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Abstract: In the present study, six meta-heuristic schemes are hybridized with artificial neural
network (ANN), adaptive neuro-fuzzy interface system (ANFIS), and support vector machine (SVM),
to predict monthly groundwater level (GWL), evaluate uncertainty analysis of predictions and spatial
variation analysis. The six schemes, including grasshopper optimization algorithm (GOA), cat swarm
optimization (CSO), weed algorithm (WA), genetic algorithm (GA), krill algorithm (KA), and particle
swarm optimization (PSO), were used to hybridize for improving the performance of ANN, SVM,
and ANFIS models. Groundwater level (GWL) data of Ardebil plain (Iran) for a period of 144 months
were selected to evaluate the hybrid models. The pre-processing technique of principal component
analysis (PCA) was applied to reduce input combinations from monthly time series up to 12-month
prediction intervals. The results showed that the ANFIS-GOA was superior to the other hybrid models
for predicting GWL in the first piezometer (RMSE:1.21, MAE:0.878, NSE:0.93, PBIAS:0.15, R2:0.93),
second piezometer (RMSE:1.22, MAE:0.881, NSE:0.92, PBIAS:0.17, R2:0.94), and third piezometer
(RMSE:1.23, MAE:0.911, NSE:0.91, PBIAS:0.19, R2:0.94) in the testing stage. The performance of hybrid
models with optimization algorithms was far better than that of classical ANN, ANFIS, and SVM
models without hybridization. The percent of improvements in the ANFIS-GOA versus standalone
ANFIS in piezometer 10 were 14.4%, 3%, 17.8%, and 181% for RMSE, MAE, NSE, and PBIAS in
training stage and 40.7%, 55%, 25%, and 132% in testing stage, respectively. The improvements for
piezometer 6 in train step were 15%, 4%, 13%, and 208% and in test step were 33%, 44.6%, 16.3%,
and 173%, respectively, that clearly confirm the superiority of developed hybridization schemes in
GWL modelling. Uncertainty analysis showed that ANFIS-GOA and SVM had, respectively, the best
and worst performances among other models. In general, GOA enhanced the accuracy of the ANFIS,
ANN, and SVM models.
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1. Introduction

One of the most important sources of water supply for industrial, drinking, and irrigation
purposes is groundwater (GW). GW has a significant role in economic development, environmental
management, and ecosystem sustainability [1,2]. However, in recent years undue exploitation has
caused a tremendous pressure on GW resources, resulting in GW crisis [3]. As a result, the GW
level (GWL) in different regions of the world has been decreasing rapidly. Further, widespread
pollution of surface water is severely affecting GW. A decrease in GWL can also be caused by climate
factors and can lead to a number of eco-environmental problems [4]. For proper water resources
management, particularly effective utilization and sustainable management of groundwater resources,
accurate and reliable prediction of GWL is essential [5,6]. Thus, it is necessary to predict the Ardebil
groundwater level for water resources management. Mathematical models incorporating GW dynamics
are applied to predict GWL for optimizing groundwater use, optimal management, and development
of conservation plans [5,7]. Since such models are costly, time-consuming, and data-intensive, their use
in practice is limited because of data-scarcity [8,9]. In such cases, when geological and hydro-geological
data are insufficient, soft computing models become an attractive option [10]. Artificial neural network
(ANN), adaptive neuro-fuzzy interface (ANFIS), genetic programming (GP), support vector machine
(SVM), and decision tree models are among the important soft computing models that are suited for
modeling dynamic and uncertain nonlinear systems [7].

