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Abstract: The aim of this research is to explore the volatility contagion among different agricultural
commodity markets. For this purpose, this research make use of the copula-GARCH (Generalized
Autoregressive Conditional Heteroskedasticity) model for the daily spot prices of six major agriculture
grain commodities including corn, wheat, soybeans, soya oil, cotton, and oat over the period from 2000
to 2019. Our results provide evidence that significant contagion effects and risk transmissions exist
among different agricultural grain commodity markets, suggesting that potential speculation effects
on one agricultural market could be contagious for another agricultural market and result an increase
in volatility in agricultural product markets. Second, agricultural commodities appears to co-move
symmetrically. We also find substantial extreme co-movements among agricultural commodity
markets. This indicates that agricultural commodity markets tend to crash (boom) together during
extreme events. Moreover, after the food crisis, contagion effects and risk transmissions among
different agricultural commodity markets increased substantially. Fourth, we find that the strongest
contagion effects and risk transmissions are between corn and soybeans, and the weakest contagion
effects and risk transmissions are between soya oil cotton and between cotton and oat. Last, we
document that the co-movement varies over time. Our findings hold important implications for
modeling the co-movement by the copula-GARCH approach.

Keywords: GARCH model; copula; tail dependence; co-movement; agricultural commodity markets

1. Introduction

With recent surges in agricultural commodity prices and price volatilities, academics, policymakers,
investors, farmers, and consumers have been paying more attention to agricultural commodity markets.
Moreover, since 2000, the prices of agricultural commodities have experienced long-term and sharp
fluctuations. In particular, from 2006 onward, the international price of major agricultural commodities
has exhibited a substantial tendency to rise. The prices of agricultural commodity surged and
experienced sharp fluctuations in 2013 and 2014. Thereafter, the price of agricultural products showed
a downward trend in 2015–2016, and then there was a significant stagnation. The observed fluctuations
in agricultural commodity prices could be interpreted by some external factors such as macroeconomic
uncertainties, agricultural production, financial crises, huge and persistent demand, biofuels demand,
different stock market phases, and climate warming. In addition, it can be explained by the interaction
and contagion among agricultural commodity markets, as studied in this paper.
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Several research studies have been done on using external factors and applying GARCH models
to study agricultural commodity markets. For example, applying both GARCH models to research
volatility in agricultural commodity markets, Giot [1] employs stochastic volatility models to analyze
the spillover of speculation and volatility between agricultural commodity and crude oil markets.
Du et al. [2] researched volatility spillover among the corn, crude oil, and wheat in late 2016. Gardebroek
and Hernandez [3] find a cross-volatility effect from ethanol corn to markets by a multivariate GARCH
approach. Employing a VAR-GARCH model to research relationship and volatility spillovers between
the Standard and Poor (S&P) 500 and commodity (beverage, wheat, gold, and crude oil) prices, Mensi
et al. [4] document a significant interaction between the S&P 500 and commodity markets. Applying
both EGARCH (Exponential GARCH, is also Exponential Generalized Autoregressive Conditional
Heteroskedasticity) and BEKK-MVGARCH (Baba, Engle, Kraft and Kroner-Multivariate GARCH)
models to investigate spillovers of volatility among corn, crude oil, and fuel ethanol markets in China,
Haixia and Shiping find volatility spillovers between corn and fuel ethanol markets [5]. Mensi et al. [6]
find dynamic spillovers between the energy and cereal markets. Wang and McPhail [7] find an energy
price shock and an agricultural productivity shock account for U.S. agricultural commodity price
volatility employing a SVAR model. Algieri [8] finds that the Standard and Poor (S&P) 500 has a positive
impact on the increase of the commodity returns, while the US/Euro exchange rates negatively affect
commodity prices. Bonato [9] applies the Beta GARCH model to find that agriculture commodities
increase correlation with oil. Shahzad et al. [10] provide the evidence that there exists tail dependence
between oil prices and the price of agricultural commodities. Ji et al. [11] also finds the risk spillover
between energy and agricultural commodity markets by a GARCH-CoVaR-copula model (Conditional
Value at Risk copula model). Yahya et al. found the temporal and spectral dependence between
crude oil and 10 major agricultural commodities [12]. Shiferaw [13] applies Bayesian multivariate
DCC-GARCH (Dynamic Conditional Correlation GARCH) models to research the correlation between
prices of agricultural commodities and energy, finding that agricultural commodity and energy markets
exhibit strong co-movement. Nicola et al. [14] use a multivariate GARCH model to investigate
co-movement among energy, agricultural, and food commodity markets, finding high correlation
among major energy, agricultural, and food commodity price returns.

However, there has been very little work done to study dependence or co-movement between
agricultural commodity markets. The copula-GARCH approach has been found to be useful in
investigating the dependence or the co-movement of different series; thus, it has become popular. For
example, Garcia and Tsafack [15] use the model to analyze international equity and bond markets
and find that there are strong dependencies among different international assets of the same type
but weak dependence between equities and bonds. Using the model, Yang and Hamori [16] imply
gold prices and exchange rates have asymmetric dependence and that tail dependence is stronger in a
normal period than during a period of financial turmoil. Benlaghab [17] points out that four French
nominal and index-linked bonds possess dynamic correlation and asymmetric dependence. Chebbi and
Hedhli [18] find strong dependence in Tunisian–French and American–French markets. Tang et al. [19]
examine the co-movement between tourism demand and the exchange rate using copula-GARCH
models, finding that the tail dependence and dynamic dependence improve the model’s explanatory
ability. Aloui and Jammazi [20] apply a wavelet-based approach to analyze dependence between
crude oil and the exchange rate, and Shahzad et al. [21] examine the risk contagion of Greece stock
markets and other European country stock markets. Moreover, using time-varying copula models,
Han et al. [22] find dependence among a mixed-asset portfolio. Boubaker and Raza [23] find a strong
and asymmetric dependence between USA equity markets and CEE equity markets (three Central and
Eastern Europe equity markets). Koirala et al. [24] find that agricultural commodity and energy future
prices exhibit strong dependence.

There are very few research studies on the application of the copula-GARCH approach in
agricultural commodity markets. Among them, Reboredo [25] investigates the dependence between
agricultural commodity prices and oil price. Delatte and Lopez [26] identify the co-movement structure
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between commodity and stock markets, while Sriboonchitta et al. [27] document dependence between
agricultural prices and production indices in Thailand. As far as we know, there is no previous study
that applies the copula-GARCH approach to analyze the nature of agricultural commodity markets.
To bridge the gap in the literature, we employ the copula-GARCH approach to investigate dependence
and asymmetric co-movements among different agricultural commodity markets in this paper. To do
so, we first specify a model of the marginal distribution of the return on each main agricultural
commodity and a joint model for co-movement (The methodology we applied in this paper is to
analyze the co-movement between variables, which is also called dependence. We use both terms in
this paper.). We the first employ the ARMA-GJRGARCH (Autoregressive moving average-Glosten,
Jagannathan and Runkel’s GARCH) model to estimate the heteroscedasticity and other features of the
marginal distribution for the return on each agricultural commodity. Thereafter, we employ several
static copulas to examine dependence structures and tail dependence and use the dynamic copulas to
capture time-varying dependence. Employing daily data from 3 January 2000 to 30 September 2019,
we find significant dependence among different agricultural commodity markets. More interestingly,
we notice that there are symmetric extreme co-movements among different agricultural commodity
returns, indicating that the agricultural commodity markets being studied in this paper boom and crash
together. In addition, we document that the co-movement and extreme co-movement are stronger
after the food crisis than before the crisis, which imply a contagion effect enhancement after food
crises. Finally, the empirical results show that the dependence changes over time. Our findings hold
important implications for modeling the co-movement by the copula-GARCH approach.

