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Abstract: This study aims to investigate the impact of the urban-rural income gap on fertilizer
use intensity in China. A theoretical analysis of the relationship among per capita rural income,
the urban-rural income gap, and fertilizer use intensity is developed, which is similar to the
environmental Kuznets curve hypothesis. Both the Theil index and urban-rural income ratio are
employed to measure the urban-rural income gap using a provincial-level panel dataset covering
25 provincial-level administrative regions over the period 1995–2017. The estimation results of the
system Generalized Method of Moments show that the expansion of the urban-rural income gap
significantly increases fertilizer use intensity. While an inverted U-shaped relationship exists between
fertilizer use intensity and per capita rural income, the peak turning point is much higher than the
actual per capita rural income of all provinces in China. This demonstrates that fertilizer use intensity
would further increase with the growth of rural income over a period of time. In addition, a lower
growth rate of the agricultural product price, larger total sown size, and technological progress are
likely to reduce fertilizer use intensity. This study has several important policy implications for
promoting the sustainable development of agriculture and rural areas in China. Specifically, efforts
must be made to narrow the urban-rural income gap, encourage agricultural research and extension,
and promote land conversion and appropriately scaled-up agricultural business.
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1. Introduction

China’s agricultural productivity has experienced sustainable growth largely due to the application
of chemical fertilizers since the late 1970s [1–3]. Over the period 1978–2017, the gross output value of
agriculture in China has increased from 111.8 billion Chinese yuan to more than 5.8 trillion yuan with
an average annual growth rate of 4.7 percent at the constant price [4]. In the context of a mild drop of
sown area of grain crops, the total grain output in 2017 reached over 661.6 million tonnes, more than a
twofold increase from 1978 [4]. Besides the institutional and technological changes, it has been well
documented that the application of chemical fertilizers has contributed to the growth of agricultural
productivity [3,5,6]. China has become the largest consumer of chemical fertilizers worldwide since
1981 [7,8]. According to official estimates, the total amount of chemical fertilizers in China’s agriculture
has dramatically increased from 8.8 million tonnes in 1978 to 58.6 million tonnes in 2017 (Figure 1).
Fertilizer use intensity has also increased from 58.9 kg per hectare (kg/ha) to 363.5 kg/ha in 2014,
followed by a mild decrease to 352.3 kg/ha in 2017 (Figure 1).
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Figure 1. Change in total fertilizer use and fertilizer use intensity in China (1878–2017). Note: Data
were from the National Bureau of Statistics of China (http://data.stats.gov.cn/).

However, the long-term and high dependency of farmers on chemical fertilizers results in
the extensive overuse of chemical fertilizers, which severely threats the sustained development of
agriculture in China [3,9]. In the economic sense, fertilizer overuse refers to that the actual level of
fertilizer use exceeds its optimal level that maximizes agricultural profit [10]. Much literature has pointed
out that farmers in China widely overuse chemical fertilizers to increase crop yield [3]. For example,
the optimal amount of chemical fertilizers for maize production in China was approximately 249 kg/ha,
while the actual amount of chemical fertilizers farmers used was 405 kg/ha [10]. A recent empirical
analysis reveals that more than 80 percent of chemical fertilizers applied in rice production in China
were overused [3]. In recent years, a growing body of literature documents the adverse effects of
the overuse of chemical fertilizers, including agricultural non-point source pollution, greenhouse gas
emission, water eutrophication, and soil salinization [11,12]. Hence, the sustained development of
agriculture in China is facing grave challenges due to the overuse of chemical fertilizers.

While per capita rural income has increased by a large margin over the past four decades,
the urban-rural income gap has also expanded. Due to the rural reform since the late 1970s,
the urban-rural income ratio measured at the constant price shrank from 3.2 in 1978 to 1.9 in
1985 (Figure 2). In contrast, the continuous expansion of the urban-rural income gap since the late
1980s has caused social concerns [13]. In 2009, the urban-rural income ratio climbed to 3.1, which was
the peak value over the past four decades (Figure 2). While the urban-rural income ratio has slightly
fallen in recent years, it remained at 2.7 in 2017 (Figure 2). It has been repeatedly pointed out that the
widening urban-rural income gap has been gravely challenging the sustained rural as well as overall
economic development in China [14–16].

Both the urban-rural income gap and environmental degradation arising from excessive fertilizer
use are detrimental to the sustainable development of agriculture and rural areas in China. In the context
of deepening supply-side structural reform in agriculture and implementing the rural revitalization
strategy, it is crucial to reduce fertilizer use to improve environmental quality and narrow the
urban-rural income gap in China. Indeed, recent years have witnessed an increasing number of studies
investigating the driving forces for fertilizer use as well as the effect of income inequality or gap on
environmental degradation [3,10,17–19].

http://data.stats.gov.cn/
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Figure 2. Change in per capita rural income and urban-rural income ratio in China (1978–2017). Note:
Data were from the National Bureau of Statistics of China [4].

