [hour]

0

500

1000

1500

N
e
t 

lo
a
d
 d

e
m

a
n

d
 [

M
W

]

Figure 5. Net load demand.

The bold lines indicate demand classified into clusters. The number of clusters was set as 30 from
the elbow method (Figure 6). The Sum of Squared Errors (SSE) is shown in the following equation.

SSE =
k

∑
i=1
{

Ai

∑
j=1

(yi − ŷi,j))
2} (20)

Here, k is the number of clusters, Ai is the total number of data classified as cluster i, yi is the
cluster i, ŷi,j In addition, the j th data classified as cluster i.
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0 50 100 150 200 250 300 350

Number of clusters

0

0.5
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2

2.5

S
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SSE

X: 30
Y: 1.152e+07

Figure 6. Elbow method.

4. Simulation Results

4.1. Evaluation Stage

Figure 7a–d show the probability density function of the maximum value (SoCmax) of the storage
battery capacity in each cases. Figure 8 shows the average and standard deviation SOC of the maximum
value (SoCmax) of the storage battery capacity of each bus line according to the annual simulation result.
The standard deviation SOC in Figure 8 is taken as the optimum arrangement optimum capacity and
is summarized in Table 6. In the case of bus 4 of Case 1 (see Figure 7a), the standard deviation σSoC

4 of
SoCmax

4 is 64.77 MWh. From Table 2, since it is 4.8 MWh per unit, 64.77/4.8 = 13.4937 = 14 units. From
Table 6, it can be read that the storage batteries are not arranged in the bus 1 and many are arranged in
the bus 7 and 8. This is because of the load demand of the bus 1 in the power system of Figure 3 is
small and there are enough thermal power generators. On the other hand, the load demand is large
near the bus 7 and 8, and there are not many generators installed near them. At the peak of load
demand, the capacity of the transmission line in the vicinity is congested, and it is necessary to start
the low-efficiency generator around it, which increases the operation cost. Therefore, by arranging the
storage batteries in the bus 7 and 8 and reducing the size of the load demand by the discharge power
of the storage batteries, it is possible to reduce the cost.
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Figure 7. (a): PDF of Maximum battery capacity for 1 year in Case 1; (b): PDF of maximum battery
capacity for 1 year in Case 1 at Bus 4; (c): PDF of Maximum battery capacity for 1 year in Case 2;
(d): PDF of Maximum battery capacity for 1 year in Case 3.
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Figure 8. Mean and standard deviation of maximum battery capacity in each case (blue: Case 1, green:
Case 2, yellow: Case 3).

Table 6. Optimal placement and optimum capacity.

Bus No. 1 2 3 4 5 6 7 8 Total

Units (Case 1) 0 7 0 14 12 10 59 58 160
Units (Case 2) 0 36 19 15 9 39 45 75 238
Units (Case 3) 0 22 22 26 21 6 44 47 188

4.2. Analysis Stage

Figure 9a shows the daily load rate. Figure 9b,c show the operating costs for each year in each
case. Figure 10 shows the total cost in each case. Table 7 shows simulation results of Analysis Stage.
From Figure 9a,b, it can be confirmed that the daily load rate is improved and the operation cost can
be reduced through one year when the storage battery is arranged (Case 1). From Figure 9c, it can be
confirmed that the introduction of PV throughout the year (Case 2, 3) can greatly reduce operating
costs. Figure 10 and Table 7, when the storage battery is not considered (Case 0) and the case where
the storage battery is arranged (Case 1), the total cost is reduced by 427.51 − 409.96 = 17.55 billion yen
I was able to achieve it.

Table 7. Simulation result.

Case Battery Cost [Billion Yen] Operating Cost Total Cost

0 0 427.51 427.51
0 (w/o Day-212) 0 413.32 413.32

1 20.35 389.62 409.96
2 30.58 357.12 387.69
3 24.15 357.83 381.99

In addition, it can be confirmed that reduction of 413.32 − 409.96 = 3.36 million yen can be
achieved even when compared with the case where Day - 212 where penalty cost occurred is excluded.
Comparing the case where PV was introduced from σPV = 1 (Case 1) to σPV = 2 (Case 2), the storage
battery cost increased from 2.05 billion yen to 3.058 million yen, but the total cost increased from
40.996 billion yen It can be confirmed that it can be reduced to 38.769 billion yen. When DR is not
taken into account (Case 2) and DR is taken into account (Case 3), by considering DR, the storage
battery cost can be reduced and the total cost can be reduced.
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Figure 9. Simulation results. (a) Daily load factor; (b) Operation cost for 1 year and (c) Operation cost
for 1 year (without Case 0).

Case 0 Case 0
(w/o Day-212)

Case 1 Case 2 Case 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
o
ta

l 
C

o
st

 [
Y

en
]

×1010

ESS cost
FC+SUC

Figure 10. Total cost.

5. Conclusions

In this paper, we examined the optimal capacity and optimal placement method for storage battery
installation in the power system where a large amount of photo-voltaic (PV) was introduced. Based
on the probability density function, we calculated the capacity and location of the storage battery for
economic improvement. Even when a large amount of renewable energy power generation equipment
was introduced based on the calculated storage battery capacity and the operation plan introducing
the placement, the operation was achieved without reducing the economic efficiency. At the same time,
operation has been achieved which minimizes generator start-up costs, operating costs and storage
battery costs. In addition, the introduction of demand response has also improved the operation cost.
As future work, we will carry out system operation to meet various requirements by deciding the
optimal capacity and placement of storage batteries considering the multi-objective functions.

Author Contributions: These authors contributed equally to this work.
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Abbreviations

The following notations are used in this manuscript:

Objective function and constraints:
b Bus number
chtb Discharged energy of storage battery installed on bus b
chmax

b Battery rated output of the bus b
distb Discharged energy of storage battery installed on bus b
h Expected life of the storage battery
i Thermal power Generator number
n Total number of days
B Total number of Bus
Cens Cost of energy not served
CSoC Battery cost per 1 MWh
D Total of load demand
Dnet

tb Load demand at bus b at time t
DRtb Amount of power transferred by demand response
DRmax

tb Demand response maximum amount
ENSt Energy not served at hour t
FCit Fuel cost function
ICSOC Storage battery cost per day
NB Number of bus
NG Number of the generators
Pit Output power of ithgenerator at time t
Pmin

i Minimum output limit of ith generator
Pmax

i Maximum output limit of ith generator
∆Pmax

i Maximum output change rate of generator i
∆PGmax

i Ramp rate limits of generator i
R Ratio of the storage battery capacity to the rated output
SUCit Start-up cost function.
SoCtb State of charge of storage battery installed on bus b
SoCmax

b,i Maximum value of the storage battery capacity of the bus b in the day i
Sl,t Power flow on transmission line l at time t
Smax

l Maximum capacity of line l
T Total time of day
Ton

i Minimum up time of i
To f f

i Minimum down time of i
Xit ith generator status at hour t (1/0 for on/off)
Xon

i (t) Duration of continuously on of generator i at time t
Xo f f

i (t) Duration of continuously off of generator i at time t
αPV PV installation amount parameter
σPV Standard deviation of PV output prediction error
σSOC Standard deviation of foecast error
µPV Output of PV
Clustering variable:
k Number of clusters
yi Cluster i
ŷi j th data classified as cluster i
Ai is the total number of data classified as cluster i
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