The organization of this research is as follows. The data and the copula-GARCH approach are
presented in Section 2. Section 3 describes the empirical study, and Section 4 presents drawn inferences
on policy making from our findings. The last section provide some concluding remarks.

2. Data and Methodology

2.1. Data

In this paper, we investigate whether there is any contagion effect between any pair of the six
agriculture grain commodities, namely, corn (No. 2 Yellow US), wheat (No. 2 Soft Red), soybean (No.
1 Yellow US), soya oil (Crude Decatur), oats (No. 2 Milling Minneapolis), and cotton( Low -Midl). We
choose the daily closing spot price Pt at time t for any of the six agriculture commodities in our study.
The data being used in our study are from 1 January 2000 to 30 September 2018, which were obtained
from Thomson Reuters. In this paper, we will analyze the behaviors of the log-return rt = ln(Pt/Pt−1)

of the daily closing spot price Pt for any of the agriculture grain commodities.

2.2. Copula Function

A copula is a multivariate cumulative distribution function (CDF) of several random variables
with uniform marginal distributions to capture the dependence or co-movement among the variables.
Since our paper only studies the relationship between two variables, we only discuss the bivariate case
in this paper as follows: we let r1 and r2 be the log-returns of daily agriculture prices in two different
markets with marginal distributions F1 and F2 with joint distribution F12 (Sklar [28]). Then, there
exists a copula C: [0, 1]2 → [0, 1] such that

F12(r1, r2) = C(F1(r1), F2(r2)). (1)

Copula C that could be used to measure the dependence between the variables r1 and r2.
In addition, the copula could be used to characterize the tail dependence such that it can measure the
probability of the variables to be jointly in the lower (left) or upper (right) tails. We call the dependence
measures of the two tails the lower (left) or upper (right) dependence parameters, denoted by λU and
λL such that

λU = limu→1Pr
[
r2 ≥ F−1

2 (r2)
∣∣∣r1 ≥ F−1

1 (r1)
]

(2)
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λL = limu→0Pr
[
r2 < F−1

2 (r2)
∣∣∣r1 < F−1

1 (r1)
]
.

λL > 0 implies that the random variables have lower tail dependence, while λU > 0 shows that
variables have upper tail dependence. These suggest that a non-zero probability of observing an
extremely low (large) return of one series is associated with an extremely low (large) volatility of the
other series in this research. Moreover, tail dependence is called symmetric if the lower tail dependence
is equal to the upper tail dependence parameter; otherwise, it is asymmetric.

2.3. Marginal Distribution of Agricultural Commodity Returns

Daily agricultural commodity returns have a tendency to show the characteristics of heteroskedastic,
clustered, fat-tailed, and asymmetric leverage volatility. As a result, the (log) return of agricultural
commodity rt can be estimated by the following ARMA (k, r) –GJRGARCH (1, 1) model:

rs,t = cs,0 +
k∑

i=1

φs,irs,t−i +
r∑

j=1

θs,jes,t−j + es,t

es,t =

√
hs,t(dfs − 2)

dfs
zs,t, zs,t ∼ Skt(zs,t/ξs, λs) tdfs (3)

hs,t = ωs + αse2
s,t−1 + γsIs,t−1e2

s,t−1 + βshs,t−1

where es,t denotes the random error, hs,t is the conditional variance of volatility of es,t , φs,i stands
for the ith lag autoregressive (AR) parameter, αs denotse the ARCH parameter associated with e2

s,t−1,
and βs denotes the GARCH parameter associated with hs,t−1. The asymmetric effect is captured by
the coefficient γs, and Is,t−1 is an indicator function taking the value of one if es,t−1 < 0 and zero
otherwise. In addition, we assume that ωs > 0, αs,βs ≥ 0,α + γ ≥ 0, and αs + βs + γs/2 < 1
to ensure that variance process is positive and stationary. Moreover, the standardized residual zs,t is
skewed t-distribution with λs degrees of freedom.

2.4. The Static Copulas

This paper adopts static Gaussian copula, Student-t copula, Clayton copula, and Gumbel copula
to investigate the dependence and tail dependence between any two agriculture markets. The different
copula models are briefly shown as follows.

The Gaussian copula (Embrechts et al. [29]) is

CGau
ρ (u, v |ρ ) = Φρ

(
Φ−1(u), Φ−1(v)

)
(4)

where u and v stand for the CDFs of the standardized residuals from the marginal models discussed
in Section 2.3, in which the values of both u and v in [0,1] Φρ are the bivariate standard normal
distribution function with correlation ρ ∈ (−1, 1).

The Student-t copula (Embrechts et al. [29]) is

CStu
ρ (u, v|ρ , n) = tρ,n

[
t−1
n (u), t−1

n (v)
]

(5)

where tn is the univariate Student-t distribution with n degrees of freedom (DoF), and tρ,n is the
bivariate Student-t distribution with n DoF and correlation ρ ∈ (−1, 1). The parameters of n and ρ
determine the extent of the symmetric extreme dependence by the upper and lower tail dependencies,

λL and λR, such that λL = λR = 2tn+1

(
−

√
n+1

√
1−ρ

√
1+ρ

)
> 0.

The Gumbel copula (Gumbel [30]) is asymmetric and is defined as

CGum
τ (u, v|τ ) = exp

{
−(ũτ + ṽτ)1/τ

}
(6)
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where ũ = − ln(u), ṽ = − ln(v), and τ ∈ [1,+∞) measures the dependence between u and v. It has
a higher probability concentration in the upper tail with dependence λU = 2 − 2

1
τ > 0, while the

probability of dependence in the lower tail is zero; that is, λL = 0.
The Clayton copula (Clayton [31]) is also asymmetric and it is defined as

CClay
τ (u, v|τ ) = (u−τ + v−τ − 1) −1/τ (7)

where τ ∈ [0,+∞) measures the dependence between u and v. Different from the Gumbel copula, it
has a higher probability concentration in the lower tail with lower tail dependence λL = 2−1/τ>0.
Moreover, the probability of dependence in the upper tail is zero; that is, λU = 0.

2.5. The Time-Varying Copula

In order to get the dynamic dependence, this research use Equation (8) to do, which as follow:

ρt = Λ(αc + βcρt−1 + γc(µt−1 − 0.5)(vt−1 − 0.5)) (8)

where Λ(xt) = − ln[(1− xt)/(1 + xt)] is to ensure that the dynamic dependence parameter, ρt, falls
within the interval (–1, 1), 0 ≤ βc < 1, captures the persistence effect from ρt−1, αc is a constant term
such that αc > 0 indicating that there is a significant positive copula, and γc is a latent parameter that
displays whether the return information from the previous period contributes to the copula.