Note that the literature about the effect of income inequality on environmental degradation
was extended from the so-called environmental Kuznets curve (EKC) hypothesis which describes a
potential relationship between economic growth and the environment [20–22]. Many studies aimed
to empirically examine the EKC hypothesis, but their conclusions are conflicting [21,22]. A group of
empirical studies confirmed that an inverted U-shaped relationship exists between environmental
degradation and per capita gross domestic product (GDP) or income. Using a cross-national panel
dataset from the Global Environment Monitoring System, Seldon and Song concluded that per capita
emission of suspended particulate materials, sulfur dioxide (SO2), nitrogen oxide, and carbon monoxide
showed a significant inverted U-shaped relationship with per capita GDP [23]. Jalil and Mahmud
observed an inverted U-shaped relationship between per capita real GDP and CO2 emission using
a time series dataset of China from 1975 to 2005 [24]. Similarly, Riti et al. also supported the EKC
hypothesis in China by applying different estimation techniques based on the annual time series data
over the period 1970–2015 [25].

However, some studies questioned the validity of the EKC hypothesis. For example, using the
data of 23 countries during the period 1974–1989, Kaufmann et al. found that the concentration of
SO2 falls as per capita GDP grows between 3000 to 12,500 United States dollars (USD), and then
rises as per capita GDP rises beyond 12,500 USD [26]. Dinda et al. argued that per capita real GDP
shows an explicitly negative and U-shaped relationship with the concentration of SO2 and SPM,
respectively, using the city-wise annual data for 33 countries during the three periods 1979–1982,
1983–1986, and 1987–1990 [27]. Recently, an empirical work conducted by Lin et al. re-examined the
environment-income relationship in terms of CO2 emission in five African countries, and denied the
EKC hypothesis [28].

A considerable number of studies extended the EKC hypothesis to examine the relationship
between income inequality and environmental degradation [18,19]. The pioneering work was conducted
by Boyce who hypothesized that growing income inequality may increase the rate of environmental time
preference of both the rich and poor, leading the two groups to take environmentally-damaging actions,
and thus, the growing income inequality may induce environmental degradation by encouraging the
rich to transfer the environmental costs to the poor [29]. Afterward, Torras and Boyce utilized the
pooled ordinary least squares method to analyze the impact of inequality on air and water pollution but
obtained contrasting results [30]. Using a cross-national dataset in terms of environmental degradation
in 1985, Heerink et al. argued that higher inequality may reduce environmental degradation [31],
which is contrary to the conclusion of Boyce [29]. Zhang and Zhao used the national and regional
panel data from 1995 to 2010 in China to reveal that more equitable income distribution is useful
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for controlling CO2 emissions [32]. Using a provincial panel dataset from 1995 to 2012 in China,
Hao et al. argued that CO2 emissions per capita increase as the income gap expands [33]. In the
case of the United States, Jorgenson et al. showed that the state-level CO2 emissions are positively
associated with the income share of the top 10 percent based on the data over the period 1997–2012 [19].
Using a panel dataset of 158 countries from 1980 to 2008, Grunewald et al. argued that for low and
middle-income countries, higher income inequality is associated with lower CO2 emissions, while in
upper-middle-income and high-income economies, higher income inequality increases per capita CO2

emissions [18].
The previous studies have shed light on the relationship between environmental degradation

and economic development. However, the conclusions are not consistent. Moreover, the relationship
between the urban-rural income gap and environmental degradation, especially the environmental
issues involving agriculture, attracts little attention. For example, little is known about the relationship
between urban-rural income gap and fertilizer use, especially in China, the largest user of chemical
fertilizers worldwide. Overall, the following three questions remain unanswered. First, does the
relationship between fertilizer use and per capita rural income accord with the EKC hypothesis?
Second, does fertilizer use respond to the change of the urban-rural income gap? Third, does there
exist an interactive effect of per capita rural income and urban-rural income gap on fertilizer use?
The motivation of this study is to answer the three questions in the case of China. For this purpose,
a panel dataset covering 25 provincial-level administrative regions (hereafter referred to as “provinces”)
over the period 1995–2017 was collected. The system Generalized Methods of Moments (GMM)
was utilized to address the endogeneity issue of the dynamic panel-data model that describes the
relationship between urban-rural income gap and fertilizer use intensity.

