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Abstract: The simulation of landscape pattern optimization allocation (LPOA) to achieve ecological
security is an important issue when constructing regional ecological security patterns. In this
study, an LPOA model was developed by integrating a binary logistic regression model and a
nonlinear programming model with a particle swarm optimization algorithm in order to consider the
complexity of landscape pattern optimization in terms of the quantitative structure and spatial layout
optimization, integrating the landscape suitability and factors that influence landscape patterns, and
under constraints to maximize the economic, ecological, and comprehensive benefits of landscape
patterns. The model was employed to simulate the LPOA in the Longquanyi District of Chengdu
City, Sichuan Province, China. The model successfully obtained an appropriate combination of the
landscape quantitative structure and spatial layout, as well as effectively integrating the landscape
suitability and factors that influence the landscape pattern. Thus, the model addressed the problems
of previous studies, such as neglecting the coupling between quantitative structure optimization
and spatial layout optimization, ignoring the macrofactors that affect landscape patterns during
optimization modeling, and initializing particles without considering the suitability of the landscape.
Furthermore, we assessed and analyzed the accuracy and feasibility of the landscape pattern spatial
layout optimization results, where the results showed that the overall accuracy of the optimization
results was 84.98% with a Kappa coefficient of 0.7587, thereby indicating the good performance of
the model. Moreover, the simulated optimization allocation scheme for the landscape pattern was
consistent with the actual situation. Therefore, this model can provide support and a scientific basis
for regional landscape pattern planning, land use planning, urban planning, and other related spatial
planning processes.

Keywords: logistic regression model; nonlinear programming model; particle swarm optimization;
quantitative structure optimization; spatial layout optimization

1. Introduction

During the rapid economic development process worldwide, the lack of effective regulation for
urban expansion has led to a disorderly urban sprawl, where the blind occupation of ecological spaces
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and severe destruction of the natural ecological environment have caused many global or regional
ecological environmental problems, such as global warming, ozone layer depletion, loss of biodiversity,
spread of acid rain, sharp decline of forests, land desertification, air pollution, water pollution, and
marine pollution. These problems have severely restricted the sustainable development of human
society. Since the start of economic reform in 1978, China has achieved remarkable economic progress.
At present, China is the second largest economy and it is among the fastest growing economies in the
world. However, similar to other countries in the midst of rapid economic development, disorderly
urban sprawl, rapid industrial development, and inappropriate farmland use in China have led to
problems, including the blind development of land resources and casual occupation of ecological
space. These problems have resulted in inappropriate land use and poor ecological protection, as
well as adversely affecting the structure and function of terrestrial ecosystems, thereby resulting in
environmental issues that restrict sustainable development practices in China, such as farmland loss
and land degradation, increased pollution with waste from industry, severe soil pollution of farmland,
shortages of water and soil resources, loss of biodiversity, and fragmentation of the countryside
landscape [1–5]. The local ecological environment has been improved by controlling the environment
in China with tough measures, such as central government environmental supervision and ecological
conservation redline planning, but the overall trend toward deterioration has not been halted. This is
mainly because the protection of natural resources has not been planned scientifically from a spatial
perspective. Thus, the current ecological protection processes were often implemented blindly and in
an inefficient manner. Moreover, the conflict between the requirements for economic development and
ecological protection has intensified [6–9]. Thus, coordinating the contradictory relationship between
economic development and ecological protection in order to maximize the value of natural resources
without affecting ecological protection has become a key issue that affects the sustainable development
of China. Many studies have confirmed that constructing a reasonable landscape (land resource)
spatial pattern by optimizing the landscape (land resource) allocation from a spatial perspective is
effective for mitigating conflicts between economic development and ecological protection, and to
achieve the goal of sustainable development [6,9–16].

Landscape pattern optimization allocation (LPOA) is a complex and challenging spatial
resource optimization allocation problem, which involves resolving conflicts of interest between
economic development and ecological protection, considering attribute characteristics (e.g., ecological,
environmental, economic, and cultural factors) and spatial characteristics (e.g., morphology
and compactness), and solving multiobjective optimization problems and complex models and
algorithms [7,17]. In order to achieve LPOA, researchers in China and other countries have launched
extensive studies and initiatives regarding this problem. Four main types of optimization models
have been applied comprising quantitative structure optimization, spatial evolution simulation, spatial
layout optimization, and composite optimization models.

The methods used for optimizing the quantitative structures of landscape patterns mainly comprise
mathematical programming (MP)-based models (e.g., linear programming, nonlinear programming
(NP), goal programming, integer programming, and uncertain programming), system dynamics
(SD)-based models, and heuristic algorithm (HA)-based models, which have been employed widely for
optimizing land use in terms of the quantitative structure and land area [16,18–23]. MP-based models
can rapidly determine the optimal land use structure according to specific objectives and constraints,
but they cannot change the land use for parcels and allow spatial optimization [24]. However, compared
with other types of models, MP-based models can be generated relatively conveniently from the
optimization toolbox in software such as MATLAB, LINGO, and LINDO. Therefore, MP methods still
have many possible applications in the optimization of the quantitative structure of landscape patterns.
SD-based models can explain the driving factors and the trends in land use changes in a region fairly
well, as well as dynamically allocating the future land use quantitative structure in a region [23].
Thus, SD-based models mainly focus on dynamic simulations of the components of the system as
well as the relationships among the components, and they are generally used to simulate how land
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use demands are influenced by the economy, technology, population, policy, and their interactions at
macroscales [25]. Hence, it is impossible to optimize the spatial layout of the landscape pattern directly
with these models.

Due to advances in computers and GIS technology, numerous models have been developed
such as cellular automata [26,27], the conversion of land use and its effect on small regional extent
(CLUE-S) [28,29], agent-based models [30,31], scenario analysis [32,33], future land use simulation
model [27,34], and hybrid simulation models [35–37], which can be employed for simulating the spatial
dynamics of changes in landscape patterns. However, these simulation models aim to predict future
landscape patterns or land use, rather than optimizing the spatial layout of landscape patterns or land
use. Moreover, these models are limited to optimizing landscape patterns or land use types to generate
only a few landscape patterns or land use optimization allocation schemes. Heuristic methods can
generate many more landscape pattern (land use) optimization allocation schemes to search for a better
solution [14]. Therefore, heuristic algorithms such as genetic algorithm (GA), simulated annealing
algorithm, particle swarm optimization (PSO), artificial immune system algorithm, artificial bee colony
algorithm, ant colony optimization, and tabu search methods have been employed frequently for
land use spatial layout optimization with the support of GIS technology [17,19,38–42], whereas they
have been applied rarely to landscape pattern spatial layout optimization (LPSLO). Compared with
other heuristic algorithms, the main advantages of PSO algorithms are the flexibility and simplicity
of its operators, improved space search capability and adaptability, and rapid convergence rate.
Thus, PSO algorithms have been widely applied to solve the land-use spatial allocation optimization
problem [9,40,43], and they are effective tools for solving complex spatial layout optimization problems
for landscape patterns [44]. However, these heuristic-based models mainly focus on spatial pattern
optimization whereas they ignore the quantitative structures and beneficial optimization of land use.

The aforementioned models, including quantitative structure optimization, spatial evolution
simulation, and spatial layout optimization models, have made positive contributions to studies of
LPOA and land-use optimization allocation, but they only have specific advantages. For example,
MP-based models are good at optimizing quantitative structures, SD-based models are good at
integrating macrofactors in resource allocation processes, and HA-based models are good at optimizing
spatial layouts, and thus these models have difficulty with LPOA, which is a complicated spatial
optimization decision-making problem. To address these challenges, various composite models for
making spatial optimization decisions have been applied to solve the problems of optimizing the
landscape and land resource spatial allocation because composite models are capable of integrating
the advantages of various models, including quantitative structure optimization, spatial evolution
simulation, and spatial layout optimization models. These composite optimization models include
a loosely coupled model based on GA and game theory [41], spatially explicit genetic algorithm
that integrates land use planning knowledge with GA [45], differential evolution-cellular automata
model [46], multiobjective land use optimization allocation model that integrates a multiagent system
with PSO [47], mathematical-spatial optimum utilization model using fuzzy goal programming and
multiobjective land allocation [48], and a method for supporting land use planning by combining the
GA method, CLUE-S model, and water assessment tool model [49]. In recent years, some composite
optimization models that integrate PSO algorithms with other optimization methods have been applied
widely in land resource spatial optimization configuration research. For example, Liu et al. [6] presented
a PSO model combined with multiobjective optimization techniques for the spatial optimization of
rural land-use allocation. They first obtained the optimal land-use quantitative structure by linear
programming, and then conducted land-use spatial layout optimization according to the initial particles
generating by the optimal land type area. Liu et al. [25] proposed a novel model that integrated SD and
hybrid PSO for solving land-use allocation problems in a large area. They first used the SD module to
project land use demands under various scenarios, and further modified the PSO by incorporating
genetic operators to allocate land use in various scenarios. The composite optimization model is an
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effective method for solving the problem of complicated spatial optimization decisions, and it provides
a reference for the application of LPOA.

However, the aforementioned models for making spatial optimization decisions are still affected by
problems that need to be solved urgently. First, most of the optimization models and methods employed
for making spatial optimization decisions are focused on the quantitative structure or the spatial layout,
whereas few consider both. They usually perform spatial layout optimization according to the land
demand areas, but most ignore the coupling between quantitative structure optimization and spatial
layout optimization. Second, some models and methods have failed to integrate macrofactors that
influence landscape (land use) patterns, such as social, economic, ecological, policy, and institutional
factor, thereby resulting in landscape pattern (land use) optimization allocation schemes that are
obviously not appropriate for real situations. Third, when making spatial optimization decisions by
integrating PSO algorithms with other optimization methods, most studies employed random functions
to generate the initial particles, while a few studies initialized the particles according to the land
requirement areas, whereas few studies generated the initial particles based on the actual suitability of
the landscape or land use spatial layouts, thereby affecting the rationality of the optimization results to
some extent.