2.6. Estimation and Calibration of the Copula

The canonical maximum likelihood (CML) method is adopted to obtain the CML estimate θ̂CML

of the parameter θ for different copulas in our study. To do so, we first obtain the estimates F̂1 and F̂2

for the CDFs, F1 and F2, from the observations x1 and x2. We denote them as û and v̂ such that:

û = F̂1(x1) =
1

T + 1

∑T

s=1
Ixs≤x1 and v̂ = F̂2(x2) =

1
T + 1

∑T

s=1
Ixs≤x2 (9)

where T is the number of observations and I is the indicator function with

I(expression) =

{
1 if expression is true
0 if expression is false.

Thereafter, we apply the following equation to obtain the CML estimate θ̂CML of the parameter, θ,
for the copulas discussed in Sections 2.5 and 2.6:

θ̂CML = arg max
∑T

t=1
lnc(û, v̂; θ) (10)

where θ is an unknown copula parameter, including the dependence ρt, τt and n degrees of freedom
for the copulas discussed in Section 2.5.

3. Empirical Results

3.1. Preliminary Study

Before we apply the approaches we described in the methodology section to the data, we first
conduct some simple analysis to explore the nature of the data. To do so, Figure 1 show the plot of the
daily prices of corn, wheat, soybeans, and oats. From the figure, we obtain the following observations:
first, the price movements of corn, wheat, soybeans, and soya oil are similar and highly correlated.
Second, prices spike in both 2008 and 2011. For example, we note that academics such as Abbott
et al. ([32]) believe that the major drivers of the spikes in agricultural commodity prices in both 2008
and 2011 are the persistent shocks stemming from demand for biofuels, Chinese soybean imports,
weather conditions, and stock levels. Third, the prices of the four agricultural commodities start to
rise in 2006. This is due to the food price crisis during 2006–2008. In order to account for the impact
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of the food crisis on the prices of the commodities, we divide the full sample into two parts: the
pre-crisis period, which is from 3 January 2000 to 31 December 2005, and the crisis and post-crisis
period, which is from 1 January 2006 to 30 September 2019. To avoid confusion, we will refer to the
crisis and post-crisis period as the post-crisis period.
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Figure 1. Dynamics of daily agriculture commodity prices in 1999–2013.

This paper will analyze the behaviors of the log-return, rt, of the price of an agricultural
commodity at day t. We exhibit the descriptive statistics in Table 1. Comparing the descriptive
statistics of the returns for the agricultural commodity prices in the two periods, we have the following
observations: (1) The mean returns of both soya oil and oat (but not significantly higher) in the
post-crisis period. On the other hand, the mean returns of both cotton and soya oil are smaller (but
not significantly smaller) in the post-crisis period. The results of the t test lead us to conclude that
the mean returns of all the commodity prices being studied in the paper in both the pre- and the
post-crisis periods are not rejected to be the same. (2) The estimates of the skewness for the returns
of all the commodities are significant in both the pre- and post-crisis the periods except for corn
in the pre-crisis period. (3) The returns of all the commodities in both periods have significantly
large kurtosis, indicating that all distributions are fat-tailed. (4) The results of the Jarque–Bera test
strongly reject the assumption of normal distribution for the returns of all the commodities in both
periods. (5) There are significant ARCH (Autoregressive conditional heteroskedasticity) effects in all
agricultural commodity returns in both periods. (6) Finally, both ADF (Dickey and Fuller [33]) and
KPSS (Kwiatkowski et al. [34]) tests suggest that the returns of all the commodities in both periods
are stationary.

Table 1. Descriptive Statistics for agriculture commodity price returns.

Corn Wheat Soybeans Soya Oil Oat Cotton

Panel A: pre-crisis

Mean 2.32× 10−5 1.01× 10−4 7.80× 10−5 9.34× 10−5 1.74× 10−4 1.11× 10−5

Maximum 0.0305 0.0438 0.0261 0.0348 0.1034 0.0414
Minimum −0.0320 −0.0401 −0.0727 −0.0348 −0.1033 −0.0414
Std. Dev. 0.0069 0.0087 0.0071 0.01205 0.0104 0.0097
Skewness −0.0081 0.2165 ** −1.0887 ** −0.0045 −0.1344 * 0.1193 *
Kurtosis 4.7120 ** 5.4847 ** 13.839 ** 5.4201 ** 23.499 ** 4.6313 **

JB 191.0211 ** 414.5361 ** 7965.4680 ** 381.6715 ** 27387.5100 ** 177.1336 **
ADF −39.9734 ** −40.9156 ** −42.1857 ** −27.6548 ** −42.4205 ** −23.9698 **
KPSS 0.0679 0.0548 0.0810 0.1145 0.0784 0.0918

ARCH (10) 74.7720 ** 71.4740 ** 57.4640 ** 32.8610 170.5200 ** 22.7650 *
LB (10) 0.0908 0,0126 0.0235 0.0000 0.0016 0.0004
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Table 1. Cont.

Corn Wheat Soybeans Soya Oil Oat Cotton

Panel B: post-crisis

Mean 7.65× 10−5 4.65× 10−5 4.67× 10−5 3.91× 10−5 4.13× 10−5 2.17× 10−5

Maximum 0.0473 0.1037 0.0329 0.0414 0.1099 0.0395
Minimum −0.0527 −0.1071 −0.0556 −0.0367 −0.1112 −0.0452
Std. Dev. 0.0084 0.0115 0.0068 0.0082 0.0104 0.0081
Skewness −0.1833 ** −0.2507 ** −0.5861 ** 0.0907 ** −0.2322 ** −0.0497 **
Kurtosis 6.2765 ** 12.1069 ** 8.0658 ** 4.2983 ** 25.6142 ** 4.8712 **

JB 1624.2230 ** 12429.6500 ** 4039.7430 ** 256.7899 ** 76444.8100 ** 524.6991 **
ADF −59.9848 ** −66.2518 ** −61.0212 ** −70.52158 ** −29.8184 ** −62.11608 **
KPSS 0.2087 0.0848 0.2167 0.2093 0.0596 0.1021

ARCH (10) 106.7805 ** 387.6200 ** 296.9900 157.3300 ** 618.0300 ** 407.9600 **
LB (10) 0.0251 0.0000 0.0387 0.0000 0.0000 0.0181

Note: Both D’Agostino and Anscombe–Glynn tests are used to test for no skewness (H0: skewness = 0) and no
kurtosis (H0: kurtosis = 3), respectively. JB is Jarque Bera, which is χ2 statistics for the test of normality. ADF and
KPSS are augmented Dickey–Fuller test and Kwiatkowski–Phillips–Schmidt–Shin test for test of stationary. ARCH
(q) is Engel’s LM test for heteroskedasticity, conducted using q lags. ** and * denote rejection of the null hypothesis
at the 1% and 5% significance levels, respectively. This table reports the p-values of the Ljung–Box (LB) statistic to
test whether there is any serial dependence in the series.