The novelty of this study to the literature is reflected in three aspects. First, this study enriches the
literature regarding the EKC hypothesis by shedding light on the relationship between urban-rural
income gap and fertilizer use intensity. Indeed, much literature attaches attention to the empirical
studies on the EKC hypothesis for the impact of income inequality, rather than urban-rural income
gap, on air and water pollutants, and deforestation [17–19,34–36]. However, little empirical evidence
has been provided for the relationship between urban-rural income gap and agrochemical inputs
in agricultural production, especially in the context of China. Second, note that the urban-rural
income gap and excessive fertilizer use co-exist in many other developed and developing countries,
and thus, the results of this study could have important implications for not only China but also
for other countries regarding narrowing the urban-rural income gap and mitigating agricultural
non-point source pollution by reducing fertilizer use. Third, the ordinary least squares method and
the fixed-effects model were two widely used econometric techniques in the early previous studies,
but these models ignore the endogeneity issue of income inequality [26,36]. In particular, the potential
state dependence of environmental pollutants still remains neglected, though increasing attention has
been attached to the endogeneity issue in recent years [28]. In this study, the adoption of the dynamic
panel-data model and system GMM could capture the potential state dependence of fertilizer use,
solve the potential endogeneity issue, and improve the estimation efficiency.

The remainder of this study is structured as follows. Section 2 constructs a theoretical framework to
analyze the relationship between the urban-rural income gap and fertilizer use intensity, which provide
a basis for the empirical analysis in this study. In Section 3, we first underline the path of empirical
analysis, and then accordingly develop the econometric model. Meanwhile, the dependent and
independent variables are defined, and the data source for the empirical analysis is described. The main
results and robustness check are reported and discussed in Section 4. The final section concludes with
some policy implications.

2. Theoretical Analysis

The previous literature has constructed some theoretical frameworks regarding the relationship
between the income gap and environmental pollution [34]. However, the previous theoretical analysis
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is far from enough to reveal how fertilizer use intensity in agriculture would be associated with the
urban-rural income gap. Hence, this study attempts to construct a theoretical framework to discuss
the impact of the urban-rural income gap on fertilizer use intensity. The fundamental assumption in
this study is that in the context of the urban-rural income gap, the relatively poorer rural households
would endeavor to increase their income to narrow the income gap with urban households. The larger
the urban-rural income gap is, the stronger the desire rural households have to increase their income.

Given the large urban-rural income gap, rural households could increase their income through
agricultural productivity growth, in which fertilizer use plays a crucial role. The income components in
China have experienced an impressive evolution since the reform and opening-up. Overall, while the
percentage of non-agricultural income in per capita rural income ranged from 22.4 percent in 1995 to
40.9 percent in 2017, the percentage of business income remained at 37.4 percent in 2017 [4,37]. Note that
agricultural business is the main source of rural households’ business income [38]. It illustrates that
agricultural production still plays an important role in rural income growth [39]. When the urban-rural
income gap becomes larger, rural households could increase fertilizer use to achieve high agricultural
productivity to promote income growth [38,40].

The large urban-rural income gap could stimulate the rural labor force to seek for non-agricultural
work in the urban areas for higher labor income, and thus, fertilizer use becomes a widely adopted
measure to cover the shortage of agricultural labor force [41–43]. Since the early 1980s, the universal
implementation of the household responsibility system has contributed to the rapid growth of
agricultural productivity and correspondingly resulted in a large number of surplus rural labor
force [42]. Over the past four decades, massive numbers of young rural laborers with relatively better
health and education have been migrating to urban areas to pursue high non-agricultural income in
the context of the large urban-rural income gap [44], which to some extent causes a shortage of the
agricultural labor force [43,45]. To cover the shortage of the agricultural labor force, rural households
would be much more likely to increase fertilizer use in agriculture [42].

In the context, it is reasonable to hypothesize that a larger urban-rural income gap would induce
rural households to apply more fertilizers in agriculture.

3. Methods and Data

3.1. Econometric Model

In line with the theoretical analysis developed above, we conducted an empirical analysis as
follows. While the theoretical analysis provided fundamental hypotheses to be validated, some
other confounding factors of fertilizer use intensity were not included. To obtain the net impacts of
per capita rural income and urban-rural income gap, an econometric model was developed based
on the theoretical analysis to investigate the relationship between the urban-rural income gap and
fertilizer use intensity. Hence, we first developed an initial panel-data model in which fertilizer use
intensity was the dependent variable, and the linear and quadratic terms of per capita rural income,
the urban-rural income gap, and other confounding factors were the independent variables. However,
as previously argued, the application of chemical fertilizers and pesticides in agriculture might exhibit
state dependence [38]. As a result, we extended the initial model by including a lag term of fertilizer
use intensity as the second step. In the third step, an interaction term between per capita rural income
and urban-rural income gap was further included to capture the interactive effect of these two variables
on fertilizer use intensity. Taking these steps into account, the initial econometric model took the
following form:

lnFit = α0 + α1lnyit + α2(lnyit)
2 + α3Git + Zitλ+ γTt + vi + uit (1)

where the subscript i and t refer to the i-th province and t-th year, respectively. The dependent variable
lnFit was fertilizer use intensity in its natural-logarithmic form. As for the independent variables, lnyit
and (lnyit)2 refer to the linear and quadratic terms of per capita rural income in their natural-logarithmic
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form, respectively. Git, the variable of interest, denotes the urban-rural income gap. Zit is a vector of
control variables. In addition, Tt denotes the time trend term that describes technological progress,
and vi denotes the time-invariant effect. uit is the independent identically distributed random error. αj
(j = 0, 1, 2, and 3), λ, and γ are coefficients to be estimated.