To address the problems mentioned above, the composite model developed in this study aimed
to simultaneously optimize the quantitative structure and spatial layout of the landscape pattern, as
well as effectively integrating the landscape suitability and macrofactors that affect landscape pattern.
Therefore, in terms of the optimization approaches employed, this composite model mainly involved
landscape suitability evaluation methods, landscape pattern quantitative structure optimization
(LPQSO) methods, and LPSLO methods. Early efforts at land-use spatial optimization mainly focused
on allocating the most feasible land with the highest suitability to a specified land use unit [50,51]. Thus,
landscape suitability evaluation was an important basis for LPOA. Binary logistic regression (BLR)
models are highly appropriate for landscape suitability evaluations (LSEs) because each landscape
type can have two statuses, i.e., “present” and “not present,” within a certain spatial range. Optimizing
the quantitative structure of landscape pattern is a complex constrained optimization problem because
this problem includes many constraints, such as land use planning and the ecological environment. NP
is an effective method for solving constrained optimization problems and the underlying theory of the
algorithms employed is mature (e.g., reduced gradient method and penalty function method), while they
can be readily implemented using MATLAB. Therefore, there have been many successful applications
of NP to practical quantitative structure optimization [45,52–54]. In addition, PSO is a stochastic
optimization algorithm based on swarm intelligence, which guides particles to determine the optimum
feasibility region in complex search spaces by simulating the social behavior of bird flocking and fish
schooling. Compared with other traditional evolutionary algorithms, PSO has a superior capacity
for searching the space as well as adaptability, in addition to a rapid convergence rate [25,43,47,55].
Furthermore, the successful applications of PSO to various problems have demonstrated its potential,
such as the spatial optimization of land-use allocation [6,9,25,40,43,47], facilities location selection [56],
optimal allocation of earthquake emergency shelters [57], model parameter optimization [58], feature
selection in classification [59], and other problems [60,61]. Many studies have demonstrated that PSO
is highly robust and it can obtain more different routes through the problem hyperspace than other
evolutionary algorithms [62]. Therefore, a composite optimization method that integrates BLR and NP
with PSO for LPOA may be an effective approach for addressing the problems caused by neglecting
the coupling between quantitative structure optimization and spatial layout optimization, ignoring
the macrofactors that affect landscape patterns when optimizing modeling, and initializing particles
without considering the suitability of the landscape, as well as enhancing the practical utility of the
LPOA results. Thus, in this study, we developed an LPOA composite model by integrating BLR and
NP with PSO, which we employed to simulate the LPOA for Longquanyi District of Chengdu City,
Sichuan Province, China. The results of this study may provide a useful reference for formulating
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landscape pattern planning, land use planning, urban planning, and other related spatial planning, as
well as providing a valuable basis for implementing similar studies in other areas.

2. Materials and Methods

2.1. Study Area and Data

2.1.1. Study Area

Longquanyi District is the main eastern urban development area in Chengdu City and the location
of the National Economic and Technological Development Zone. We selected this district as the
study area (Figure 1) because of its high representativeness and research value for LPOA. This area
has also been affected by series of ecological and environmental problems during the process of
industrialization and urbanization. The area is located in the central section of Sichuan Province, to the
east edge of Chengdu Plain and the west side of Longquan Mountain. Geographically, this district is
located between 104◦08′19” E–104◦27′09” E and 30◦27′52” N–30◦43′23” N, at 12 km from the center of
Chengdu City and it has the typical characteristics of a suburban area in a metropolis. The total area of
the entire district is 556.4 km2. The geological structure comprises a structural fault block between
the Chengdu fault depression belt and the Longquan Mountain uplift fold belt. The characteristic
terrain is high in the southeast but low in the northwest. The highest elevation is 1037 m, the lowest
elevation is 407 m, and the relative elevation is 630 m. The geomorphic types mainly include plains,
hills, and mountains, where the plains are piedmont alluvial dam distributed in the mid-west of the
district, mountains are present with a northeast-southwest alignment in the southeast of the district,
and the hills are distributed in the west of the district to the east and west sides of the middle section of
Longquan Mountain. The regional climate type is subtropical humid in the Sichuan Basin. The mean
annual temperature = 16.5 ◦C, precipitation = 852.4 mm, sunshine duration = 1021 h, and evaporation
capacity = 984.7 mm. The soil types mainly comprise rice soil, yellow soil, purple alluvial soil, and
purple soil. The forest vegetation type is subtropical evergreen broad-leaved forest and the major
vegetation is natural secondary forest and plantation.
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2.1.2. Data Sources

The original raw data included GIS data, remote sensing images, socioeconomic statistics,
environmental data, as summarized in Table 1. The GIS data included Global Digital Elevation Model
Version 2 (GDEM V2) at 30 m resolution and the current land-use status map (1:100,000) for the year
2009. The remote sensing image comprised a Landsat Operational Land Imager (OLI) image taken in
August 2014, which included eight multispectral bands (with a spatial resolution of 30 m) and one
panchromatic band (with a spatial resolution of 15 m) with the WGS84 coordinate system (WGS84
ellipsoid and datum, universal transverse Mercator projection, and central meridian 105◦ E) and the
world-wide reference system (path/row, 129/039). The socioeconomic statistics included the total
population for the years 1978–2014, the permanent populations in the city and countryside during
2001–2014, fruit yields in 2000–2012, total production by major agriculture (agriculture, forestry, animal
husbandry, side-lines, and fisheries) in 2014, the gross products of the primary, secondary, and tertiary
industries, and the gross domestic product (GDP) in 2000–2014. The environmental data included the
soil organic matter contents of 1842 soil samples in 2013, and annual rainfall and annual temperature
data from nine automatic meteorological observation stations in Longquan District during 2004–2014.
In addition, we used other data related to field survey results for landscape types, field survey data
for the amounts of fertilizer applied to the main fruits and crops, and the general plan of Chengdu
National Economic and Technological Development Zone.

Table 1. Data used for landscape pattern optimization allocation.

Types Data Source

GIS data
GDEM V2 National Aeronautics and Space Administration

(NASA)

Current land use status map Local Bureau of Land and Resources

Remote sensing images Landsat OLI image United States Geological Survey (USGS)

Socioeconomic statistics

Total population, permanent populations in
city and countryside, fruit yields, total
production by major agriculture, gross

products of primary, secondary, and tertiary
industries, GDP

Local Bureau of Statistics

Environmental data
Soil organic matter content Local Bureau of Rural Development and Forestry

Annual rainfall, annual temperature Local Bureau of Meteorological

Other data

Interpretation of remote sensing images,
amounts of fertilizer applied to the main

fruits and crops
Field survey

General plan of Chengdu National
Economic-Technological Development Zone Local Bureau of Planning and Administration

2.1.3. Data Processing

In this study, the data imported into the model had two formats: spatial data and nonspatial data.
During spatial data processing, the landscape type was classified into six categories (farmland, orchard,
forest, urban-rural residential and industrial-mining, and waters) using the quick unbiased efficient
statistical tree (QUEST) classification based on the Landsat OLI image from 2014, GDEM V2 data, the
current land use status map, and the landscape field survey results, where the overall classification
accuracy was 95.94% and it was sufficient for the purposes of this study [63]. We then obtained
the landscape map of the study area (Figure 2a) and landscape maps of the priority planning area
(Figure 2b) in the study area. Furthermore, derivative data such as the slope, aspect, and hypsography
degree were obtained based on calculations using GDEM V2 data. Environmental data related to the
soil organic matter content, average annual rainfall, and average annual temperature were obtained by
spatial interpolation using ESRI ArcGIS 10.0. Neighborhood factors including the nearest distances to
the city center, town center, major roads, and waters were calculated using a Euclidean distance tool
based on related data such as the city center, administrative center of each town, major roads, and
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waters derived from the landscape map in 2014 with ESRI ArcGIS. In addition, socioeconomic data such
as the population density and per capita GDP were calculated according to relevant sources, including
the administrative district area, population, and GDP statistical data, before they were converted into
grid data with the vector-raster conversion function in ESRI ArcGIS. In order to implement the models,
all of the spatial data were converted into grid data format at 30 m resolution using the Xi’an 1980
coordinate system and the Gauss–Kruger projection. During nonspatial data processing, nonspatial
data were collected for the study area, including natural status data and socioeconomic statistical data,
which were used to establish the NP models to conduct the LPQSO.Sustainability 2019, 11, 2678 7 of 34 
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2.2. LPOA Model

The LPOA model comprises three parts: LSE, LPQSO, and LPSLO. The implementation of the
LPOA model can be divided into three parts, as follows. First, based on the values of the LSE indexes,
the BLR model is used to conduct the LSEs. Second, according to the actual regional situation, where
the conflict between economic development and ecological protection has become increasingly intense,
we consider three scenarios comprising economic development, ecological protection, and overall
considerations. Next, the NP model was used to conduct the LPQSO by selecting the maximum benefit
in each development scenario as the optimization objective, as well as using each landscape type area
as a decision variable, and the landscape area, ecological service value, nonpoint source pollution, and
industrial structure as constraints. Finally, based on the spatial distribution of the landscape suitability
obtained in the first step, optimal area of each landscape type obtained in the second step, landscape
type conversion rules, and landscape type raster graphics in the base year for particle initialization, as
well as the LPQSO results produced in the second step as the quantitative constraint conditions for
the particle fitness function, an LPSLO model was established according to the principle of the PSO
algorithm in order to optimize the landscape pattern spatial layout for each scenario. The framework
of the LPOA model is shown as Figure 3.



Sustainability 2019, 11, 2678 8 of 35

Sustainability 2019, 11, 2678 8 of 34 

 
Figure 3. Framework of the landscape pattern optimization allocation (LPOA) model. 

2.2.1. LSE Model Based on BLR 

Figure 3. Framework of the landscape pattern optimization allocation (LPOA) model.



Sustainability 2019, 11, 2678 9 of 35

2.2.1. LSE Model Based on BLR

An LSE measures the adaptability category for a certain landscape spatial distribution and it
forms the basis of LPOA. The BLR model is highly appropriate for conducting an LSE because each
landscape type has two possible statuses, i.e., “present” and “not present,” within a certain spatial
range. Given that the probability of an event occurring in the BLR model represents the landscape
suitability degree, then in the two-dimensional grids of M×N landscape pattern spatial distribution
cells, a greater probability value of some landscape type appearing in a grid domain indicates that it
is more suitable for allocating this landscape type. Thus, a higher probability for a landscape type
represents a higher degree of suitability for the landscape spatial distribution. Hence, the LSE model
based on BLR can be expressed as

pθ =
exp(a + β1X1 + β2X2 + . . .+ βθXθ)

1 + exp(a + β1X1 + β2X2 + . . .+ βθXθ)
(1)

where pθ within the [0, 1] region is the probability of some landscape type appearing in a grid domain
in the study area, i.e., it denotes the degree of suitability for a landscape type spatial distribution in
a grid domain in the study area; Xκ(κ = 1, 2, . . . ,θ) is a factor that influences the landscape spatial
distribution; a is the regression equation constant; and βκ(κ = 1, 2, . . . ,θ) is the regression coefficient.
In the present study, the BLR model was implemented by Python programming using the ESRI ArcGIS
platform. The interpretability of this model was checked using the receiver operating characteristic
(ROC) method according to Pontius and Schneider [64].

2.2.2. LPQSO Model Based on NP

We established an LPQSO model to optimize the landscape quantitative structure under different
scenarios in the target years of 2021 and 2028 by using the year 2014 as the base year, and then considering
the areas with landscape types including farmland, orchard, forest, urban-rural residential and
industrial-mining, and waters as the decision variables, as well as the landscape area, ecological service
value, nonpoint source pollution, and industrial structure as constraints, and by selecting the maximum
economic benefit, ecological security degree, and comprehensive benefit as optimization objectives.

Objective Functions

The objective functions in the LPQSO model are as follows.
(1) Objective functions in the economic development scenario: Producing more products and

providing more services through the rational use of limited landscape resources were the main goals of
economic development scenario. Therefore, in this study, the maximum summed economic outputs
from all landscape types was selected in the model as the optimization objective for the economic
development scenario, i.e.,

Maximize : f (z) =
K∑

k=1

ckzk (2)

where f (z) is the summed economic gross product value for all landscapes types, ck is the product
value coefficient for landscape type k, zk is the area of landscape type k, and K is the number of
landscape types.