3.2. Correlation Analysis

We turn to studying correlations for any pair of returns from the four agricultural commodities
being studied in this paper. The results are presented in Table 2 show that all the correlations are
significantly positive except for the correlations between oat and cotton in pre-crisis period. The
positive Kendall’s tau implies that the probability of concordance is significant among returns of
six agricultural commodities. Likewise, there exist strong rank correlations between agricultural
commodity markets. Moreover, the table shows that the conclusions drawn from all the correlations
are consistent. It shows that corn and soybeans have the strongest dependence, followed by corn and
wheat, while wheat and oats have the least dependence. Last, we find that the relationship between
agriculture commodities has strengthened since the advent of the food crisis from 2006 onward.

Table 2. Unconditional correlation measures.

Pearson
Correlation

Kendall’s
Tau

Spearman’s
Rho

Pearson
Correlation

Kendall”s
Tau

Spearman’s
Rho

Panel A: Pre-Crisis Panel B: Post-Crisis

Corn and Wheat 0.4176 ** 0.3151 ** 0.4431 ** 0.5080 ** 0.3810 ** 0.5253 **
Corn and
Soybeans 0.5003 ** 0.3756 ** 0.5141 ** 0.5695 ** 0.3887 ** 0.5345 **

Corn and Soya
oil 0.2801 ** 0.2331 ** 0.2955 ** 0.3275 ** 0.2232 ** 0.2917 **

Corn and Oat 0.2424 ** 0.2386 ** 0.3328 ** 0.3108 ** 0.2855 ** 0.4023 **
Corn and Cotton 0.1098 ** 0.0931 ** 0.1253 ** 0.2320 ** 0.1490 ** 0.2043 **

Wheat and
Soybeans 0.3103 ** 0.2343 ** 0.3361 ** 0.3720 ** 0.2566 ** 0.3643 **

Wheat and Soya
oil 0.1803 ** 0.1526 ** 0.1967 ** 0.2569 ** 0.1852 ** 0.2430 **

Wheat and Oat 0.1585 ** 0.1672 ** 0.2378 ** 0.2151 ** 0.2195 ** 0.3117 **
Wheat and

Cotton 0.0818 ** 0.0620 ** 0.0862 ** 0.2012 ** 0.1304 ** 0.1786 **

Soybeans and
Soya oil 0.4098 ** 0.3320 ** 0.4227 ** 0.5075 ** 0.3808 ** 0.4895 **

Soybeans and
Oat 0.2135 ** 0.2107 ** 0.2976 ** 0.2329 ** 0.2034 ** 0.2921 **
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Table 2. Cont.

Pearson
Correlation

Kendall’s
Tau

Spearman’s
Rho

Pearson
Correlation

Kendall”s
Tau

Spearman’s
Rho

Panel A: Pre-Crisis Panel B: Post-Crisis

Soybeans and
Cotton 0.1356 ** 0.1117 ** 0.1539 ** 0.2538 ** 0.1535 ** 0.2104 **

Soya oil and Oat 0.0704 ** 0.1016 ** 0.1277 ** 0.1220 ** 0.1239 ** 0.1623 **
Soya oil and

Cotton 0.0809 ** 0.0892 ** 0.1068 ** 0.2015 ** 0.1426 ** 0.1782 **

Oat and Cotton 0.0163 0.0124 0.0167 0.1196 ** 0.1048 ** 0.1436 **

Note: * and ** denote rejection of the null hypothesis at the 1% and 5%significance levels, respectively.

3.3. Marginal Models

We apply the ARMA (k, r)–GJRGARCH (1, 1) model discussed in Section 2.4 to estimate the
marginal distribution of the return for each of the agriculture commodities in the two periods by
employing maximum likelihood estimation. We consider different combinations of k and r in the
estimation and use the AIC (Akaike information criterion) to select the best model and present
the results in Table 3. For the pre-crisis period, we find that the ARMA (0, 0)–GJRGARCH (1, 1)
specification is the best model for corn, wheat, soya oil, and oats, and the ARMA (1, 0)–GJRGARCH
(1, 1) is the best model for soybeans and cotton. For the post-crisis period, the best model for corn and
oats is ARMA (0, 0) GJRGARCH (1, 1), and the best model for wheat, soybeans, soya oil, and cotton
is ARMA (1, 0)–GJRGARCH (1, 1). In both periods, the estimates of the GARCH parameter βs are
highly significant in all series, suggesting that the volatility at time t depends on the volatility at time
t-1. On the other hand, the estimates of the ARCH parameter αs are significant in all series, except
for wheat and corn in the pre-crisis period, indicating that the volatility of the returns on all of the
series except for wheat and corn in the pre-crisis period at time t depends on the innovation at time t-1.
In the pre-crisis period, volatility asymmetry γs is negative significant in the returns of corn, soybeans,
and soya oil, showing that corn, soybeans, and soya oil have a significant leverage effect whereby
in general, good news has a greater impact on the conditional variance than bad news. Meanwhile,
volatility asymmetry γs is positive significant only in the returns of wheat and cotton, showing that
both wheat and cotton have the significant leverage effect whereby in general, bad news has a greater
impact on the conditional variance than good news. In the Post-Crisis, volatility asymmetry γs is
negative significant only in the returns of soya oil and oat, showing that both soya oil and oat have
a significant leverage effect whereby in general, good news has a greater impact on the conditional
variance than bad news. Last, the ARCH (10) statistic suggests that an ARCH effect does not exist in
the residuals of the returns of all the agriculture commodities being studied in this paper.

After fitting various ARMA-GARCH models for the returns of the agriculture commodities, we
obtain the corresponding standardized residual zs,t, which is then transformed into the variates ûs,t,
using the CDF. Patton [35] points out that the probability integral transform of variates ûs,t must
be an independently and identically distributed (iid) uniform random variable of range [0,1]. If the
probability integral transform of variate ûs,t is not iid uniform (0,1), then the copula models cannot be
used to model the residuals. Thus, to ensure that copula models can be used, the Ljung–Box (LB) test
is used to examine the serial correlation under the null hypothesis of serial independence; then, we
apply the Kolmogorow–Smirnov (KS) test to test the null hypothesis that ûs,t is distributed as uniform
(0,1). Table 4 reports these two test’s P-values. The results of the LB tests imply that all of the first
four moments are serially independent, while the results of the KS test indicate that all the series are
distributed as uniform (0,1). The results imply that the copula method could be applied to capture the
tail dependence and dependence for each pair of agricultural commodity returns.
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Table 3. Estimated parameter of the agriculture commodity returns for the marginal model.