It was noted that the static panel-data model as described by Equation (1) ignores the state
dependence of fertilizer use. Thus, a dynamic panel-data model including lnFi,t−1 as the independent
variable was developed as:

lnFit = α0 + ϕlnFi,t−1 + α1lnyit + α2(lnyit)
2 + α3Git + Zitλ+ γTt + vi + uit. (2)

Equation (2) does not take the potential interactive effect of per capita rural income and urban-rural
income gap on fertilizer use intensity into account. To address this issue, we included the interaction
term (lnyit × Git) to test whether the relationship between urban-rural income gap and fertilizer use
intensity depends on per capita rural income, as Equation (3):

lnFit = α0 + ϕlnFi,t−1 + α1lnyit + α2(lnyit)
2 + α3Git + α4lnyit ×Git + Zitλ+ γTt + vi + uit. (3)

However, the endogeneity issue emerged when Equations (2) and (3) were estimated using either
the traditional fixed- or random-effects model, since lnFi,t−1 may be correlated with the error term [46].
Firstly, some variables influencing fertilizer use intensity, rural income, and urban-rural income gap
could have been omitted. Secondly, a reverse causality could have existed from fertilizer use intensity
to rural income and the urban-rural income gap. To overcome the deficiency, the difference GMM
was developed for the estimation of a dynamic panel-data model [47]. In detail, the difference GMM
can remove the time-invariant unobserved effect with the help of the first-difference of the equation,
and deal with the endogeneity by employing the lagged endogenous variables as the instrumental
variables [48]. However, the lagged endogenous variables may lead to the weak instrument problem
and further inefficient and biased estimation [49,50]. To address the weak instrument problem,
the system GMM, a combination of the first-differencing and level equations, was developed [51,52].
Specifically, the difference of the lagged explained variable was used as the instrument for the lagged
explained variable. There was evidence that the system GMM often performs better than the difference
GMM, especially when the explained variable persists over time [53]. Thus, we used the system GMM
to estimate Equations (2) and (3).

3.2. Variables

This study contained a vector of independent variables to control for the confounding impact.
In addition to the dependent variable, the independent variables in this study included the lagged
fertilizer use intensity, linear and quadratic terms of per capita rural income, the urban-rural income
gap, interaction term of per capita rural income and the urban-rural income gap, percentage of
non-agricultural income in per capita rural income, total sown area, percentage of the sown area in the
total sown area by crop group, and the time trend term. The detailed definition of the dependent and
independent variables was described as follows:

Fertilizer use intensity, the dependent variable, refers to the amount of chemical fertilizers used
per hectare. It equals the total amount of chemical fertilizers divided by the total sown area for each
province. To mitigate the potential heteroscedasticity, the natural-logarithmic form of fertilizer use
intensity was adopted in the model.

Per capita rural income was an important independent variable. According to the EKC hypothesis,
it was probable that the relationship between per capita rural income and fertilizer use intensity would
be nonlinear, and thus, the quadratic term of per capita rural income was also included. It should be
noted that the current value of per capita rural income was deflated with the rural consumer price
indices. In the context, both per capita rural income and its quadratic term were measured at the 2017
constant price. Moreover, these income variables were also in their natural-logarithmic form.
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The urban-rural income gap was the independent variable of interest in this study. The Theil
index is widely used to measure the income gap or inequality in the literature [14]. Thus, we also used
the Theil index to measure the urban-rural income gap in China. The calculation method for the Theil
index (TLit) is:

TLit =

(
UYit
Yit

)
× ln

[(
UYit
Yit

)
÷

(
UPit
Pit

)]
+

(
RYit
Yit

)
× ln

[(
RYit
Yit

)
÷

(
RPit
Pit

)]
(4)

where: Yit is the sum of total urban and rural income; UYit and RYit refer to the total urban and rural
income, respectively; Pit is the sum of the urban and rural population; and UPit and RPit refer to the
urban and rural population, respectively. Similarly, the current value of per capita urban income was
also deflated with the urban consumer price indices. Note that a higher Theil index implies a larger
urban-rural income gap [14].