(2) Objective functions in the ecological protection scenario: Obtaining the maximum ecological
security degree through the rational distribution of landscape resources was the main goal of ecological
protection scenario. Therefore, in this study, the maximum summed ecological security indexes for all
landscapes types was selected in the model as the optimization objective for the ecological protection
scenario, i.e.,

Maximize : g(z) =
K∑

k=1

akzk (3)



Sustainability 2019, 11, 2678 10 of 35

where g(z) is the summed ecological security indexes for all landscapes types, ak is the ecological
security coefficient of landscape type k, and zk has the meaning stated above.

(3) Objective functions in the overall consideration scenario: Overall, the aim was to ensure the
security of the ecological environment and to promote the continuous steady growth of the economy.
Obtaining the maximum comprehensive benefit based on the overall layout of various landscape
resources in the study area was the main goal of the overall consideration scenario. Thus, the maximum
summed economic outputs and ecological security indexes for all landscape types were selected in the
model as the optimization objectives for the overall consideration scenario, i.e.,

Maximize : F(z) = ω1

K∑
k=1

vkzk +ω2

K∑
k=1

v′kzk (4)

where F(z) are the comprehensive benefits of various landscapes in the study area; ω1 and ω2 are the
weights of the objective functions for the economic development scenario and ecological protection
scenario, respectively; vk and v′k are the standardized product value coefficient and standardized
ecological security coefficient for landscape type k, respectively; and zk has the meaning stated above.

Constraints

The constraints in the LPQSO model are as follows.
(1) Landscape area: In this study, there were six landscape area constraints, i.e., total landscape

area, farmland area, orchard area, forest area, urban-rural residential and industrial-mining area, and
waters area. These constraint conditions can be expressed as:

K∑
k=1

zk = A (5)

where A is the total area of each landscape type and zk and K have the meanings stated above;

AL ≤ z1 < A (6)

where AL is the minimum demand area for farmland in the target year, z1 is the optimal area of
farmland in the target year, and A has the meaning stated above;

AG ≤ z2 < A (7)

where AG is the minimum demand area for orchard in the target year, z2 is the optimal area of orchard
in the target year, and A has the meaning stated above;

AS ≤ z3 < A (8)

where AS is the minimum demand area for forest in the target year, z3 is the optimal area of forest in
the target year, and A has the meaning stated above;

AC ≤ z4 < m1p1 + m2p2 + ϕ+ δ (9)

where AC is the minimum demand area for urban-rural residential and industrial-mining in the target
year; z4 is the optimal area of urban-rural residential and industrial-mining in the target year; m1 and
m2 are the highest per capita land use standard in urban and countryside areas, respectively; p1 and p2

are the urban and rural resident populations in the target year, respectively; ϕ is the planning area for
industrial land; and δ is the maximum planning area for transportation land;

AW ≤ z5 < A (10)
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where AW is the minimum demand area for waters in the target year, z5 is the optimal area of waters in
the target year, and A has the meaning stated above.

(2) Ecological service value: The ecological service value refers to the economic value of ecological
services provided by landscape functions. This value can be estimated according to the ecosystem
ecological services value equivalence factor [65], the grain yield per unit area, and the market price. In
this study, the ecological service value is expressed as:

ξmin ≤

K∑
k=1

εkzk < ξmax (11)

where ξmin and ξmax are the lowest and highest ecological service values in the study area, respectively;
εk is the ecological service value per unit area for landscape type k; and zk has the meaning stated
above.

(3) Nonpoint source pollution: In this study, we considered three constraints on nonpoint source
pollution, i.e., annual load of chemical oxygen demand (COD), annual load of total nitrogen (TN), and
annual load of total phosphorus (TP), which can be expressed as:

CODmin ≤ 104
K∑

k=1

ukhLCkzk < CODmax (12)

where CODmin and CODmax are the minimum and maximum annual loads of COD in the target year,
respectively; uk is the runoff coefficient for landscape type k; h is the average rainfall; LCk is the COD
concentration in surface runoff for landscape type k; and zk has the meaning stated above;

TNmin ≤ 104
K∑

k=1

ukhLNkzk < TNmax (13)

where TNmin and TNmax are the minimum and maximum annual loads of TN in the target year,
respectively; LNk is the TN concentration in surface runoff for landscape type k; h and zk have the
meanings stated above;

TPmin ≤ 104
K∑

k=1

ukhLPkzk < TPmax (14)

where TPmin and TPmax are the minimum and maximum annual loads of TP in the target year,
respectively; LPk is the TP concentration in surface runoff for landscape type k; and uk, h, and zk have
the meanings stated above.

(4) Industrial structure: In this study, the industrial structure is expressed as:

ζmin ≤
c4z4

c1z1 + c2z2 + c3z3 + c5z5
≤ ζmax (15)

where ζmin and ζmax are the minimum and maximum secondary industry product value divided by
the summed product values for primary industry and service industry, respectively; and ck(k=1,2,...,5)
and zk(k=1,2,...,5) have the meanings stated above.

LPQSO Model Solution

In this study, the LPQSO models for the economic development, ecological protection, and overall
consideration scenarios were implemented by MATLAB programming using the solution function
FMINCON for the constraint optimization problem in the MATLAB optimization toolbox. We then
determined the optimal areas for various landscape types under each scenario in the target years.
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2.2.3. LPSLO Model Based on the PSO Algorithm

Spatial Optimization Principle for the LPSLO Model

Adjusting the position of a pixel according to a specific optimization objective is the basis of spatial
layout optimization using landscape type raster data. Therefore, simulating the spatial distribution of
pixels in a landscape pattern raster map using particle positions is important for conducting LPSLO
with the PSO evolution algorithm. The raster map can be regarded as a real matrix, and thus its pixels
correspond to the matrix elements, the pixel locations correspond to the row and column numbers
of the matrix elements, and the pixel attribute values denoting landscape type codes correspond to
the values of the matrix elements. Hence, adjusting the pixel locations and attribute values in the
raster map is equivalent to adjusting the element row and column numbers and values in the matrix.
Therefore, we assumed that the matrix Am×n denoted the landscape type raster map and the matrix
element value denoted the landscape type code, while the matrix denoted particles, matrix element
values denote particle elements, and the row and column numbers of the matrix elements denote
the locations of the particle elements. Thus, according to the principle of the PSO algorithm [66],
regardless of how much the particle element space position changes, the particle element itself, i.e.,
the landscape type code, was not changed, and thus the element values comprising the matrix never
changed. Therefore, a matrix element moved from one location to another by optimizing its row and
column numbers using the PSO algorithm. Subsequently, a new matrix was obtained containing
the optimized matrix element. Thus, the LPSLO was obtained successfully when the new matrix
corresponding to the landscape pattern spatial layout obtained the maximum optimization objective.
The spatial optimization principle for the LPSLO model is shown in Figure 4.

Key Modeling Techniques of the LPSLO Model

Considering that MATLAB is an advanced programming language where its basic programming
unit is matrix, and that it has a powerful capacity for calculating matrices and image processing [67],
we designed a PSO model and algorithm for implementing the LPSLO using MATLAB. We employed
the following four key modeling techniques.

(1) Spatial mapping of the relationship between landscape type raster graphics and particles: We
assume that B is a vector quantity (α1,α2, . . . ,αN) for the valid elements of matrix Am×n corresponding
to the landscape type raster graphics in the base year. A valid matrix element is the landscape type
code, which has a corresponding grid value, but we exclude an element with a null value or one that
is not within the range of encoding values for the landscape type. The vector quantity B denotes a
particle and it corresponds to a landscape pattern spatial layout scheme. α ∈ B is the value of a valid
element and it denotes a particle element, where its row and column number also denote the position
of the particle element. Therefore, the spatial mapping relationship between landscape type raster
graphics and particles during the model optimization process is summarized in Figure 4.
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Figure 4. Schematic diagram of the landscape pattern spatial layout optimization (LPSLO) model
based on particle swarm optimization (PSO).

(2) Optimization objective and constraints in the LPSLO model: Considering that the LPSLO is
a multiobjective optimization problem, the maximum landscape suitability and spatial aggregation
degree were selected as the optimization objective functions in the LPSLO model. The summed
products for various landscape type spatial suitability values and their weights were selected to denote
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the landscape suitability, and the patch shape index was employed to denote the landscape spatial
aggregation degree. In addition, three types of constraints were considered: landscape area, landscape
type, and landscape type conversion rules. The optimization objective function and constraints can be
expressed as

Maximize : F(A) = w1
K∑

k=1

Q∑
l=1

λkpkl + w2
K∑

k=1

R∑
r=1

ckr/
√

skr

Subject to :


dk(A) = D∗k,

K∑
k=1

dk(A) =
K∑

k=1
D∗k

α j ∈ [1, 2, . . . , K]
0 ≤ T j(k→ k′) ≤ 1

(16)

where λk is the weight of landscape type k; pkl is the spatial suitability value for pixel l of landscape
type k; ckr and skr are the perimeter and area for patch r of landscape type k, respectively; w1 and w2 are
the weights for the landscape suitability and spatial aggregation degree during the objective function
calculation process, respectively; k, l, and r are the serial numbers for the landscape type, pixel, and
patch, respectively; K, Q, and R are the number of landscape types, grids of landscape raster graphics,
and landscape patches, respectively; dk(A) is the grid number for landscape type k in LPSLO scheme
A; D∗k = z∗k/e2 (z∗k is the optimal area of landscape type k and e is the grid size) is the grid number
in LPQSO result for landscape type k in a designed scenario; α j ∈ [1, 2, . . . , K]( j = 1, 2, . . . , N) is the
encoding range of landscape types corresponding to grids; and T j(k→ k′) is the conversion possibility
that a landscape type corresponding to grid α j can be transformed from landscape type k to k′.

(3) Particle initialization: According to the landscape type conversion rules and landscape
suitability, the spatial redistribution of the grids corresponding to the LPQSO results is achieved based
on the landscape type raster graphics in the base year in order to generate an initial particle with
an element number that is equal to the grid number for quantitative structure optimization of the
corresponding landscape type. We assumed that V (the structure of which is shown in Equation (17)
was the cell array [67] used to store the row and column values of valid elements as well as the suitability
values of the corresponding landscape types; ∆dk =

∣∣∣dk(A) −D∗k
∣∣∣ is the absolute difference between the

grid number dk(A) for landscape type k in the base year and the grid number for quantitative structure
optimization for landscape type k in the designed scenario; sort(Val) and sort(Val , ′descend′) denote
the ascending and descending sorting of variable Val, respectively; and A(x, y) = α indicates that the
grid of a landscape type, where a row is x and a column is y, in LPSLO scheme A is converted into a
pixel of the landscape type corresponding to that encoding α. Thus, the particle initialization process is
illustrated in Figure 5:

V =




x1 y1 p1(x1, y1) . . . pK(x1, y1)

x2 y2 p1(x2, y2) . . . pK(x2, y2)
...