Recently, soft computing models have been widely used worldwide to predict GWL. Jalal Kameli
et al. [11] evaluated neuro-fuzzy (NF) and ANN models to estimate GWL using rainfall, air temperature,
and GWLs in neighboring wells, and showed that the NF model performed better than the ANN model.
Identifying the lag time of time series for observed rainfall by correlation analysis, Trichakis et al. [12]
used the ANN model to predict GWL and found the ANN model to be useful to model Karst aquifers
that are difficult to simulate using numerical models. Using evaporation, rainfall, and water levels in
observation levels as input, Fallah-Mehdipour et al. [13] applied the ANFIS and genetic programming
models for predicting GWL and showed that GP decreased the value of mean root square error
(RMSE) compared to the RMSE by the ANFIS. Moosavi et al. [14] evaluated the ANN, ANFIS-wavelet,
and ANN-wavelet models and showed that predicted GWL was more accurate for 1 and 2 months
ahead than for 3 and 4 months ahead. Predicting GWL in the Bastam plain by ANFIS and ANN
models in Emamgholizadeh et al. [15] study confirmed that if the water shortage of the aquifer
remained equal to the pumping rate of water from wells, the minimum reduction of GWL occurred.
Suryanarayana et al. [16] proposed a hybrid model integrating the SVM model with the wavelet
transform and indicated that the SVM-wavelet model was more accurate in predicting GWL. Using
rainfall, pan evaporation, and river stage as input, Mohanty et al. [17] indicated that the ANN model
was better using shorter lead times for GWL predictions than the larger lead times. Yoon et al. [18]
demonstrated that the SVM model was superior to the ANN model in predicting GWL. Zho et al. [19]
found that the wavelet-SVM model was better than the wavelet-ANN model for modelling GWL.
Comparing ANN and autoregressive integrated moving average (ARIMA), Choubin and Malekian [20]
showed that the ARIMA model was more accurate than ANN in modelling GWL. Das et al. [21] found
ANFIS to be better than ANN for predicting GWL.

Literature review shows that although soft computing models are capable for predicting
groundwater level, they have weaknesses and uncertainties [22]. The ANN models have different
parameters, such as weight connections, bias, and need training algorithms to fine-tune their parameters.
ANFIS and SVM models have nonlinear and linear parameters and use different kinds of training
algorithms, such as backpropagation algorithm, descent gradient method, etc. However, the standard
training algorithms have two major defects: slow convergence and getting trapped in local optima [22].
Recently, nature-based optimization algorithms have been developed for finding the appropriate values
of model parameters to improve ANN, ANFIS, and SVM models. Jalalkamali and Jalalkamali [23]
applied a hybrid model of ANN and genetic algorithm (ANN-GA) to find the best number of neutrons
for the hidden layer and predict GWL in an individual well. Mathur [24] applied hybrid SVM-PSO
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(particle swarm optimization) model for predicting GWL in Rentachintala region of Andhra Pradesh,
India, where optimal parameters of SVM were determined using PSO. Results showed that SVM-PSO
was more accurate than the ANN, ANFIS, and ARMA models. Hosseini et al. [25] hybridized ANN
and ant colony optimization (ACO) to predict the GWL in Shabestar plain, Iran, and found that
the hybrid ANN-ACO model reduced overtraining errors. Zare and Koch [26] demonstrated that
the hybridized wavelet-ANFIS model was superior in modelling GWL to other regression models.
Balavalikar et al. [27] found that the hybrid ANN-PSO model was better in predicting monthly GWL of
Udupi district, India, than the classical ANN model. Malekzadeh et al. [28] evaluated ANN, wavelet
extreme machine learning (WEML), SVM, wavelet-SVM, and wavelet-ANN for predicting GWL,
and concluded that WEML was more accurate. These studies reveal that hybrid models are more
accurate and efficient than single models in predicting GWL and it is inferred from these studies
that meta-heuristic optimization algorithms are superior to the classical ones, but require uncertainty
analysis for artificial intelligence models.

New hybrid intelligent optimization models can be regarded as appropriate alternative methods
with an acceptable range of error for predicting GWL. Among the nature-inspired optimization
algorithms, the grasshopper optimization algorithm (GOA) is a novel and robust meta-heuristic method
that mimics the swarming behavior of grasshoppers in nature. The GOA is a multi-solution-based
algorithm during the optimization process to avoid higher local optima and has high convergence
ability toward the optimum [29]. It has different functions than other optimization algorithms that
enable it to find the best optimal solution in the search space with high probability. Therefore, this
algorithm escapes from local optima and finds the global optimum in the search space. This capability
is considered as an advantage of GOA [30] and as reason for the selection of GOA for the current
study. Several researchers used GOA for monthly river flow [31], soil compression coefficient [32],
coefficients of sediment rating curve [33], and concrete slump [34], but the uncertainty analysis and
GWL modeling has not yet been studied.