The percentage of non-agricultural income in per capita rural income was used to control for
the impact of rural income components on fertilizer use intensity. Over the past decades, as argued,
non-agricultural work has been playing an increasingly important role in rural income growth in
China [4]. Logically, rural households depending more on non-agricultural income would attach less
attention to agricultural production, because they earn their income mainly from non-agricultural
work. Hence, it was assumed that rural households that depend more on non-agricultural work than
the agricultural business might apply fewer fertilizers in agriculture.

The one-year lagged price indices of agricultural outputs were used to control for the market
factor’s influence on fertilizer use intensity. It was reasonably assumed that rural households make
decisions on fertilizer use based on what has happened to the price change of agricultural outputs [17].
In general, rural households might apply more fertilizers in agricultural production when the price of
agricultural outputs grows faster. To avoid the potential endogeneity, we use the lagged rather than
current price indices of agricultural outputs.

We include the total sown area in agriculture into the model. According to the previous studies,
there might exist a scale effect of farm size on fertilizer use, and thus, there might exist a negative
relationship between farm size and fertilizer use intensity [54]. In other words, a larger sown area in
agriculture might reduce fertilizer use intensity, and vice versa.

In addition to the total sown area in agriculture, the percentages of the sown area for different
crop types in the total sown area were also considered. It was apparent that the need for fertilizers in
the production of different crops often greatly varies [55]. In this study, we divided crops into four
types, namely grain, vegetable, oil, and other crops. Accordingly, the percentages of the sown area for
vegetable, oil and other crops were included in the model, and that for grain crops was used as the
control group.

In addition to the above variables, a time trend term was also included. As for panel data, a time
trend term was often needed to control for the impact of technological progress on fertilizer use
intensity [5]. In this study, the time trend term equaled the actual year minus 1995. In other words,
the time trend term was zero for the year 1995, and 22 for the year 2017.

3.3. Data

Data used in this study come from multiple sources. In sum, this study employed balanced panel
data covering 25 China’s provinces over the period 1995–2017. Provinces, namely Beijing, Shanghai,
Tianjin, Chongqing, Hainan, and Tibet, were excluded due to the incompleteness and unavailability
of data. Thus, we obtain a total sample of 575 observations. Since a dynamic panel data model was
developed, the data covers the year 1994.

Overall, most of the data come from the National Data, an official website of the National Bureau
of Statistics of China (http://data.stats.gov.cn/). Moreover, some are supplemented and adjusted using
data from other sources. In sum, both per capita rural and urban income over the period 1994–2001
come from the China Compendium of Statistics (1949–2008). Data of total population come from

http://data.stats.gov.cn/
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the China Population and Employment Statistics Yearbook (2018), and data of the urban and rural
population come from the China Compendium of Statistics (1949–2008), provincial-level statistical
yearbooks over the period 1994–2004, and the National Data over the period 2005–2017. The rural
consumer price indices of Guizhou in 1994, 1995, and 1997, as well as the net business income for
all provinces over the period 1995–2001, and 2013–2017, come from the China Statistical Yearbook
(1995–2002, and 2014–2018). Data of price indices of agricultural outputs were collected from the
provincial-level statistical yearbooks for the year 1994 and 2001, the China Statistical Yearbook of Prices
and Urban Household Income and Expenditure Survey (1996–2001) over the period 1995–2000, and the
China Yearbook of Agricultural Price Survey (2004) for the year 2002.

Table 1 summarizes the descriptive statistics of the main variables in 1995, 2007, and 2017.

Table 1. Descriptive statistics of the main variables.

Variables
1995 2007 2017

Mean Standard
Deviation Mean Standard

Deviation Mean Standard
Deviation

Fertilizer use intensity (kg/ha) 230.013 78.425 327.700 107.383 366.259 139.706
Per capita rural income (thousand yuan) 2.526 0.762 5.309 1.682 12.972 3.502

Theil index 0.115 0.050 0.151 0.057 0.094 0.032
% of non-agricultural income 24.624 8.453 43.517 10.758 59.944 9.168

One-year lagged price indices of agricultural outputs (%) 138.936 8.632 102.196 2.278 102.084 4.679
Total sown area (million ha) 5.743 2.916 5.929 3.316 6.447 3.720

% of the sown area of grain crops 73.199 8.818 67.238 12.899 67.627 14.908
% of the sown area of vegetable 6.090 3.434 11.607 6.988 13.351 9.099
% of the sown area of oil crops 9.198 5.251 7.753 5.656 8.366 5.920

% of the sown area of other crops 11.513 6.899 13.402 11.094 10.657 10.521

Note: Per capita rural income was measured at a 2017 constant price.