...
...

...
xL yL p1(xL, yL) . . . pK(xL, yL)

, . . . ,


x1 y1 p1(x1, y1) . . . pK(x1, y1)

x2 y2 p1(x2, y2) . . . pK(x2, y2)
...

...
...

...
xW yW p1(xW , yW) . . . pK(xW , yW)




(17)

where, V{1}, V{2}, . . . , V{K} are the row and column values, and the corresponding suitability values
of valid elements for farmland, orchard, forest, urban-rural residential and industrial-mining, and
waters landscapes, respectively; (xL, yL), (xG, yG), (xS, yS), (xC, yC), (xW , yW) are the row and column
numbers for farmland, orchard, forest, urban-rural residential and industrial-mining, and waters
landscapes in matrix Am×n, respectively; and pK(xL, yL), pK(xG, yG), pK(xS, yS), pK(xC, yC), pK(xW , yW)

are the suitability values for landscape type K corresponding to the elements of farmland, orchard,
forest, urban-rural residential and industrial-mining, and waters landscapes, respectively.
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(4) Updating the particle velocity and location: We assume that PM×(4N+1) is the storage matrix for
the locations, velocities, and current fitness (the objective function values) of M particles, where in matrix
P, the column 1 ∼ 2N is the particle location variable (xi1, xi2, . . . , xiN, yi1, yi2, . . . , yiN)(i = 1, 2, . . . , M),
the column 2N + 1 ∼ 4N is the particle velocity variable (δxi1, δxi2, . . . , δxiN, δyi1, δyi2, . . . , δyiN), and
the column 4N + 1 is the current fitness pFi; O(2M+1)×2N is the storage matrix for the historical best
values, local best values, and global best values of M particles, where in matrix O, row 1 ∼M is the
historical best value variable (xi1, xi2, . . . , xiN, yi1, yi2, . . . , yiN) of a particle, row M + 1 ∼ 2M is the local
best value variable (lx(M+i)1, lx(M+i)2, . . . , lx(M+i)N, ly(M+i)1, ly(M+i)2, . . . , ly(M+i)N) of a particle, and
the row 2M + 1 is the global best value variable (gx1, gx2, . . . , gxN, gy1, gy2, . . . , gyN) of a particle. The
velocity and location are constantly updated for a particle according to its historical best value and local
best value during the flight process. The operation equation for the particle velocity is expressed as:

{
Pt(i, 2N + j) = ω(t)Pt−1(i, 2N + j) + c1 · µ1 · [Ot−1(i, j) −Pt−1(i, j)] + c2 · µ2 · [Ot−1(M + i, j) −Pt−1(i, j)]
Pt(i, 3N + j) = ω(t)Pt−1(i, 3N + j) + c1 · µ1 · [Ot−1(i, N + j) −Pt−1(i, N + j)] + c2 · µ2 · [Ot−1(M + i, N + j) −Pt−1(i, N + j)]

(18)

where Pt(i, 2N + j) and Pt(i, 3N + j) are the longitudinal and transverse velocities of a particle in
iterations t, respectively; t = 1, 2, . . . Imax is the number of iterations, where Imax is the maximum
number of iterations; ω(t) is the inertia weight for iterations t; c1 and c2 are the different acceleration
weights; µ1 and µ2 are random numbers within the [0, 1] range; Ot−1(i, j), Ot−1(i, N + j) is the historical
best value for a particle in iterations t− 1; Ot−1(M + i, j), Ot−1(M + i, N + j) is the local best value for
a particle in iterations t− 1; and Pt−1(i, j), Pt−1(i, N + j) is the current best position of the particle in
iterations t− 1. In this study, we consider two constraints on a particle’s longitudinal velocity, i.e., when
Pt(i, 2N + j) > υxmax, Pt(i, 2N + j) = υxmax; and when Pt(i, 2N + j) < υxmin, Pt(i, 2N + j) = υxmin.
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The constraints on a particle’s transverse velocity are similar to those on the longitudinal velocity.
The operation equation for a particle’s location can be expressed as:{

Pt(i, j) = int[Pt−1(i, j) + Pt(i, 2N + j)]
Pt(i, N + j) = int[Pt−1(i, N + j) + Pt(i, 3N + j)]

(19)

where the constraints on the particle’s longitudinal location can be expressed as: if Pt(i, j) > m, then
Pt(i, j) = m; and if Pt(i, j) < 1, then Pt(i, j) = 1. Thus, the constraints on a particle’s transverse location
are similar to those on its longitudinal location. The constraints given above can ensure that a particle’s
movement is restricted to a rectangular range, the length of which is the longest transverse span of the
study area and the width is the longest longitudinal span of the study area, but some of the particles
will still fly throughout the optimization range because the range is an irregular polygon. Therefore,
new constraints are formulated as follows: when the value of the element with a row value of Pt(i, j)
and column value of Pt(i, N + j) in matrix A satisfies A[Pt(i, j), Pt(i, N + j)] ≤ 0, the particle’s location
[Pt(i, j), Pt(i, N + j)] is changed back to the original location.

LPSLO Model Solution

In the LPSLO model, the solution steps are as follows.
Step 1: The particle locations are initialized as the row and column values of the valid elements in

matrix E∗m×n, and the particle velocities are then initialized as random integers within the region of the
particle velocity constraint variable rg, where they are generated using the interior function RANDINT
in MATLAB.

Step 2: The current fitness of a particle is calculated according to Equation (16) and the local best
value of the particle within the region of the first iterations is determined by the annular topology
structure method [68], before the global best value of the particle is determined according to the
maximum current fitness.

Step 3: The inertia weight of a particle is calculated based on a linearly decreasing formula
according to Ma et al. [40].

Step 4: The velocity and location of a particle are updated according to Equations (18) and (19).
Step 5: The current fitness pFi(t) and historical fitness hFi(t) of a particle in iterations t are

calculated according to Equation (16), before comparing the fitness of these particles, and the historical
best value of a particle is then updated when the particle’s fitness satisfies pFi(t) > hFi(t).

Step 6: The local best value and the corresponding local fitness lFi(t) for particle i within the
region of iterations t are extracted by the annular topology structure method [68]. The local fitness
lFi(t− 1) of a particle in iterations t− 1 is then calculated according to Equation (16), and when the
fitness of this particle satisfies lFi(t) > lFi(t− 1), the local best value for the particle is updated.

Step 7: The maximum current fitness maxpFi(t) and the corresponding location of the particle
in iterations t are extracted. The global fitness gF(t − 1) of a particle in iterations t − 1 is calculated
according to Equation (16) and when the fitness of this particle satisfies maxpFi(t) > gF(t − 1), the
global best value for the particle is updated.

Step 8: When the iterations t satisfy t ≤ Imax, the algorithm executes t = t + 1 and returns to steps
3–7; otherwise, it returns to step 9.

Step 9: The global best value for a particle in iterations Imax is exported for mapping according to
the spatial mapping relationship shown in Figure 4, where the LPSLO map is finally produced.

2.3. Implementation of the LPOA Model

2.3.1. Implementation of the LSE Model

As described previously [69–71] and according to the basic principles of LSEs [72], we selected
various indexes in terms of natural factors, neighborhood factors, and socioeconomic factors to
construct the index system for LSEs (Table 2). In the study area, the landscape spatial distribution is
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influenced greatly by topographic differences due to the three common terrain types comprising plains,
mountainous regions, and hills, so the elevation, slope, aspect, and hypsography degree were used to
denote the topography impact factors for the landscape pattern [69,71]. Climate is the major factor that
determines the landscape distribution, and the spatial variations in temperature and rainfall in the
study area are significant due to differences in the surface morphology. Thus, we selected the average
annual rainfall and temperature as climatic factors that affected the landscape distribution. Landscape
spatial patterns are affected by the soil distribution to some extent, while the soil organic matter content
is the main index that reflects soil fertility as well as forming the basis of the soil classification [73], and
thus it was selected to denote the effects of soil factors on the landscape distribution. According to
the first law of geography [74], landscape patterns are affected by relevant neighborhood factor, as
confirmed in many similar studies [25,47,70,71]. Hence, considering the actual situation in the region,
the nearest distances from the city center, town center, major roads, and major waters were employed
to denote the effects of neighborhood factors on the landscape pattern. At small spatio-temporal
scales, the effects of socioeconomic factors on landscape patterns are more intense than those of
natural factors [72]. The study area comprised a suburban area of a metropolis and the population
distribution was imbalanced because people migrate continually to cities as a consequence of rapid
development in terms of urbanization and industrialization. Furthermore, regional differences in
economic development were obvious. Thus, the effects of population and economics on the landscape
pattern had great spatial differences. Therefore, the population density and per capita GDP were used
to denote the effects of socioeconomic factors on the landscape distribution.

Table 2. Indexes used for landscape suitability evaluations (LSEs) in Longquanyi District.

Index Categories Evaluation Indexes

Natural factors
Elevation, slope, aspect, hypsography degree,

average annual rainfall, average annual temperature,
soil organic matter content

Neighborhood factors
Nearest distance from city center, nearest distance

from town center, nearest distance from major roads,
nearest distance from major waters

Socioeconomic factors Population density, per capita GDP

Using the indexes mentioned above and ESRI ArcGIS, we implemented the LSE model of the
study area as follows. First, we extracted farmland, orchard, forest, urban-rural residential and
industrial-mining, and waters landscape maps from the landscape map of the study area for the year
2014. The locations in the grids where landscape was present were assigned values of 1; otherwise, the
grid locations were assigned values of 0. Second, we extracted the grid values from each landscape
type map and the corresponding spatial distribution raster graphics for various evaluation indexes, and
we then used these extracted grid values to determine each landscape pattern influence index and the
corresponding regression coefficients by using stepwise regression for BLR analysis with SPSS software.
Finally, we calculated the probability map for each landscape type spatial distribution, i.e., a suitability
map for each landscape type spatial distribution, according to Equation (1) by Python programming
based on the effect indexes and the corresponding regression coefficients for each landscape type.