Corn Wheat Soybeans Soya Oil Oat Cotton

Panel A: Pre-Crisis

cs,o
0.0002

(0.0002)
0.0000

(0.0002)
0.0002

(0.0001)
0.0000

(0.0001)
0.0002

(0.0002)
−0.0000
(0.0002)

φs,1
−0.0083 **
(0.0237)

−0.0985
(0.0230)

ωs
0.0000

(0.0000)
0.0000 **
(0.0000)

0.0000
(0.0000)

0.0000 **
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

αs
0.0871 **
(0.0023)

0.0197
(0.0131)

0.0493 **
(0.0076)

0.0301 **
(0.003)

0.2139 **
(0.0876)

0.0006
(0.0045)

βs
0.9197 **
(0.0633)

0.9385 **
(0.0118)

0.9686 **
(0.0059)

0.8680 **
(0.0101)

0.6923 **
(0.0821)

0.9872 **
(0.0006)

γs
−0.0462*
(0.0231)

0.0349 **
(0.0106)

−0.0420 **
(0.0071)

−0.0590 **
(0.0004)

−0.0791
(0.0835)

0.0195*
(0.0085)

λs
5.8032 **
(0.8049)

5.5625 **
(0.8116)

6.3826 **
(0.3490)

2.0100 **
(0.0007)

2.6437 **
(0.2259)

4.1356 **
(1.6566)

ξs
1.0357 **
(0.0309)

1.0401 **
(0.0348)

0.9852 **
(0.0330)

1.0120 **
(0.0258)

0.9883 **
(0.0287)

1.0018 **
(0.0240)

LL 5664.544 5293.8270 5718.1430 6462.4430 5315.5800 5108.4490
AIC −7.2334 −6.7594 −7.3020 −8.2550 −6.7885 −6.5223

ARCH(7) 1.9660 2.8910 2.3150 0.0075 6.0684 5.7310

Panel B: Post-Crisis

cs,o
0.0001

(0.0001)
0.0000

(0.0001)
0.0001

(0.0000)
0.0000 **
(0.0000)

0.0001
(0.0001)

0.0000
(0.0001)

φs,1
−0.0368 *
(0.0162)

−0.0265 *
(0.1290)

0.11199
(0.0002)

−0.0703 **
(0.0165)

ωs. 0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0005)

0.0000 **
(0.0000)

0.0000
(0.0000)

αs
0.0499 **
(0.0045)

0.0901 **
(0.0247)

0.0554 **
(0.0043)

0.0312 **
(0.0051)

0.2315 **
(0.0534)

0.0444 **
(0.0048)

βs
0.9436 **
(0.0034)

0.8995 **
(0.0274)

0.9433 **
(0.0035)

0.9989 **
(0.0484)

0.6413 **
(0.0770)

0.9558 **
(0.0049)

γs
0.0066

(0.0118)
−0.0057
(0.0175)

−0.0114
(0.0119)

−0.0725 **
(0.0100)

−0.0920*
(0.0452)

−0.0089
(0.0097)

λs. 4.6349 **
(0.3483)

4.3717 **
(0.2987)

4.5251 **
(0.3266)

2.0111 **
(0.1679)

3.1413 **
(0.1944)

5.9549 **
(1.1136)

ξs
1.0052 **
(0.0201)

1.0134 **
(0.0204)

0.9745 **
(0.0198)

1.0048 **
(0.2402)

1.0135 **
(0.0196)

1.0020 **
(0.0164)

LL 12444.4800 11499.3500 13278.9600 12995.0600 12027.3100 12491.0400
AIC −6.9367 −6.4090 −7.4015 −7.2426 −6.7040 −6.9621

ARCH(7) 1.3576 2.1008 0.9391 0.9036 0.8553 2.4167

Notes: The table shows the estimates and their standard errors of the parameters for the marginal distribution
model defined in Equations (3) and (4). ** and * denote rejection of the null hypothesis at the 1% and 5% significance
levels, respectively. ARCH (7) is an Engel’s LM test for the ARCH effect in the residuals up to seventh orders.
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Table 4. Results of the goodness-of-fit for the marginal distributions.

Corn Wheat Soybean Soya Oil Oat Cotton

Panel A: Pre-Crisis

LB test: First
moment 0.3222 0.1262 0.1545 0.1361 0.3307 0.1156

LB test:
Second

moment
0.9992 0.0826 0.0796 0.0923 0.0657 0.1856

LB test:
Third

moment
0.1975 0.4731 0.1811 0.5612 0.3312 0.3957

LB test:
Fourth

moment
0.9595 0.1566 0.2487 0.3817 0.1911 0.2114

KS test 0.9585 0.9971 0.9971 0.9381 0.9182 0.9971

Panel B: Post-Crisis

LB test: First
moment 0.5335 0.2909 0.6270 0.4518 0.1556 0.1121

LB test:
Second

moment
0.1079 0.3819 0.1076 0.6661 0.0938 0.3210

LB test:
Third

moment
0.2482 0.0705 0.6173 0.3917 0.1151 0.2106

LB test:
Fourth

moment
0.0826 0.5218 0.0618 01429 0.3819 0.1082

KS test 0.9971 0.9381 0.9971 0.0.9971 0.9178 0.9971

Note: This table reports the p-values of the Ljung–Box (LB) statistic to test whether there is any serial dependence
in the first four moments of the variables ûi,t. To perform the test, we regress (ui,t − ui)

k on the first 20 lags of the
variables and apply the LB statistic to test whether there is any serial dependence in the residual. In addition, we
present the p-values of the Kolmogorow–Smirnov (KS) statistic to test for the adequacy of the distribution model.

3.4. The Static Copulas

Table 5 exhibits the copula models’ results. The table show that the parameters of dependence for
the four copulas are positively and strongly significant for all the pairs of the agriculture commodities
in all periods, excluding the pairs of oat and cotton in the pre-crisis period. This result concludes
that a strong positive dependence exists between any pair of agricultural commodity prices, except
for the pairs of oat and cotton in the pre-crisis period. This, in turn, implies that there is a strong
contagion effect among the agricultural commodity markets such that an increase in volatility in
one agricultural market is likely to lead to an increase in volatility in other agricultural markets.
Moreover, we can observe that the values of the estimates of the dependence parameters among
different agricultural commodity markets increased substantially after the food crisis in 2006. This
results show that contagious effects among agricultural products boost after the food crisis in 2006.
In addition, the results of the copula models studied in this paper indicate that the static dependence
is highest between soybeans and corn, followed by corn and wheat, wheat and soybeans, and then
soybeans and soya oil. The main reason is that corn, wheat, and soybeans are the main agriculture
products, and they have high substitution among them. The least dependence is between cotton
and oat, which suggests that there is little correlation and a weak transmission effect between oat
and cotton.
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Table 5. Estimates of the static copula models.