4. Results and Discussion

4.1. Urban-Rural Income Gap and Fertilizer Use Intensity

Figure 3 plots fertilizer use intensity in the natural-logarithmic form against the Theil index by
province. In most of the provinces, an obviously positive relationship exists between fertilizer use
intensity and the Theil index, which means that as the urban-rural income gap expands, there would
be an increase in fertilizer use intensity. However, there are also several provinces in which the
relationship between fertilizer use intensity and the Theil index was found to be negative, such as
Guangdong, Sichuan, Yunnan, and Xinjiang (Figure 3). Nonetheless, it is more likely that the expansion
of the urban-rural income gap would stimulate fertilizer use in agriculture in most of the provinces.
Meanwhile, there is also a disparity of the positive relationship that was noted between fertilizer use
intensity and the urban-rural income gap across provinces.

4.2. Main Results

Table 2 reports the main estimation results. For ease of comparison, the estimation results for
Model I (without the interactive effect), and Model II (with the interactive effect) are summarized.
Several tests were conducted on the validity of the models. First, we conducted the Sargan test to
examine whether the instrumental variables in the system GMM estimation are valid. As shown
in Table 2, the statistics of the Sargan test are not statistically significant. We also conducted the
Arellano-Bond (A-B) tests for the first-order auto-regression [AR (1)] and AR (2) to determine whether
the first- and second-order autocorrelation of the error term exists. The statistics of the A-B test for
AR (1) are significant at 5 percent, while those for AR (2) are not significant (Table 2), which means
that significant autocorrelation of the error term does not exist. All these results demonstrate that the
instrumental variables used in the system GMM estimation are valid.
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Figure 3. Scatter diagram of fertilizer use intensity against the Theil index by province (1995–2017).

Table 2. Impact of the Theil index on fertilizer use intensity.

Dependent Variable Model I Model II

Coefficient Standard Error Coefficient Standard Error

Ln(Fertilizer use intensity) 0.597 *** 0.148 0.630 *** 0.158
Ln(Per capita rural income) 0.746 *** 0.272 1.052 *** 0.350

[Ln(Per capita rural income)]2 −0.097 *** 0.037 −0.138 *** 0.050
Theil index 0.885 ** 0.437 2.106 ** 0.959

Ln(Per capita rural income) × Theil index −1.029 0.697
% of non-agricultural income −0.001 0.001 −0.002 * 0.001

One-year lagged price indices of agricultural outputs 0.001 *** 0.000 0.001 *** 0.000
Total sown area −0.061 ** 0.027 −0.084 *** 0.032

% of the sown area of vegetable 0.003 0.002 0.002 0.003
% of the sown area of oil crops −0.002 0.002 −0.002 0.002

% of the sown area of other crops −0.000 0.002 0.001 0.002
Trend −0.019 ** 0.009 −0.022 ** 0.010

Constant 1.814 ** 0.716 1.460 * 0.775
Sargan test 12.190 10.579

A-B test for AR (1) −2.495 ** −2.470 **
A-B test for AR (2) 0.564 0.651

Observations 575 575
Provinces 25 25

Peak turning point (thousand yuan) 46.776 45.222

Note: The value of statistics is reported for Sargan and A-B tests. *, **, and *** denote the significance under 10, 5,
and 1 percent, respectively.
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The results illustrate that an inverted U-shaped relationship exists between fertilizer use intensity
and per capita rural income, which is consistent with the EKC hypothesis. As shown in Table 2,
the estimated coefficients of Ln(Per capita rural income) and [Ln(Per capita rural income)]2 are
significantly positive and negative, respectively. Theoretically, it seems to provide evidence that
fertilizer use intensity would first increase, and then decrease with the growth of per capita rural
income. Based on the first-order partially derivative, we calculated the peak turning point of per capita
rural income at which fertilizer use intensity reaches the highest level with other factors held constant.
The turning point can be calculated using the estimated coefficients of the linear (α1) and quadratic
terms (α2) of per capita rural income. Specifically, the peak turning point equals the formula exp ( −α1

2×α2
).

As for Model I and Model II, the peak turning point of per capita rural income is about 46,776 and
45,222 yuan, respectively (Table 2). Since per capita rural income in 2017 ranges from 8076 to 24,956
yuan across provinces, the results in this study demonstrate that fertilizer use intensity would further
increase with the growth of per capita rural income across all the provinces.

More importantly, the expansion of the urban-rural income gap would result in an increase
in fertilizer use intensity. The estimated coefficients of the Theil index are of great interest in this
study. As shown in Table 2, the estimated coefficients of the Theil index are significant and positive,
which indicates that fertilizer use intensity would increase as the urban-rural income gap expands.
Our analysis here is based on the results of Model I. With other factors held constant, each 0.1 increase
in the Theil index would result in an 8.85 percent (= 0.1 × 0.885 × 100 percent) increase in fertilizer use
intensity (Table 2). Overall, the results provide firm evidence for the theoretical analysis in Section 2
and are consistent with the previous studies that assert the positive relationship between the income
gap and environmental degradation [32,38]. In the context of reducing fertilizer use in agriculture, it is
an urgent need for China to take firm steps to narrow the urban-rural income gap in the coming years.