2.3.2. Implementation of the LPQSO Model

Implementation of the Objective Functions

In the objective functions of the LPQSO model, the values of the optimization objectives (Equations
(2)–(4)) were obtained by calculating the summed economic gross product value for all landscapes
types, the summed ecological security index for all landscapes types, and the comprehensive benefits
of various landscapes types. According to Equations (2)–(4), calculating the target values required
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the determination of the product value coefficient for each landscape type, the ecological security
coefficient for each landscape type, the standardized product value coefficient for each landscape
type, the standardized ecological security coefficient for each landscape type, the weight of the
economic development scenario, and the weight of the ecological protection scenario. The product
value coefficient for each landscape type was expressed as the total major agricultural and industrial
production divided by the corresponding landscape type area. The ecological security index was
obtained by calculating the summed grid values of various index raster data using a weighted sum
method, which was performed by embedding the comprehensive evaluation index model into GIS
based on the ecological security evaluation index system [75]. This index system comprised 25
indicators, including the population density, natural population growth rate, per capita water area, per
capita grain output, quantity of chemical fertilizer applied per unit area of cultivated land, urbanization
level, industrial added value, regional development index, elevation, slope, grain yield per unit area of
cultivated land, per capita construction land area, annual average rainfall, annual average temperature,
soil organic matter content, soil type, landscape fragmentation, area-weighted average patch fractal
dimension, contagion index, NDVI index, population mortality, agricultural mechanization level,
tertiary industry proportion, per capita GDP, and landscape types [75]. The summed ecological security
index for each landscapes type was calculated using the SUM function in the Zonal Statistics Tool in
ArcGIS, where the input feature zone data in this tool were set as the landscape type vector data and
the input value raster in this tool was set as the raster data for the ecological security index in the base
year. After obtaining the summed ecological security index for each landscapes type, the ecological
security coefficient for each landscape type was expressed as the summed ecological security index for
each landscapes type divided by the corresponding landscape type area. The standardized product
value coefficient and the standardized ecological security coefficient were calculated for each landscape
type using the linear normalization method. Furthermore, considering that economic development is
as important as ecological protection, the objective function weights for the economic development
scenario and ecological protection scenario were both set to 0.5.

Implementation of the Constraints

The LPQSO model includes many constraints in terms of the landscape area, ecological service
value, nonpoint source pollution, and industrial structure. Thus, the constraints were implemented
as follows.

First, according to Equations (5)–(10), implementing the landscape area constraints required
the determination of the minimum demand areas and maximum areas for farmland, orchard, forest,
urban-rural residential and industrial-mining, and waters in each target year. The minimum demand
area for farmland was determined based on the minimum per capita farmland area and anticipated
registered population in the target year. The minimum per capita farmland area in Longquanyi District
during 1988–2014 was 0.0106 hm2, and the anticipated registered population in the target year was
calculated by a first order linear regression model based on the demographic data for 1978–2014.
After obtaining the minimum per capita farmland area and the anticipated registered population, the
minimum demand area for farmland in the target year was equal to the product of both. According to
the requirement that the basic fruit demand for residents in the study area was met, the minimum
demand area for orchards was determined by calculating the annual mean yield per unit area for
orchards and the anticipated total yield for orchards in the target year. The annual mean yield per unit
area for orchards was determined according to the fruit yield during 2000–2012, and the anticipated
total yield for orchards in the target year was calculated based on the mean level of fruit consumption
by residents and the resident population in the study area. After obtaining the anticipated total yield
for orchards and the annual mean yield per unit area for orchards, the minimum demand area for
orchards in the target year was equal to the former divided by the latter. In order to consider the
establishment of the national ecological demonstration district in Longquanyi, the minimum demand
area for forest in the target year was set as the current area. Given that it would be almost impossible
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to reduce the urban-rural residential and industrial-mining area because the study area was located
in suburban district of Chengdu City, the minimum demand area in the target year was set as the
current area. The eastern section of the study area comprises arid mountains and water shortages are
very severe, so the minimum demand area for waters in the target year was set as the current area to
ensure the safety of the regional water resources. The maximum area for urban-rural residential and
industrial-mining was obtained by determining the construction land areas in the city and countryside,
the industrial land area, and the traffic land area in the target year. The construction land areas in
the city and countryside were calculated based on the maximum residential land area per capita,
where both were determined as described previously [76], and the anticipated residential population
of both areas in the target year, which were calculated by a first order linear regression model using
the resident populations in the city and countryside during 2001–2014. The industrial land area was
set as the planning area of the National Chengdu Economic and Technological Development Zone.
The traffic land area was set as 15% of the total area of city construction land, countryside construction
land, and industrial land [77]. After obtaining the maximum residential land area per capita and the
anticipated resident populations of the city and countryside areas, the industrial land area, and traffic
land area, we calculated the maximum area of urban-rural residential and industrial-mining in the
target year according to Equation (9). In addition to urban-rural residential and industrial-mining, the
maximum areas of other landscape types were all set as the total areas of the various landscape types
in the study area.

Next, according to Equation (11), implementing the ecological service value constraints required
the determination of the ecological service value per unit area for each landscape type, and the
minimum and maximum ecological service values for the study area. The ecological service value
per unit area was determined according to the ecosystem ecological service value equivalence factor,
regional average grain yield per unit area, and the market price using the ecosystem service value
calculation methods proposed by Xie et al. [65]. The ecosystem ecological service value equivalence
factor was determined according to the table of the “ecosystem service values per unit area for the
Chinese terrestrial ecosystem” [65]. This table provides the ecological service value equivalence
factors for gas regulation, climate regulation, water conservation, soil formation and protection, waste
disposal, biodiversity protection, food production, raw materials, and entertainment culture functions
for five types of terrestrial ecosystems comprising forests, orchards, farmland, wetlands, waters, and
deserts. The ecological service value equivalent factors for each function of the farmland, forest, and
waters landscapes were determined by referring to this table. Thus, due to their absence from this
table, the ecological service value equivalence factors for various functions of orchards, urban-rural
residential and industrial-mining were estimated indirectly according to the ecological service value
equivalence factors for the various functions of each ecosystem provided in this table. The ecological
service value equivalence factor for each function of orchards was approximately equal to the mean of
the ecological service value equivalence factors for the corresponding functions of forest and farmland
in this table. The ecological service value equivalence factor for the entertainment culture function
of urban-rural residential and industrial-mining was equal to the mean equivalence factors for the
corresponding functions of forest, orchard, farmland, and wetland, and the equivalence factors for the
other service functions of urban-rural residential and industrial-mining were assumed to be zero. After
determining the ecological service value equivalence factors for various functions of each landscape
type, the regional average grain yield per unit area and the market price in the base year, the ecological
service value per unit area of landscape type could be expressed as the sum of 1/7th of the product of
the ecological service value equivalence factors, grain yield per unit area, and the market price for
each landscape function. Subsequently, the minimum and maximum ecological service values for the
study area were equal to the sum of the product of the ecological service value per unit area for each
landscape type, and the corresponding minimum and maximum constraints as mentioned above.

According to Equations (12)–(14), implementing the nonpoint source pollution constraints requires
the calculation of the minimum and maximum annual loads for COD, TN, and TP. Previous studies
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of nonpoint source pollution [78,79] indicate that calculating the values of the constraints requires
the determination of the mean annual rainfall, the runoff coefficient for each landscape type, the
concentrations of COD, TN, and TP in the surface runoff from each landscape type, and the amounts
of fertilizer applied to the main fruits and crops. The mean annual rainfall was calculated based on
rainfall monitoring data from the study area, the amounts of fertilizer applied to the main fruits and
crops were obtained from field surveys, and the values of other variables were obtained from previous
studies [65,78]. After obtaining these variable values, the annual loads per unit area were estimated for
COD, TN, and TP according to Equations (12)–(14), and the minimum and maximum annual loads
of COD, TN, and TP were then calculated according to the corresponding minimum and maximum
landscape constraints for the area as mentioned above.

Finally, according to Equation (15), implementing the industrial structure constraints required
the determination of the minimum and maximum secondary industry product values divided by the
summed product values for primary industry and service industry. Based on the macroeconomic
situation and industrial development status in Longquanyi District, the growth rates for primary
industry, secondary industry, and service industry were set as 2%, 12%, and 8%, respectively.
Subsequently, the minimum and maximum secondary industry product values divided by the
summed product values for primary industry and service industry were estimated based on industrial
development statistical data and the corresponding growth rates given above.

In summary, the values of the main variables for each constraint on the LPQSO model of
Longquanyi District in this study are shown in Table 3.

Table 3. Values of the main variable for each constraint on the landscape pattern quantitative structure
optimization (LPQSO) model of Longquanyi District.

Constraint Variable By 2021 By 2028

Landscape area (hm2)

Total area of each landscape type 55,569 55,569

Minimum demand area for farmland 7235 7901

Minimum demand area for orchard 4777 5216

Minimum demand area for forest 5167 5167

Minimum demand area for urban-rural residential
and industrial-mining 16,207 16,207

Maximum demand area for urban-rural residential
and industrial-mining 19,754 21,586

Minimum demand area for waters 1610 1610

Ecological service value
(million CNY)

Lowest ecological service value in the studied area 669.72 691.80

Highest ecological service value in the studied area 10,081.07 10,086.88

Nonpoint source pollution (kg)

Minimum annual load of COD 9,412,702 9,481,387

Maximum annual load of COD 17,895,612 18,864,542

Minimum annual load of TN 682,316 715,596

Maximum annual load of TN 3,863,575 3,897,836

Minimum annual load of TP 138,262 141,448

Maximum annual load of TP 470,088 481,631

Industrial structure

Minimum secondary industry product value
divided by the summed product values for

primary industry and service industry
55,569 55,569

Maximum secondary industry product value
divided by the summed product values for

primary industry and service industry
7235 7901

2.3.3. Implementation of the LPSLO Model

According to the LPSLO model and solution algorithm, five main parameters had to be determined,
i.e., the landscape type weight for each scenario, optimal grid number for each landscape type, landscape
suitability, landscape type encoding, and landscape type conversion rules. The landscape type weight
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was calculated for each scenario using the analytic hierarchy process method. We invited 15 experts
in related fields (four experts in ecology, four experts in economics, four experts in land, and three
experts in agriculture) to construct the judgment matrix based on three rounds of scoring, before
calculating the weights for each landscape type in each scenario. The calculated results are shown
in Table 4. The optimal grid number for each landscape type was equal to the landscape type area,
which was equal to the landscape type optimal area calculated by the LPQSO model minus the
corresponding landscape type area in the priority planning area, divided by the grid size setting as 60
m. The landscape suitability was obtained using the LSE model. Next, based on the landscape types
in the study area, the landscape type codes for farmland, orchard, forest, urban-rural residential and
industrial-mining, and waters in the areas, except for priority planning areas, were set as 1, 2, 3, 4, and
5, respectively, and the landscape type codes in the priority planning areas were set as a negative value.
Finally, according to the characteristic changes in the landscape patterns in the study area [80], four
landscape type conversion rules were constructed, as follows:

(1) Urban-rural residential and industrial-mining, and farmland or orchard could be exchanged with
each other fully;

(2) Waters and farmland could be exchanged with each other fully;
(3) Forest and farmland or orchard could be exchanged with each other fully;
(4) Farmland and orchard could be exchanged with each other fully.

Table 4. Weights for each landscape type in each scenario in Longquanyi District.

Scenario
Weight

Farmland Orchard Forest Urban-Rural Residential
and Industrial-Mining Waters

Economic development 0.1378 0.2107 0.0606 0.5514 0.0395
Ecological protection 0.0706 0.1366 0.5071 0.0350 0.2507
Overall consideration 0.0930 0.1613 0.3582 0.2072 0.1803

In addition, according to the actual situation in the study area and based on trial-and-error
experiments, the configuration parameters for the LPSLO model and the algorithm were set as
follows: maximum iterations Imax = 100, accelerated weight c1 = c2= 100, minimum longitudinal
and transverse velocity of a particle uxmin = −6, maximum longitudinal and transverse velocity of a
particle uxmax= 6, maximum longitudinal span m= 478, maximum transverse span n= 502, and the
inertia weight ω(t) was determined using a linearly decreasing formula, as described previously [40].