Corn
Wheat

Corn
Soybeans

Corn
Soya Oil

Corn
Oat

Corn
Cotton

Wheat
Soybeans

Wheat
Soya Oil

Wheat
Oat

Wheat
Cotton

Soybeans
Soya Oil

Soybeans
Oat

Soybeans
Cotton

Soya Oil
Oat

Soya Oil
Cotton

Oat
Cotton

Panel A: Pre-Crisis
Gaussian Copula

ρ
0.4586 **
(0.0182)

0.5141 **
(0.0166)

0.263 **
(0.0229)

0.3256 **
(0.0216)

0.107 **
(0.0250)

0.3464 **
(0.0211)

0.1640 **
(0.0244)

0.2277 **
(0.0235)

0.1040 **
(0.0250)

0.3912 **
(0.0200)

0.2964 **
(0.0222)

0.1514 **
(0.0246)

0.1221 **
(0.0249)

0.0894 **
(0.0251)

0.0196
(0.0254)

AIC −363.0443 −473.1398 −108.5808 −170.9899 −16.0302 −195.4400 −40.0453 −80.1386 −14.7818 −254.6856 −139.9072 −33.7538 −21.1522 −10.3637 1.4032
Student-t Copula

ρ
0.4667 **
(0.0196)

0.5275 **
(0.0190)

0.2620 **
(0.0236)

0.3359 **
(0.0231)

0.1128 **
(0.0262)

0.3507 **
(0.0233)

0.1644 **
(0.0250)

0.2441 **
(0.0252)

0.1045 **
(0.0257)

0.3924 **
(0.0216)

0.3110 **
(0.0244)

0.1539 **
(0.0255)

0.1274 **
(0.0263)

0.0980 **
(0.0265)

0.0208
(0.0264)

n 11.1613 **
(3.0730)

5.8577 **
(1.0490)

30.0000 **
(3.4682)

10.8025 **
(3.2826)

17.2431 *
(8.8803)

15.4217 **
(6.5390)

30.0000 **
(7.2839)

9.4587 **
(2.5542)

29.0201 **
(7.4319)

12.7673 **
(4.6443)

7.1996 **
(1.5855)

22.6982*
(11.5193)

13.8409 **
(5.8014)

16.0064 **
(7.5918)

22.9956
(15.9424)

AIC −378.9014 −517.0141 −169.3174 −182.4128 −18.1465 −199.9978 −45.3890 −94.3274 −15.5722 −261.4485 −163.6914 −34.0894 −25.6425 −13.3224 1.1391
Clayton Copula

θ
0.5983 **
(0.0418)

0.7211 **
(0.0446)

0.2938 **
(0.0359)

0.3843 **
(0.0382)

0.1208 **
(0.0319)

0.3926 **
(0.0381)

0.1597 **
(0.0327)

0.2637 **
(0.0362)

0.1169 **
(0.0310)

0.5039 **
(0.0401)

0.3482 **
(0.0376)

0.1418 **
(0.0331)

0.1044 **
(0.0319)

0.0882 **
(0.0307)

0.0338
(0.0271)

AIC −268.956 −358.5201 −84.5244 −128.4241 −15.1220 −134.1780 −26.8542 −64.3549 −15.0358 −210.9440 −108.0008 −19.7274 −10.5102 −7.5200 0.3126
Gumbel Copula

θ
1.3987 **
(0.0272)

1.5106 **
(0.0302)

1.1694 **
(0.0211)

1.2496 **
(0.0236)

1.0607 **
(0.0177)

1.2639 **
(0.02380)

1.0962 **
(0.0189)

1.1628 **
(0.0213)

1.0577 **
(0.0174)

1.3055 **
(0.0248)

1.2326 **
(0.0232)

1.0967 **
(0.0186)

1.0839 **
(0.0181)

1.0587 **
(0.0177)

1.008 **
(0.0146)

AIC −342.7825 −484.4547 −85.8350 −163.0900 −12.4766 −184.5592 −29.9470 −78.9915 −11.5462 −228.4602 −146.3674 −34.8705 −27.0259 −11.0662 1.6726
Panel B: Post-Crisis

Gaussian Copula

ρ
0.5388 **
(0.0140)

0.5660 **
(0.0098)

0.3402 **
(0.0148)

0.3956 **
(0.0131)

0.2315 **
(0.0157)

0.3829 **
(0.0133)

0.2813 **
(0.0158)

0.2943 **
(0.0146)

0.2023 **
(0.0160)

0.5334 **
(0.0109)

0.2924 **
(0.0147)

0.2452 **
(0.0155)

0.1659 **
(0.0173)

0.2232 **
(0.0170)

0.1455 **
(0.0165)

AIC −1220.820 −1375.3860 −379.8913 −603.4096 −186.1636 −562.7014 −251.9902 −320.1962 −140.7194 −1072.9660 −315.9051 −209.9698 −82.7970 −147.0226 −70.9275
Student-t Copula

ρ
0.5569 **
(0.0124)

0.5717 **
(0.0125)

0.3317 **
(0.0168)

0.4215 **
(0.0460)

0.2252 **
(0.0178)

0.3918 **
(0.0157)

0.2749 **
(0.0178)

0.3295 **
(0.0629)

0.1973 **
(0.0183)

0.5326 **
(0.0123)

0.3091 **
(0.0162)

0.2338 **
(0.0179)

0.1764 **
(0.0187)

0.2127 **
(0.0189)

0.1523 **
(0.0180)

n 4.3864
**(0.3989)

3.7298
**(0.3207)

9.7162
**(1.8226)

5.8215
**(0.6343)

6.9595
**(0.9816)

4.5028
**(0.4308)

8.5044
**(1.3429)

5.3549
**(0.5610)

5.9040
**(0.7237)

10.5790
**(1.9751)

6.8157
**(0.9220)

6.2214
**(0.7987)

9.8464
**(1.7714)

10.6802
**(2.1107)

8.9171
**(1.5773)

AIC −1409.5730 −821.5779 −412.1649 −725.5759 −217.6517 −713.3069 −299.7956 −437.5038 −219.1754 −1109.7270 −385.2677 −283.9827 −117.5111 −176.2976 −105.9034
Clayton Copula

θ
0.8310 **
(0.0311)

0.8927 **
(0.0431)

0.3781 **
(0.0257)

0.5396 **
(0.0274)

0.2670 **
(0.0234) 0.5035 **

(0.0271)
0.3003 **
(0.0246)

0.3675 **
(0.0258)

0.2205 **
(0.0229) 0.7299

(0.0303)
0.3541 **
(0.0251)

0.2900 **
(0.0238)

0.1635 **
(0.0228)

0.2241 **
(0.0231)

0.1582 **
(0.0218)

AIC −1000.1410 −608.6376 −292.7633 −513.0657 −172.7686 −466.1734 −196.9280 −262.6091 −121.2844 −809.7473 −257.6510 −199.9438 −61.3437 −122.4880 −63.7072
Gumbel Copula

θ
1.5610 **
(0.0207)

1.5884 **
(0.0284)

1.2423 **
(0.0161)

1.3449 **
(0.0173)

1.1594 **
(0.0139)

1.3300 **
(0.0169)

1.1934 **
(0.0152)

1.2433 **
(0.0156)

1.1435 **
(0.0135)

1.4849 **
(0.0201)

1.2274 **
(0.0152)

1.1689 **
(0.0140)

1.1108 **
(0.0135)

1.1391 **
(0.0142)

1.0950 **
(0.0126)

AIC −1262.5670 −747.0330 −351.3830 −615.2037 −189.8232 −614.2285 −248.7963 −354.2732 −166.6553 −974.2636 −330.3811 −216.2131 −88.6602 −141.5636 −74.7373