However, the results in Table 2 show no significant interactive effect of per capita rural income
and urban-rural income gap on fertilizer use intensity. As shown in Table 2, the estimated coefficient
of the interaction term between Ln(Per capita rural income) and the Theil index is not statistically
significant in Model II. This means that the positive impact of the urban-rural income gap on fertilizer
use intensity would not be influenced by per capita rural income. It also means that the inverted
U-shaped relationship between per capita rural income and fertilizer use intensity is not influenced by
the urban-rural income gap.

In addition to per capita rural income and the urban-rural income gap, the price change of
agricultural outputs could also influence fertilizer use intensity. As shown in Table 2, the estimated
coefficients of one-year lagged price indices of agricultural outputs are significant and positive,
implying that the faster growth of agricultural outputs price would stimulate rural households to apply
more fertilizers in agricultural production. With other factors held constant, each 10-percentage-point
increase in the lagged price indices of agricultural outputs would result in one percent (= 10 × 0.001
× 100 percent) increase in fertilizer use intensity (Table 2). Our results, here again, reveal that rural
households’ fertilizer use could be partly regarded as a response to the benefit of agricultural production.
In other words, rural households are regarded as rational entities, and thus, they would be inclined
to apply more fertilizers in agricultural production when they have a higher profit expectation [56].
In this context, the growth of agricultural products price would induce them to use more fertilizers in
agricultural production. The conclusions of many previous studies are consistent with the findings in
the present study [3,56].

The results in Table 2 also show a significantly negative relationship between the total sown area
and fertilizer use intensity. According to the results of Model I, each million-ha increase in the total
sown area is significantly associated with a 6.1-percent increase in fertilizer use intensity, with other
factors held constant (Table 2). As some previous studies argued, farm size might produce the scale
effect of fertilizer use, implying that fertilizer use intensity would be likely to decrease as farm size
becomes larger [54]. However, although our result supports the existence of scale effect of farm size
on fertilizer use intensity, it should be viewed with caution. In China, most rural households are
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smallholders according to the definition given by the World Bank [57]. Lowder et al. showed that the
average size of farms managed by rural households in China was merely 0.6 ha in 2010, falling from
0.67 ha in 2000 [58]. As previously argued, the relatively smaller farm size at the micro-level in China
contributes to the overuse of fertilizers in agricultural production [59].

We also found that the coefficients of the time trend term are significant and negative (Table 2).
This illustrates that with the development of fertilization technology, rural households apply fewer
fertilizers in agricultural production. During the past four decades since 1978, China has been achieving
great progress in agricultural technological innovation [6,60,61]. In terms of fertilizer use, not only
fertilization techniques but also more types of efficient fertilizers have been developed, extended,
and widely adopted in agricultural production [62]. As a result, a negative impact of technological
progress on fertilizer use intensity is within our expectations.

4.3. Robustness Check

To check the robustness of regression results analyzed above, we adopted the urban-rural income
ratio as an alternative to the Theil index to re-run Equations (2) and (3). Note that the urban-rural
income ratio has also been widely adopted as a proxy of the urban-rural income gap in the existing
literature [63,64]. Table 3 reports the system GMM estimation results for the robustness check. It is
apparent that the Sargan test and A-B tests for AR (1) and AR (2) jointly confirm that the instrumental
variables in the system GMM estimation are valid, which is consistent with the results shown in Table 2.
As expected, the sign and significance of the coefficients of all the independent variables are consistent
with that shown in Table 2, which confirms the robustness.

Table 3. Impact of the urban-rural income ratio on fertilizer use intensity.

Dependent Variable Model III Model IV

Coefficient Standard Error Coefficient Standard Error

Ln(Fertilizer use intensity) 0.639 *** 0.137 0.666 *** 0.144
Ln(Per capita rural income) 0.668 *** 0.259 1.186 ** 0.463

[Ln(Per capita rural income)]2 −0.093 ** 0.036 −0.137 ** 0.056
Urban-rural income ratio 0.062 * 0.036 0.186 ** 0.090

Ln(Per capita rural income) ×Urban-rural income ratio −0.092 0.058
% of non-agricultural income −0.001 0.001 −0.002 * 0.001

One-year lagged price indices of agricultural outputs 0.001 *** 0.000 0.001 *** 0.000
Total sown area −0.058 ** 0.027 −0.079 ** 0.031

% of the sown area of vegetable 0.004 * 0.002 0.003 0.002
% of the sown area of oil crops −0.002 0.002 −0.002 0.002

% of the sown area of other crops 0.000 0.002 −0.000 0.002
Trend −0.016 * 0.009 −0.023 ** 0.011

Constant 1.549 ** 0.662 0.965 0.699
Sargan test 12.763 11.502

A-B test for AR (1) −2.670 *** −2.651 ***
A-B test for AR (2) 0.576 0.651

Observations 575 575
Provinces 25 25

Peak turning point (thousand yuan) 36.285 75.828

Note: The value of statistics is reported for Sargan and A-B tests. *, **, and *** denote the significance under 10, 5,
and 1 percent, respectively.