3. Results

3.1. Evaluation Results Obtained from the LSE Model

Using the LSE model, we determined the evaluation indexes and corresponding regression
coefficients for each landscape type, before obtaining the spatial suitability maps for each landscape
type, as shown in Table 5 and Figure 6.

Among the BLR models for all the landscape types (Table 5), the predictive accuracies of the
modeling and test data using the BLR model were 85.1% and 85.3% for farmland landscape, respectively,
both accuracies were 65.6% for orchard landscape, 90.1% and 89.5% for forest landscape, 82.7% and
81.7% for urban-rural residential and industrial-mining landscape, and 97.2% and 97.6% for waters
landscape. Thus, the predictive accuracy was high for each landscape type and the results predicted
by the model were highly reliable. In addition, the ROC values obtained by the BLR model for each
landscape type were all higher than 0.7 (Table 5). Therefore, the evaluation indicators selected for the
regression equation had high explanatory power for the effects of landscape patterns, and thus these
indicators were used for suitability evaluations of landscape patterns.
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Table 5. Regression coefficients and significant test results obtained by the binary logistic regression
(BLR) models.

Evaluation Indicator
Regression Coefficient a

Farmland Orchard Forest Urban-Rural Residential
and Industrial-Mining Waters

Elevation −6.37 × 10−3 2.34 × 10−3
−1.49 × 10−3 —— −8.56 × 10−3

Slope —— —— —— —— ——

Aspect —— —— —— —— ——

Hypsography degree −1.19 × 10−2 1.17 × 10−3 2.69 × 10−3
−2.86 × 10−3 4.83 × 10−3

Nearest distance from city
center 6.99 × 10−5 9.93 × 10−5 1.38 × 10−4

−1.90 × 10−4 ——

Nearest distance from
town center 2.72 × 10−4 —— —— −1.08 × 10−4

−1.57 × 10−4

Nearest distance from
major roads −9.97 × 10−5 —— −1.63 × 10−4 —— ——

Nearest distance from
major waters —— —— −1.59 × 10−4 3.45 × 10−4

−6.65 × 10−4

Mean annual rainfall −3.19 × 10−3 6.44 × 10−3 7.14 × 10−3
−1.10 × 10−2 ——

Mean annual temperature —— —— −1.21 × 10 3.72 × 10−1 ——

Soil organic matter content 2.21 × 10−2 —— —— −3.08 × 10−2 ——

Population density —— −1.19 × 10−4 —— —— ——

Per capita GDP −1.72 × 10−2 4.25 × 10−2 4.42 × 10−2
−6.04 × 10−2 ——

Constant 2.49 × 100
−7.29 × 100 1.06 × 101 3.82 × 100 1.33 × 100

ROC 0.8040 0.7125 0.7892 0.7858 0.7000
a In the BLR analysis process, if the significance level of the regression coefficient between a landscape type and
evaluation indicator was less than 0.02, the indicator was retained and the regression coefficient is shown in the
table. However, if the significance level was more than 0.02, the indicator was deleted and this regression coefficient
is not shown in the table.
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waters in Longquanyi District.

In addition, Figure 6 shows the spatial characteristics of the suitability evaluation results for each
landscape type in the study area. The higher suitability areas for farmland were mainly distributed in
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the towns of Shiling, Huangtu, Hongan, Luodai, Xihe, and east of Wanxing, surrounding Longquan
Lake in the town of Chadian. The higher suitability areas for orchard were mainly distributed in
the towns of Shanquan and Tongan, east of Baihe, and west of Chadian and Wanxing. The higher
suitability areas for forest were mainly distributed in the towns of Shanquan, Wanxing, and Baihe,
east of Tongan, and west of Chadian. The higher suitability areas for urban-rural residential and
industrial-mining were mainly distributed in the towns on plains in the study area, such as Shiling,
Damian, Xihe, Longquan, and Baihe. The higher suitability areas for waters were mainly distributed
in the towns on plains in the study area, such as Shiling, Xihe, Huangtu, Hongan, Luodai, Damian,
Tongan, and Baihe, as well as Longquan Lake and its surrounding areas to the south of Chadian
in the mountains in the study area. According to these characteristic distributions, there was some
overlapping in the higher suitability areas for orchard and forest, where the overlapping distribution
areas were distributed centrally to the east of Shanquan, Baihe, and Tongan, and to the west of Chadian.

3.2. Optimal Results Obtained by the LPQSO Model

Using the LPQSO model, we obtained the optimal areas for farmland, orchard, forest, urban-rural
residential and industrial-mining, and waters under the economic development, ecological protection,
and overall consideration scenarios in the target years of 2021 and 2028, as shown in Table 6. Compared
with the area for each landscape type in the year 2014, the optimal areas for each landscape type under
each scenario in the target year (Table 6) exhibited specific characteristics, as follows.

Table 6. Quantitative structure optimization results for each landscape type area under each scenario
for the target year in Longquanyi District (hm2).

Target Year Scenario Farmland Orchard Forest
Urban-Rural

Residential and
Industrial-Mining

Waters

2021
Economic development 7235.00 21,803.00 5167.00 19,754.00 1610.00

Ecological protection 7235.00 7380.75 23,136.25 16,207.00 1610.00
Overall consideration 7235.00 16,231.31 10,738.69 19,754.00 1610.00

2028
Economic development 7901.00 19,305.00 5167.00 21,586.00 1610.00

Ecological protection 7901.00 5216.00 24,635.00 16,207.00 1610.00
Overall consideration 7901.00 5216.00 19,256.00 21,586.00 1610.00

Base year
2014

Current landscape
pattern 6723.00 25862.00 5167.00 16,207.00 1610.00

Under the economic development scenario, the areas for urban-rural residential and
industrial-mining and farmland increased, whereas the area for orchard decreased, while the areas for
forest and waters were unchanged. Moreover, the area for urban-rural residential and industrial-mining
increased the most, whereas the area for orchard decreased the most. Thus, the scheme can achieve
the maximum objective in terms of economic benefit because the economic benefit of urban-rural
residential and industrial-mining is higher than that of orchard. Hence, the results obtained by the
scheme agreed with the actual economic development scenario.

Under the ecological protection scenario, the areas for forest and farmland increased, whereas
the area for orchard decreased, while the areas for urban-rural residential and industrial-mining and
waters were unchanged. Moreover, the area for forest increased the most, whereas the area for orchard
decreased the most. Thus, orchard was changed to forest by the scheme to achieve the maximum
ecological security degree because the ecological security associated with forest is higher than that
linked with orchard. Hence, the results obtained by the scheme agreed with the actual ecological
protection scenario.

Under the overall consideration scenario, the areas for forest, urban-rural residential and
industrial-mining, and farmland increased, whereas the area for orchard decreased, while the area
for waters was unchanged. Moreover, the area for forest increased the most, followed by the area for
urban-rural residential and industrial-mining, and the area for orchard decreased the most. Thus,
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orchard was changed to forest and urban-rural residential and industrial-mining, thereby significantly
improving the maximum comprehensive benefit, including economic and ecological benefits, because
the ecological security degree associated with forest and the economic benefit of urban-rural residential
and industrial-mining are higher than those linked with orchard. Hence, the results obtained by the
scheme agreed with the actual overall consideration scenario.

3.3. Optimal Results Obtained by the LPSLO Model

According to the basic data, such as the landscape map for the base year 2014 (Figure 2a), landscape
maps of the priority planning areas (Figure 2b), spatial suitability evaluation maps for each landscape
type (Figure 6), and quantitative structure optimization areas for each landscape under each scenario
in the target year (Table 6), we obtained the landscape pattern spatial layout schemes for each scenario
in the target years of 2021 and 2028 by using the LPSLO model and solution algorithm implemented in
MATLAB, as shown in Table 7 and Figure 7. Figure 7 shows that the optimization results obtained for
the landscape pattern spatial layout under each scenario in the target year had specific characteristics,
as follows.

Table 7. Solutions obtained by the LPSLO model under each scenario for the target year in
Longquanyi District.

Target Year Designed Scenario Farmland Orchard Forest
Urban-Rural

Residential and
Industrial-Mining

Waters

2021
Economic development 19,870

(0.98%)
60,677

(0.34%)
14,600

(1.88%) 54,541 (0.45%) 4435 (0.67%)

Ecological protection 19,796
(1.35%)

20,950
(2.34%)

64,261
(0.14%) 44,664 (0.64%) 4452 (0.29%)

Overall consideration 19,890
(0.88%)

45,121
(0.23%)

30,165
(1.28%) 54,539 (0.46%) 4408 (1.28%)

2028
Economic development 21,754

(0.73%)
53,271

(0.51%)
14,829

(3.47%) 59,825 (0.08%) 4444 (0.47%)

Ecological protection 21,810
(0.47%)

14,734
(1.85%)

68,246
(0.12%) 44,905 (0.10%) 4428 (0.83%)

Overall consideration 21,840
(0.34%)

14,533
(0.46%)

53,570
(0.31%) 59,705 (0.28%) 4475 (0.22%)

Base year
2014

Current landscape
pattern 22,136 82,917 14,268 30,439 4363

The statistical analysis of the area of each landscape type was conducted according to the number of grid units
measuring 60 m. The values in brackets show the relative error between the optimal areas obtained by LPSLO
and LPQSO.

Under the economic development scenario, in the target year 2021, farmland was distributed
throughout towns on the plains, including Huangtu, Hongan, and Xihe, as well as east of towns in
mountainous areas such as Wanxing and Chadian; orchard was distributed in towns in mountainous
areas, such as Shanquan, Chadian, and Wanxing, as well as east of Luodai, Tongan, and Baihe; forest
was distributed in the towns of Wanxing and Chadian, as well as east of the towns of Luodai, Tongan,
and Baihe; urban-rural residential and industrial-mining was distributed centrally in the towns of
Shiling, Xihe, Damian, Longquan, Huangtu, and Hongan, and west of Luodai, Tongan, and Baihe;
waters were mainly distributed in lakes in the mountainous region to the east of the study area,
and in ponds and canals in the plains to the west of the study area. Compared with the landscape
spatial layout under the economic development scenario in the target year of 2021, the areas covered
by urban-rural residential and industrial-mining and farmland increased in the target year of 2028,
whereas the area covered by orchard decreased.

Under the ecological protection scenario, in the target year of 2021, farmland was distributed
throughout towns on the plains, including Huangtu, Hongan, Xihe, and Longquan, as well as the
areas surrounding Longquan Lake in the town of Chadian in the mountainous region of the study
area; orchard was distributed in towns on the plains such as Huangtu, Hongan, and Luodai, as well as
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southeast of Chadian in the mountainous region of the study area; forest covered the whole areas of
the towns of Shanquan and Wanxing, as well as east of Baihe, Tongan, and Luodai, and northwest
of Chadian; urban-rural residential and industrial-mining was distributed centrally in the towns of
Shiling, Xihe, Damian, and Longquan, as well as west of the towns of Tongan and Baihe; while the
characteristic distribution of the waters landscape spatial layout was similar to that under the economic
development scenario. Compared with the landscape spatial layout under the ecological protection
scenario in the target year of 2021, the areas covered by forest and farmland increased in the target
year of 2028, whereas the area covered by orchard decreased.