These models have some drawbacks in the previous studies that are addressed in the current
paper. These models are robust tools for modeling many of the nonlinear hydrologic processes such as
rainfall-runoff, stream flow, and ground-water level. Despite the wide application of soft computing
models, few studies have investigated the capability of novel optimization algorithms, such as GOA
integrated with typical predictive methods, for GWL prediction, uncertainty evaluation, and spatial
variation modeling. The main problem in developing these models is the using of an appropriate
training procedure. Especially, AI tend to be very data intensive in training stage, and there appears
to be no established methodology for design and successful implementation of training procedure
and error minimizations. Therefore, there are still some questions about AI tools that must be further
studied, and important aspects such as local trapping, uncertainty analysis of results, uncertainty due
to meta-heuristic optimization algorithms in training, spatial changes modelling with hybrid models
must be explored further. Based on the best knowledge of the authors, no published papers exist that
evaluate the uncertainty of different meta-heuristic optimizations for groundwater level prediction in
hybridization with ANN, ANFIS, and SVM. The main contribution and novelty of the present study is
comparative uncertainty analysis of the novel hybrid models, spatial changes modelling by considering
PCA as appropriate input selection in regard to uncertainty results. Despite the wide application of
soft computing models, few studies have investigated the capability of novel optimization algorithms,
such as GOA integrated with typical predictive methods, for GWL prediction, uncertainty evaluation,
and spatial variation modeling. The state-of-art models, including ANN, ANFIS, and SVM, have
been employed to predict GWL, but these models are easily trapped in local optima and often need
longer training times. Hence, the main contribution of this study is to develop and to assess the
applicability of hybrid ANFIS-GOA, SVM-GOA, and ANN-GOA models for predicting monthly GWL
and uncertainty of results in Ardabil basin in Iran. Application of GOA method integrated with
ANN, ANFIS, and SVM models is useful to search the best numerical weights of neurons and bias
values. The other objectives of this paper were to (1) compare the GOA with different optimization
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algorithms of particle swarm (PSO), weed algorithm (WA), cat algorithm (CA), and genetic algorithm
(GA); (2) evaluate the uncertainty of the hybridized models for predicting monthly GWL; (3) use
principal component analysis to select the appropriate input combinations from time-series data up to
12-month lag; (4) modeling spatial variation of GWL by using hybrid intelligence models results in
geospatial analysis.

2. Materials and Methods

2.1. Case Study and Data

The Ardebil plain, with the area of 990 km2, is located in the northwest of Iran between latitudes
38′3◦ and 38′27 and the longitudes of 47′55◦ and 48′20◦ (Figure 1). The average annual rainfall is
304 mm. The hottest month in this plain is May and the driest month is July. The average annual
temperature is 9 ◦C. In Ardebil plain, groundwater supplies water for drinking, agricultural, and
industrial purposes. There is a negative balance of about 550 million m3 in the Ardebil aquifer.
The GWL decreases by 20–30 cm per year, which is the fastest decline. The Ardebil plain has 89 villages,
that use groundwater for agricultural uses. The current condition of the GWL in the Ardebil plain has
negative impacts on the farmers as its main users. In this study, the following parameters were used as
the input to the hybrid ANN, ANFIS, and SVM models. Then, the principal component analysis was
used to select the best input combination up to 12-month lag.

H(t) = f [H(t− 1), H(t− 2), H(t− 3), . . . ..H(t− 12)] (1)

where, H(t) is the GWL at month t, H(t− 1) is the 1-month lagged H, H(t− 2) is the 2-month lagged H,
H(t− 3) is the 3-month lagged H, and H(t− 12) is the 12-month lagged H. The data of 140 months
(2000 (January)–2012 (September)) were selected for the current study. A total of 20% of the data set was
used for testing, and 80% of the data set was used for the training, that were selected randomly. Nine
observed wells (wells 6, 9, 10, 24, 11, 4, 7, 8, and 1) were used to provide the spatiotemporal variation
of GWL for different months. Each piezometer had 140 monthly data points. The measurements were
made one time during each month.
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2.2. ANFIS Model

The ANFIS model uses fuzzy interface systems which use fuzzy if-then rules to construct a
predictive model. The ANFIS model has been widely used for predicting rainfall [33], temperature [34],
runoff [35], evaporation [36], and sediment load [37]. Figure 1 shows the structure of the ANFIS model
in the framework of the study. The square nodes and circle nodes show the adaptive and fixed nodes,
respectively. The ANFIS model has five layers [38]. (1) The inputs are fuzzified in the first layer whose
nodes are constant. The membership grade of inputs is the output of the first layer:

o1
i = uAi(x), i = 1, 2..

o1
i = uBi−2(y), i = 3, 4, ..