Table 3 also shows that there is a significant and positive relationship between fertilizer use
intensity and the urban-rural income ratio, which again confirms that the expansion of the urban-rural
income gap would stimulate rural households to apply more fertilizers in agricultural production.
The estimated coefficients of linear and quadratic terms of per capita rural income are significantly
positive and negative, respectively, which means that there is an inverted U-shaped relationship
between fertilizer use intensity and per capita rural income. The further calculation reveals that the
peak turning point of per capita rural income here equals 36.285 and 75.828 yuan for Model III and IV,
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respectively (Table 3). Although the values of turning point differ from those in Table 2 to some extent,
they are also much higher than the per capita rural income for all provinces in 2017.

5. Conclusions and Policy Implications

A large urban-rural income gap and excessive fertilizer use have challenged the sustainable
development of agriculture and rural areas in China. In recent years, China’s government has been
determined to narrow the urban-rural income gap and reduce fertilizer use. However, it was unclear
whether there is a link between the urban-rural income gap and fertilizer use. This study aimed to
investigate the relationship of the urban-rural income gap and fertilizer use intensity based on panel
data covering 25 provinces in China over the period 1995–2017.

The estimation results of the system GMM show that the expansion of the urban-rural income
gap would significantly increase fertilizer use intensity, which does not depend on per capita rural
income. There is an inverted U-shaped relationship between per capita rural income and fertilizer
use intensity, which supports the EKC hypothesis. However, the estimated peak turning point of per
capita rural income is much higher than the actual level of all provinces in 2017, implying that fertilizer
use intensity would further increase as per capita rural income grows in certain years. In addition,
fertilizer use could also be regarded as a response to the change of agricultural products price and total
sown area, and technological development.

The findings in this study have some significant implications for China as follows:
First, China’s government is expected to take practical measures to increase per capita rural

income so as to narrow the urban-rural income gap. Our results demonstrate that narrowing the
urban-rural income gap and reducing fertilizer use in China are compatible long-term aims. Although
fertilizer use intensity would probably increase as per capita rural income grows over a certain period
of time, it is better to consider these issues from a forward-looking perspective. In the short term,
there would be a trade-off between the growth of per capita rural income and reduction of fertilizer
use intensity, since the per capita rural income of all provinces remains at the left side of the inverted
U-shaped curve. However, it is fundamental to stride across the peak turning point of per capita rural
income to reduce fertilizer use intensity. More importantly, the narrowing urban-rural income gap
would also significantly hinder the increase in and even promote the reduction of fertilizer use intensity.

Second, agricultural research and development (R&D) and extension should be encouraged to
provide a firm foundation for reducing fertilizer use intensity. The findings in this study show that the
estimated coefficient of time trend term used to measure agricultural technological progress is negative,
implying that fertilizer use intensity would significantly decrease with the progress of agricultural
technology. Hence, enhancing the R&D and extension of agricultural fertilization technology would
be greatly conducive to the reduction of fertilizer use intensity. Some previous studies reveal that
while agricultural R&D and extension have made a great contribution to agricultural production in
China, some problems remain to be solved [65–70]. China’s government should deepen the reform
of agricultural R&D and extension systems to meet the urgent need for the sustainable development
of agriculture.

Third, it is reasonable to promote the conversion of cultivated land and appropriately scaled-up
agricultural business. The findings in this study show that fertilizer use intensity would significantly
decrease as the provincial-level total sown area expands. In fact, some previous studies also reveal that
a negative relationship exists between farm size and fertilizer use intensity [54], which means that farm
size has a scale effect on fertilizer use. Meanwhile, it should be noted that agricultural production in
China has been being challenged by extensive rural-urban migration of the rural labor force, aging of
the agricultural labor force, and small-scale farming systems. Hence, it is crucial for China to encourage
and promote the conversion of cultivated land in a reasonable and orderly pattern and appropriately
scaled-up agricultural business, which would further promote the reduction of fertilizer use intensity.

This study has several limitations. First, the study failed to examine the impact mechanism
of the urban-rural income gap on fertilizer use intensity at the micro-level, which implies a great
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room for improvement in the future. Second, this study did not further investigate the impact of the
urban-rural income gap on fertilizer use in the production of specific crops due to data availability.
These two aspects are the research directions for further investigation about the relationship between
the urban-rural income gap and fertilizer use intensity in agriculture.
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