Under the overall consideration scenario, in the target year 2021, farmland was distributed
throughout the towns on the plain, including Huangtu, Hongan, and Xihe, as well as east of Wanxing
and Chadian in the mountainous region of the study area; orchard was distributed mainly in the towns
of Luodai and Chadian, as well as east of Tongan and Baihe, but less widely in the towns of Shanquan,
Wanxing, Huangtu, Xihe, and Longquan; forest was distributed mainly to the east of Tongan and
Baihe, and in the towns on the plains, such as Wanxing and Shanquan; urban-rural residential and
industrial-mining was distributed mainly in the towns of Shiling, Xihe, Damian, and Longquan, and
west of Tongan, Baihe, and Luodai, but less widely in the towns of Huangtu and Hongan; while the
distribution characteristics of the landscape spatial layout for waters was similar to that under the
economic development scenario as well as the ecological protection scenario. Compared with the
landscape spatial layout under the overall consideration scenario in the target year of 2021, the area
covered by forest increased in the target year of 2028 to cover the whole of the towns of Wanxing
and Chadian, as well as east of the towns of Luodai, Tongan, and Baihe, and northwest of Chadian,
whereas the area covered by orchard decreased greatly in the target year of 2028, where it was mainly
distributed southeast of Chadian and on the piedmont to the east of Luodai.Sustainability 2019, 11, 2678 25 of 34 
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4. Discussion

4.1. Analysis of the LPOA Model for Longquanyi

4.1.1. Accuracy of the Spatial Optimization Results

There were differences in the optimal areas obtained by LPSLO and LPQSO for each scenario in
the target year (Tables 5 and 6). The maximum error obtained after spatial optimization was for the
forest area under the economic development scenario in the target year of 2028, where the relative error
before and after optimization with the LPSLO model was 3.47%. The minimum error obtained after
spatial optimization was for the urban-rural residential and industrial-mining area under the economic
development scenario in the target year of 2028, where the relative error before and after optimization
with the LPSLO model was 0.08%. Thus, the solutions obtained by the LPSLO model could not satisfy
the equality constraints because of the effects of some particle elements during the flight process.
Therefore, the solutions obtained by the model could not satisfy the equality constraints because the
locations of particle elements corresponding to certain landscape types were replaced by particle
elements corresponding to other landscape types during the flight process (i.e., the first particle element
moved to a location while the second particle element moved to the same location occupied previously),
thereby decreasing the previous landscape type area but increasing the subsequent landscape type
area. According to the principles of the LPSLO model and the algorithm, the initial particles fully
satisfy the equality constraints at initialization. However, the equality constraints are broken by some
particles because the objective function values of some particles that break the equality constraints are
higher than those of the initial particles. Thus, the landscape pattern spatial layout undergoes further
optimization. Moreover, breaking the equality constraints in a specific error range may be a strategy
for resolving the coupling problem between the objective functions for LPQSO and LPSLO. Thus, the
LPSLO model can be used to optimize the landscape pattern spatial layout.

Furthermore, in order to validate the reliability and feasibility of the LPSLO model proposed in
this study, we quantitatively assessed the accuracy of the landscape pattern simulation results using
the widely employed confusion assessment method [46], where we compared the simulated and actual
landscape pattern maps, and the accuracy was computed based on point-by-point comparisons using
a confusion matrix. First, considering that Longquanyi District has been undergoing a period of rapid
economic development and urbanization in the past ten years, we set the current landscape pattern
status in the base year of 2014 as the actual landscape pattern for the economic development scenario.
Next, according to the grid number for each landscape type in the current landscape pattern status
in 2014, we obtained the simulated spatial allocation of the landscape pattern under the economic
development scenario by using the LPSLO model with the parameters given above. Using ENVI 5.1,
the confusion matrix shown in Table 8 was computed by comparing the simulated results obtained
by the LPSLO model with the current landscape pattern status map in 2014 for each cell. The results
showed that the overall accuracy of the simulated results was 84.98% and the Kappa coefficient
was 0.7587, thereby indicating that the LPSLO model could simulate the landscape pattern spatial
layout objectively and accurately. Therefore, it is feasible to employ this model to simulate the spatial
allocation of future landscape patterns under each scenario based on the LPQSO model and LSE model,
and thus the simulated results obtained were acceptable.
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Table 8. Confusion matrix for the simulated landscape pattern obtained using the LPSLO model and
the actual landscape pattern in the base year of 2014.

Ground Truth
Classification Farmland Orchard Forest Urban-Rural Residential

and Industrial-Mining Waters

Farmland 15,280 5218 71 405 83
Orchard 3770 75,499 3354 766 167
Forest 198 6505 7277 39 58

Urban-rural residential
and industrial-mining 468 1046 51 29,291 30

Waters 269 575 30 43 3574

4.1.2. Rationality of the Spatial Optimization Results

In order to analyze the rationality of the spatial optimization results, we compared the
characteristics of the current landscape pattern spatial status in the base year of 2014 with the
landscape pattern optimization spatial layouts for the target years of 2021 and 2028, where the changes
were analyzed according to the algorithm for the LPSLO model. As shown in Figures 2 and 7, Tables 6
and 7, the landscape pattern spatial optimization layout for each scenario in the target year exhibited
specific characteristics, as follows.

Under the economic development scenario, the landscape pattern spatial layout obtained by
the optimal schemes for the two periods indicated large increases in the urban-rural residential and
industrial-mining areas but large decreases in orchard, while the forest and waters areas increased
slightly and farmland decreased slightly. According to the algorithm in the LPSLO model, parts
of some landscape types with lower suitability would be adjusted for other landscape types with
higher suitability, while the optimized quantitative structure area for the former landscape type was
decreased in the target years compared with the area of the corresponding landscape types in the base
year, whereas the area for the latter landscape type in the target year was better than the area for the
corresponding landscape types in the base year. Thus, the urban-rural residential and industrial-mining
areas increased greatly compared with the corresponding area in the base year because the optimized
quantitative structure areas in the target years were greater than the corresponding area in the base
year. In addition, the orchard area decreased greatly because the optimized quantitative structure area
was smaller in the target years than the corresponding area in the base year. However, the optimized
quantitative structure areas for farmland in the target years were greater than those in the base year,
and the optimized quantitative structure areas for forest and waters were the same as those in the base
year, while the areas for farmland decreased slightly and the areas for forest and waters increased
slightly. This was probably because the objective function value was improved by reducing the area of
farmland and by increasing the areas for forest and waters according to the algorithm in the LPSLO
model, as well as due to the error caused by particles colliding during the flight process.

Under the ecological protection scenario, the optimized landscape pattern spatial layouts obtained
in the two periods indicated increases in the forest and urban-rural residential and industrial-mining
areas, but decreases in the farmland and orchard areas, while the waters areas were unchanged.
The optimized spatial areas for forest were increased compared with the corresponding area in the
base year. This was mainly because the optimized quantitative structure areas in the target year were
larger than the corresponding area in the base year, and thus other landscape types that were highly
suitable for conversion into forest landscape were converted by the algorithm in the LPSLO model.
Thus, the optimized spatial areas for orchard decreased because their optimized quantitative structure
areas in the target year were smaller than the corresponding area in the base year, and thus the low
suitability regions were converted into other landscape types by the algorithm in the LPSLO model.
However, similar to the farmland, forest, and waters types under the economic development scenario,
although the optimized quantitative structure areas for farmland were larger in the target years than
the base year and the areas for urban-rural residential and industrial-mining were also the same in
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the target years as the base year, the optimized spatial areas for farmland decreased and the areas for
urban-rural residential and industrial-mining increased.

Under the overall consideration scenario, the optimized landscape pattern spatial layouts in
the two periods indicated that the areas for urban-rural residential and industrial-mining and forest
increased greatly, whereas the areas for orchard and farmland decreased, while the waters areas were
unchanged, in the same manner as the ecological protection scenario. Given that the human demand
for landscape resources is unlimited, game selection among the various landscape types was necessary
during the spatial optimization process because of the finite amount of land to sustain landscape
resources. Therefore, the weights for the urban-rural residential and industrial-mining and forest types
shown in Table 4 were larger than those for other landscape types, and thus they were preferentially
increased in the specified area. Furthermore, waters had a low weight but there was little spatial
change in the areas for water areas because a protection strategy for water resources was considered in
the LPSLO model (Figure 2). In addition, the difference between the weights was slight for orchard and
farmland, but the orchard type decreased greatly, whereas the farmland type only decreased slightly.
This was mainly because the high suitability areas for orchard overlapped with those for forest in the
study area (Figure 6), and thus orchard was favored less by the game selection where forest had a
higher weight than orchard, so the spatial expansion of orchard decreased greatly.

4.1.3. Comparative Analysis of the LPOA Scheme Under Each Scenario

In order to conduct comparative analyses of the LPOA schemes under each scenario, we analyzed
the feasibility of the landscape pattern spatial allocation scheme for each scenario in the target years by
considering the actual status of socioeconomic development and ecological construction. The Chinese
economy has slowed down, but the overall economy and population of Longquanyi District will
continue to increase in the future because this area is located in a special location for economic growth,
i.e., a suburban area of Chengdu City, and it is the location of the high-end manufacturing industry
in Sichuan province. Population growth will inevitably lead to increases in the demand for land for
residential and public service uses as well as for economic development, which will increase the demand
for industrial land and ancillary land. Hence, the potential growth of urban-rural residential and
industrial-mining areas will be very high in this area in the future. Substantial increases in urban-rural
residential and industrial-mining areas will decrease the availability of other landscape resources,
including farmland, orchard, forest, and waters landscape types because of the finite availability of land
resources. However, the growth of forest and waters landscape types has greater ecological benefits
and Longquanyi is a National Ecological Demonstration Zone, so a decrease in ecological construction
efforts is unlikely, and thus potential decreases in the farmland and orchard landscape types are very
likely in the future. Under the economic development scenario for landscape patterns, we found that
the urban-rural residential and industrial-mining area increased greatly whereas the orchard area
decreased considerably in order to achieve the maximum economic benefit. However, the areas of
the forest, waters, and farmland landscape types changed little, especially forest, which has higher
ecological value and it increased slightly. This is inconsistent with the actual situation because the
growth of forest in this area has high potential. Thus, the feasibility of the schemes obtained under this
scenario may be lower in the future. Under the ecological protection scenario for landscape patterns,
the area of forest increased greatly when emphasizing the maximum ecological security level. However,
in this scheme, there was not an adequate supply of urban-rural residential and industrial-mining land,
which maintains steady economic growth, and this is inconsistent with the actual situation where a
substantial expansion of land allocated to urban-rural residential and industrial-mining is very likely.
Thus, the feasibility of the scheme obtained under this scenario is also less likely in the future. Under
the overall consideration scenario for landscape patterns, the scheme considered the supply of land
resources required to maintain economic growth as well as the ecological resources required to improve
the quality of the environment, so there were adequate allocations to the urban-rural residential and
industrial-mining landscape type to maintain economic growth and to the forest landscape type to
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preserve ecological security. This scheme agrees with the likely changes in the regional landscape
as well as providing appropriate allocations to meet the actual needs of economic development and
ecological construction in the study area. Thus, the scheme obtained under this scenario is the most
likely compared with the other two schemes and it is the optimal scheme for determining the future
landscape pattern spatial layout in the study area.