Note: This table reports the estimates of static copula parameters defined in Equations (5)–(8) and their corresponding standard errors (in brackets) for several copula specifications for each
pair of agriculture commodity return. ** and * denote rejections of the null hypothesis at the 1% and 5% significance levels, respectively.
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The smallest values of the AIC among all of the pairs are those of the Student-t copula. This
implies that the Student-t copula is the best model for capturing the dependence. This result indicates
that dependence among agricultural commodities is governed by symmetry; that is to say, agricultural
commodities appears to co-move symmetrically. The DoF of the Student-t copula range from 5.8557
(corn and soybeans) to 30 (corn and soya oil, wheat, and soya oil) in the pre-crisis period and from
3.7298 (corn and soybeans) to 10.6802 (soya oil and cotton) in the post-crisis period. The values of
the tail dependence between agricultural commodity markets reported in Table 6 yield clear evidence
that extreme co-movement exists in each pair of agricultural commodity prices being studied in
this paper, except the pairs of cotton with corn, wheat, soybeans, soya oil, and oat in the pre-crisis
period. Thus, we conclude that the agricultural commodity markets, except cotton, tend to boom and
crash at the same time; that is, when one agricultural commodity market has a high positive return,
another agricultural commodity market tends to have a high positive return and vice versa. We also
compare the dependence of the pre-crisis and post-crisis periods and find that the tail dependence
among agricultural commodity markets is higher after the food crisis. This implies that after the food
crisis, agricultural commodity returns move together more closely. Thus, we conclude that the food
crisis increased the dependence among agricultural commodity markets. We also observe that the
tail dependence reaches the highest level between corn and soybeans, followed by corn and wheat,
wheat and soybeans, and then corn and oat. The least dependence is between wheat and oats. The
results are consistent with those for unconditional correlation (reported in Table 2) and conditional
dependence (reported in Table 5). Taken together, these results strongly support the argument that the
strongest co-movement is found in the pair of corn and soybeans, followed by corn and wheat, and
the lowest degree of extreme co-movement is between soya oil and cotton. A possible reason for the
strong co-movement between corn and soybeans could be the demand for biofuels, since corn and
soybeans are the main crops that are used in the production of biofuels (biodiesel and ethanol).

Table 6. Dependence values of the best fitting copula.

Best Fitting
Copula Panel A: Pre-Crisis λL λU Panel B: Post-Crisis λL λU

Student-t copula Corn and Wheat 0.0569 0.0569 Corn and Wheat 0.2669 0.2669
Student-t copula Corn and Soybeans 0.1894 0.1894 Corn and Soybeans 0.3105 0.3105
Student-t copula Corn and Soya Oil 0.0001 0.0001 Corn and Soya oil 0.0412 0.0412
Student-t copula Corn and Oat 0.0324 0.0324 Corn and Oat 0.1407 0.1407
Student-t copula Corn and Cotton 0.0012 0.0012 Corn and Cotton 0.0552 0.0552
Student-t copula Wheat and Soybeans 0.0123 0.0123 Wheat and Soybeans 0.1764 0.1764
Student-t copula Wheat and Soya Oil 0.0001 0.0001 Wheat and Soya Oil 0.0436 0.0436
Student-t copula Wheat and Oat 0.0294 0.0294 Wheat and Oat 0.1208 0.1208
Student-t copula Wheat and Cotton 0.0000 0.0000 Wheat and Cotton 0.0690 0.0690
Student-t copula Soybeans and Soya Oil 0.0282 0.0282 Soybeans and Soya Oil 0.0856 0.0856
Student-t copula Soybeans and Oat 0.0707 0.0707 Soybeans and Oat 0.0775 0.0775
Student-t copula Soybeans and Cotton 0.0003 0.0003 Soybeans and Cotton 0.0708 0.0708
Student-t copula Soya Oil and Oat 0.0041 0.0041 Soya Oil and Oat 0.0189 0.0189
Student-t copula Soya Oil and Cotton 0.0016 0.0016 Soya Oil and Cotton 0.0179 0.0179
Student-t copula Oat and Cotton 0.0001 0.0001 Oat and Cotton 0.0224 0.0224

Notes: The table presents the lower and upper tail dependence coefficients estimated from the copula that provide
the best fit.

3.5. The Time-Varying Copula

The dependence obtained from the static copulas as discussed above is under the assumption that
the dependence is time invariant, but in reality, the dependence could be time varying. To circumvent
this limitation, we employ the dynamic Student-t copula as stated in Equation (8) in the analysis and
exhibit the results in Table 7. From the table, we notice that most estimates of the autoregressive
parameter βc are significant and close to one, which indicates a high degree of persistence pertaining
to the dependence structure in the agricultural commodity markets that the correlation at time t
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depends strongly on the correlation at time t-1. γc is the latent parameter that displays the latest return
information. The dynamic dependence parameter estimates between agricultural commodity markets
generated from the dynamic Student-t copula are plotted in Figure 2. Figure 2 also provides evidence
that the contagion effect increases after food crises.

Figure 2. Dynamic dependence among different agricultural commodity markets.
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Table 7. Estimation parameters for dynamic copula models.

Corn
Wheat

Corn
Soybeans

Corn
Soya Oil

Corn
Oat

Corn
Cotton

Wheat
Soybeans

Wheat
Soya Oil

Wheat
Oat

Wheat
Cotton

Soybeans
Soya Oil

Soybeans
Oat

Soybeans
Cotton

Soya Oil
Oat

Soya Oil
Cotton

Oat
Cotton

Panel A: Pre-Crisis

αc
0.3740 **
(0.1260)

0.09154
(0.0686)

0.7131 **
(0.2177)

0.0133
(0.0086)

0.0013
(0.0017)

0.0489
(0.4905)

0.6677 **
(0.1025)

0.7115 **
(0.2604)

0.0913
(0.1004)

0.4387 **
(0.2097)

0.0116
(0.0067)

0.3499
(0.1994)

0.0033
(0.0030)

0.0003
(0.0005)

0.0485
(0.0669)

βc
0.5840 **
(0.1247)

0.8940 **
(0.0682)

0.3676
(0.3650)

0.9615 **
(0.0161)

0.9877 **
(0.0102)

0.8055 *
(0.3687)

0.9746 **
(0.0321)

0.3792
(0.4966)

0.5641
(0.4586)

0.7186 **
(0.2347)

0.9650 **
(0.0130)

0.1169
(0.5959)

0.9732 **
(0.0145)

0.9951 **
(0.0405)

0.1401
(0.6240)

γc
1.6561 **
(0.5182)

0.8605
(0.4498)

1.6475 **
(0.5665)

0.4957 **
(0.1867)

0.1622
(0.1177)

0.8130
(0.6911)

0.1981
(0.1690)

0.5716
(0.5942)

0.3676
(0.4869)

0.6844
(0.4576)

0.4327 **
(0.1659)

0.4289
(0.6261)

0.2932*
(0.1390

0.0954
(0.0598)

0.4794
(0.5906)

n 12.9271 **
(0.6502)

5.7568 **
(0.4930)

53.9531 **
(0.2121)

9.9681 **
(1.3829)