4.2. Discussion of the Potential Usefulness of the LPOA Model

4.2.1. Useful Results obtained from the Application of the LPOA Model

Three useful results were obtained from the application of the LPOA model, i.e., a planning concept
for balancing economic and ecological benefits, a planning strategy that considers both quantitative
structure optimization and spatial layout optimization, and a planning strategy that closely connects
the theoretical model with the actual region, and these results provide a useful reference for formulating
related spatial planning activities, including landscape pattern planning, land use planning, and urban
planning in other regions.

First, the conflict between economic development and ecological protection has become
the principal contradiction that affects sustainable development in human society. During the
modernization process throughout the world, many disasters have been caused by ignoring ecological
protection while focusing on economic construction, such as nuclear pollution, air pollution, ocean
pollution, rainforest felling, and industrial mining. However, the desire for a better life is the tireless
pursuit of humanity. We cannot stop economic development to protect the ecological environment or
seek economic development at the expense of the environment. Thus, balancing the conflict between
the needs of economic development and ecological protection is a major problem which must be solved
urgently to allow the sustainable development of human society. The LPOA model optimization
results confirmed that LPOA, by balancing economic and ecological benefits, is an effective approach
for mitigating conflicts between economic development and ecological protection from the perspective
of spatial planning. This planning concept can provide a useful reference for other regions when
conducting landscape pattern planning, land use planning, urban planning, and other related spatial
planning processes.

Second, in the past, when we formulated spatial planning processes such as land use planning and
urban planning, we attached great importance to planning and forecasting the resource quantity in the
target year, whereas we often ignored the rational spatial allocation of resources, thereby making some
plans difficult to implement because spatial optimization allocation planning was ignored. The LPOA
model achieves a successful planning strategy by effectively coupling the landscape quantity structure
with the spatial layout during the LPOA process. Other regions can employ this planning strategy to
guide the preparation of landscape pattern planning, land use planning, urban planning, and other
related forms of spatial planning.

Third, many spatial optimization models were mentioned above, but most are difficult to apply
directly for practical planning. This is mainly because some optimization models fail to consider
macrofactors, including social, economic, policy, system, and other factors, and thus the optimization
results are far from reality and difficult to implement. During the LPOA process, the LPOA model
first formulates large urban built-up areas and waters as priority planning areas, before applying
the optimization model to spatially optimize the allocation of the landscape pattern in other areas,
thereby allowing the effective combination of macrofactors and theoretical models. This approach
is universal because when formulating similar types of spatial planning in other regions, specified
unadjusted areas (e.g., ecological protection and basic farmland protection zones) can be planned as
priority planning zones and the other areas can be subjected to spatial layout optimization allocation
using the optimization model, thereby ensuring a close connection between the theoretical model and
the reality in the region.
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4.2.2. Beneficial Contributions of the LPOA Model

The LPOA model addresses three problems related to the current spatial optimization
decision-making methods, such as neglecting the coupling between quantitative structure optimization
and spatial layout optimization, ignoring the macrofactors that affect landscape patterns when
optimizing modeling, and initializing particles without considering the suitability of the landscape. Our
proposed LPOA model is beneficial because it can complement the simulation of spatial optimization
allocation processes, such as LPOA, land use spatial allocation, urban space optimization allocation.

First, the key to establishing the LPOA model is integrating the landscape optimal area, landscape
suitability, and macrofactors (e.g., social, economic, policy, and system factors) in order to conduct
the LPOA to maximize the landscape benefits. We established a new LPOA model for optimizing
the allocation of the landscape spatial pattern by integrating the landscape optimal area, landscape
suitability, and macrofactors that influence landscape patterns in order to maximize the economic,
ecological, and comprehensive benefits of landscape patterns. The optimal landscape areas in various
landscape types are optimized with the LPQSO model based on NP. The suitability of each landscape
type is then calculated with the LSE model based on BLR. The macrofactors that affect landscape
patterns are combined with the LPOA models by setting model constraint conditions and priority
planning areas. A PSO evolutionary algorithm is then embedded into the LPSLO model in order
to integrate the results obtained by the LPQSO and LSEs, thereby establishing an LPOA model and
algorithm to address the problems caused by ignoring the coupling between quantitative structure
optimization and spatial layout optimization, the macrofactors that affect landscape patterns when
optimizing modeling, and the suitability of landscape types, as found in previous studies.

Second, based on raster data, the focus when optimizing the landscape pattern spatial layout
using PSO is how to use the positions of particle elements to simulate the spatial positions of cells
for landscape type raster graphics, and establishing the spatial mapping of the relationships between
landscape type raster graphics and particles. We assume that the matrix denotes the landscape type
raster map and the matrix element value denotes the pixel attribute value of the landscape type raster
map. The matrix is abstracted as a particle that corresponds to a landscape pattern spatial layout
scheme. The matrix element value is abstracted as particle element that corresponds to a landscape
type code. According to the principle of the PSO algorithm, we can program using the powerful matrix
operation capability in MATLAB software to simulate the particle flight process to search for the best
scheme for the landscape pattern spatial layout, i.e., a matrix element value moves from one location
to another by adjusting its row and column numbers to form a new matrix (a new landscape pattern
spatial layout scheme). Thus, the LPSLO is obtained successfully when the new matrix corresponding
to the landscape pattern spatial layout achieves the maximum optimization objective. The type and
number of the particle element (landscape type code) comprising the particle (landscape pattern
spatial layout scheme) will never change in terms of its spatial position. Therefore, according to
the landscape suitability and landscape type conversion rules, we generate an initial particle with
an element number equal to the grid number for the optimal area of the corresponding landscape
type based on the landscape type raster map in the base year, which effectively combines landscape
pattern quantity structure optimization and spatial layout optimization, as well as skillfully integrating
the landscape suitability evaluation results during the optimization of the landscape spatial layout.
Therefore, this approach successfully overcomes the problem of neglecting the coupling between
quantitative structure optimization and spatial layout optimization for the landscape pattern, as well
as addressing the problem of ignoring the landscape suitability when initializing particles.

Third, during the establishment of the spatial mapping relationship between the landscape type
raster graphics and particles, we first set the code value of landscape type in the priority planning area
as negative values (e.g., setting the code value for urban-rural residential and industrial-mining as −4
or setting the code value for waters as −5), and encode the landscape type code values in other areas
as positive values (e.g., setting the code values for farmland, orchard, forest, urban-rural residential
and industrial-mining, and waters as 1, 2, 3, 4, and 5, respectively). We then define the elements
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with codes that have positive values as the valid elements and store them as vector quantity data
structures denoting a particle, whereas we define the elements with codes that have negative and null
values as invalid elements that do not map to particles, i.e., the invalid elements will not participate
in the optimization allocation for the spatial locations. Thus, after each iterative computation of the
particles, we amalgamate the landscape pattern spatial layout corresponding to the invalid elements
in the priority planning area with the landscape pattern spatial layout searched for by the flight of
the particles, and then calculate the particle fitness based on the merged spatial layout to obtain the
optimal scheme of LPOA for the entire area. Therefore, this approach allows the effective combination
of the spatial optimization model and macroscopic factors, such as society, economy, policy, and system
factors, as well as successfully addressing the problem of coupling macroscopic factors that affect the
landscape pattern with the spatial optimization model.

5. Conclusions

In this study, we proposed a new composite model called the LPOA model for optimizing the
spatial allocation of a landscape pattern, which aims to solve a set of optimal problems in LPOA, such
as neglecting the coupling between quantitative structure optimization and spatial layout optimization,
ignoring the macrofactors that affects landscape patterns during optimization modeling, and initializing
particles without considering the suitability of the landscape. The LPOA model mainly comprises LSEs,
LPQSO, and LPSLO, where it successfully integrates BLR and NP with PSO, thereby overcoming the
problem of optimizing either the quantitative structure or the spatial layout of the landscape pattern,
as found in previous studies, as well as addressing the problem of ignoring the landscape suitability
and macrofactors that influence the landscape pattern during the LPOA process. The model proposed
in this study is a beneficial and useful complement to methods for simulating the spatial optimization
allocation, such as LPOA, land use spatial allocation, and urban space optimization allocation, thereby
providing a useful reference for formulating related spatial planning processes, including landscape
pattern planning, land use planning, and urban planning, in other regions.

We employed the LPOA model to optimize the landscape pattern for the target years of 2021
and 2028 in Longquanyi District. We found that the LPOA model could simultaneously optimize the
quantitative structure and spatial landscape pattern, as well as effectively integrating the landscape
suitability and relevant factors that influence landscape patterns, such as social, economic, policy,
and system factors. Moreover, the LPOA model could optimize the landscape pattern in terms of its
quantitative structure, spatial layout, and benefits, where we established optimized landscape pattern
schemes under economic development, ecological protection, and overall consideration scenarios. The
model significantly improved the overall economical, ecological, and comprehensive benefits of the
landscape pattern. In addition, we assessed and analyzed the accuracy and rationality of the spatial
optimization results, where we found that the overall accuracy of the spatial optimal results was
84.98% with a Kappa coefficient of 0.7587. This indicates that performance of the LPSLO model was
good and the application of this model can satisfy the demands for LPOA under multiple constraints.
Furthermore, the results obtained by the simulated scheme were consistent with the actual situation.
The proposed model can provide support and a scientific basis for regional landscape pattern planning,
land use planning, urban planning, and other related spatial planning.

LPOA is a complex and multiobjective decision-making process. In this study, we present a
new LPOA model that integrates LSE and LPQSO models with an LPSLO model based on the grid
units in a landscape type raster map. Our results demonstrated that this model can achieve LPOA by
simultaneously combining the quantitative structure optimized using the LPQSO model, the spatial
layout optimized using the LPSLO model, the landscape suitability obtained using the LSE model, as
well as the macrofactors that affect landscape patterns, including social, economic, policy, and system
factors. However, the number of calculations required by this model and the runtime of the algorithm
increase with the resolution of the raster images or the size of the study area, so it is necessary to
select a raster map with an appropriate resolution according to the study area size and research scale
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before conducting spatial optimal decision making with this model. Furthermore, by considering the
coupling of the objective functions for both the LPQSO and LPSLO models, as well as the efficiency of
the algorithm, the proposed model does not include particle collision constraints. The relative error in
the calculation results is acceptable for macroplanning in terms of regional landscape security patterns.
Nevertheless, it is necessary to specify particle collision constraints after resolving the coupling problem
between the objective functions for LPQSO and LPSLO, as well as improving the efficiency of the
algorithm for the LPOA model when conducting detailed planning and design for landscape patterns
and other related spatial planning.
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