18.3019 **
(0.2758)

15.4850 **
(0.3671)

8.7251 **
(2.9170)

9.5712 **
(0.3481)

37.4290 **
(10.2901)

12.9185 **
(0.2665)

7.1660 **
(2.3901)

22.0127 **
(0.2289) 14.3228 **

(0.4018)
18.1200*
(0.5917)

22.7434 **
(0.1373)

AIC −388.4608 −523.0586 −111.4026 −194.69250 −19.4123 −197.7442 −36.6833 −91.1857 −10.2340 −259.4488 −172.0219 −30.9602 −32.4385 −16.7575 4.4635
Panel B: Post–Crisis

αc
0.0511

(0.0279)
0.0043

(0.0011)
0.0130

(0.0100)
0.0386 **
(0.0147)

0.1539
(0.1219)

0.2331
(0.2188)

0.0865
(0.0065)

0.0148*
(0.0065)

0.1184
(0.0922)

0.0140
(0.0082)

0.0255
(0.0144)

0.2317
(0.1751)

0.0001
(0.0003)

0.5798 **
(0.1554)

0.0048
(0.0029)

βc
0.9675 **
(0.0184)

0.8434 **
(0.0104)

0.9772 **
(0.0173)

0.9336 **
(0.0210)

0.6884 **
(0.2538)

0.7128 **
(0.2631)

0.6975 **
(0.2299)

0.9638 **
(0.0121)

0.7296 **
(0.2162)

0.9845 **
(0.0089)

0.9428 **
(0.0274)

0.5367
(0.3541)

0.9966 **
(0.0152)

0.3590
(0.3209)

0.9766 **
(0.0112)

γc
−0.1928
(0.1090)

−0.6739*
(0.3277)

0.1221
(0.0949)

0.6232 **
(0.1722)

−0.3561
(0.2902)

0.2806
(0.2620)

−0.4035
(0.3211)

0.3819 **
(0.1098)

−0.3738
(0.3042)

0.1254
(0.0708)

0.4618 **
(0.1772) −0.2630

(0.3275)
0.0866 **
(0.0300)

1.0048
(0.06259

0.1668*
(0.0726)

n 4.4678 **
(1.1156)

3.7447 **
(0.2778)

9.8585 **
(0.8598)

6.2679 **
(0.1824)

7.0565 **
(0.3950)

4.5155 **
(0.3937)

8.6108 **
(0.7172

5.5387 **
(0.5020)

5.9539 **
(0.1857)

10.3843 **
(0.5962)

7.1546 **
(0.4096)

6.2717 **
(0.3105)

10.5600 **
(0.0274)

10.8886 **
(1.8445)

8.9563 **
(0.3663)

AIC −1413.5360 −1596.7140 −416.5988 −764.4676 −245.0743 −368.1865 −297.5022 −464.3449 −216.8226 −1135.8380 −406.7658 −280.3931 −144.0980 −127.3910 −112.6110

Note: This table reports the estimates of static copula parameters defined in Equations (5)–(8) and their corresponding standard errors (in brackets) for dynamic Student-t copula
specifications for each pair of agriculture commodity return. ** and * denote rejection of the null hypothesis at the 1% and 5% significance levels, respectively.
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4. Implications and Suggestions

We turn to a discussion of some of the implications for policy and investment of our empirical
analysis of dependence and co-movements among the agricultural commodity markets studied in
this research. First, the dependence analysis shows strong contagion effects exist among different
agricultural commodity markets. This implies that the agricultural commodity markets have been
integrated, with prices booming and crashing together during extreme events, and an increase in
volatility in one agricultural commodity will lead to an increase in volatility and price fluctuations in
other agricultural commodities. Our findings suggest that policy makers should set up agricultural
policies that reduce the probability of an unreasonable increase in agricultural commodity prices
as well as any unreasonable large price fluctuations for any major agricultural commodity market.
Policy makers should also establish a warning mechanism for any unreasonable multi-market price
fluctuations in agricultural commodities. Third, policy makers should design a ‘road map’ of tail
dependence and systemic risk among agricultural markets to protect against spillover risk contagion
effects and foster market stability. Fourth, agricultural commodity are not independent; hence, policy
makers ought to make one kind of agricultural price support or stabilization policy and should pay
attention to the effect of other agriculture prices on this kind of agricultural price.

Moreover, our findings show that there are stronger contagion effects, risk transmissions, and
asymmetric tail dependencies among agricultural commodity markets after the food crisis. This
suggests that policy makers should pay more attention to setting up policies to stabilize price
fluctuations and price increases after the food crisis. They should also set up policies that offer more
food subsidies to reduce the negative impact of a rise in agricultural commodity prices on the poor.
The finding is consistent with the argument by Reboredo [36] that a rise in agricultural commodity
prices would greatly affect the poor’s standard of living. On the other hand, a drop in the price of a
particular agricultural commodity would cause a drop in the prices of other agricultural commodities,
which is a situation that would affect farmers’ income. Thus, policy makers should also provide
agricultural commodity subsidies to farmers during a period when prices in agricultural commodities
drop. Moreover, governments should also consider implementing price controls and trade barriers to
stabilize the prices of agriculture commodities and reduce price fluctuations.

In addition, our findings have potentially important implications for investors in their decisions
regarding the selection of stocks in their portfolios, as well as on their international diversification and
risk management. Our findings show that all the markets are more tail-dependent in the post-crisis than
in the pre-crisis, and the distributions are fat-tailed. This information could give hints to investors that
risk in one agricultural commodity will likely be dependent on risk in other agricultural commodity
markets. Thus, investors and speculators should be portfolio diversification and hedging purposes,
thus avoiding the risk of investment in the agricultural commodity market.

5. Conclusions

This study investigates the co-movement of spot prices of four agricultural commodities (corn,
wheat, soybeans, and oats) by using a copula-GARCH approach. We first apply the marginal ARMA
(k, r)-GJRGARCH (1, 1) distribution model to examine the marginal distribution for each agricultural
commodity studied in our paper. We document the existence of the heteroskedastic effect in all the
return series in both the pre-crisis and the post-crisis periods. Moreover, we find an asymmetric
volatility effect in wheat and soybean in the pre-crisis period. Then, we apply several copulas to examine
the standardized residuals from the marginal models. We find that there are both contagion and risk
transmission effects between any pair of agricultural commodity markets, implying that an increase in
price and volatility in one agricultural market is likely to lead to an increase in price and volatility
in other agricultural markets. Second, agricultural commodities appears to co-move symmetrically.
We also observe substantial extreme positive co-movements among different agricultural commodity
markets, indicating that when one agricultural commodity market has a high positive or negative
return, other agricultural commodity markets tend to have a high positive or negative return. We also
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find that the co-movements among different agricultural commodity markets increase substantially
after the food crisis, and the co-movement varies over time. Moreover, we find that among different
agricultural commodity markets, the strongest co-movement is between soybeans and corn, while
the weakest is between wheat and oats. Our findings hold implications for policy makers, investors,
farmers, and consumers in their policy making, integration, risk management, and asset pricing
decisions for agricultural commodity markets.
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