(2)

where, o1
i is the output of the first layer, uAi(x) and uBi−2(y) are the fuzzy membership functions for the

fuzzy set Ai and Bi-2, respectively. The bell-shaped member function is selected for the current study
due to its smoothness and concise notation:

uAi(x) =
1

1 +
[( x−ci

ai

)2
]bi

, i = 1, 2, .. (3)

where a, b, and c are the premise parameters (training algorithms obtain these parameters).
(2) The nodes of the second layer are labelled with M, which shows that they carry out a simple

multiplier function. The fuzzy strengths ωi of each rule are the output of the second layer:

o2
i = ωi = uAi(x)uBi(y), i = 1, 2.., (4)

(3) The nodes of the third layer are also fixed. The fuzzy strengths from the previous layer are
normalized in the third layer. The sum of weight functions is used to compute the normalization factor.
The normalized fuzzy strengths are the output of the third layer:

o3
i = ωi =

ωi∑2
i=1 ωi

(5)

(4) The nodes of the fourth layer are adaptive and its outputs are computed as:

o4
i = ωizi = ωi(pi + qiy + ri), i = 1, 2.., (6)

where, pi, qi, and ri are the consequent parameters.
(5) The output in the fifth layer is labelled with S. A fixed node is observed in this layer. This layer

computes the total summation of all the incoming signals:

o5
i = z =

2∑
i=1

ωizi =

∑2
i=1 ωizi∑2
i=1 ωi

(7)

In the classical training approach, a combination of the least square and gradient descent methods
is commonly used as a hybrid learning algorithm to adjust the parameters of the ANFIS model.
The consequent parameters of ANFIS model are updated by applying the least square method in the
forward pass. Additionally, in the backward pass, the gradient descent method is used for updating
the premise parameters. In the hybridized schemes, tuning and adjusting the consequent and premise
parameters are determined by the optimization algorithms as the hybrid training scheme.
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2.3. ANN Model

The artificial neural network uses behavioral patterns to provide a framework for modeling
mechanisms. It consists of three layers: input, hidden, and output layers, and includes the processing
units named neurons which are arranged in several layers [39]. The connection weights link the
neurons of preceding layers to the neurons of the following layers. The output of the middle layer
(hidden layer) is used as the input to the following layer. The input data is received by the input
layer, while the last layer generates the final output of the ANN model. The middle layers receive and
transmit the input data to the connected nodes in the following layers. The weighted sum of inputs is
used by the hidden neurons to produce the intermediate output. The ANN model uses the activation
functions to compute the outputs of the hidden and output neurons. It uses the bias values to set the
output along with the weighted sum of inputs to the neuron. The process of ANN modelling has two
major levels: (1) preparing the network structure, and (2) adjustment of the weights of connections.
The literature review indicates that the backpropagation training algorithm is wildly used in different
fields, such as water engineering [40]. First, the output of the ANN model is obtained as a response of
the ANN model. In the next level, the error between observed and estimated values is minimized to
find the weights of the model. If the output is different from the observed value, the modification of
weights and biases will start to decrease the error values. However, the backpropagation algorithm
has a slow convergence rate and to overcome its inherent weakness the meta-heuristic optimization
algorithms are used in the present study. Figure 1 shows the structure of the ANN model and its
hybridization with intelligence algorithms.

2.4. SVM Model

The SVM model has been widely used for predicting solar radiation [41], rainfall [42],
landslides [43], and drought [44]. In the SVM model, the input data are divided into testing
and training samples. The selected input vector (training sample) is mapped into a high-dimensional
feature space. Then, the optimal decision function is generated [44]. Equation (7) shows the regression
estimation function of the SVM model:

f (x) = WTφ(x) + b (8)

where, φ(x) is the nonlinear mapping function for mapping sample data (x) into an m-dimensional
feature vector, b is the bias, and WT is the weight vector of the independent function. WT and b are
computed by minimizing the following function:

D( f ) =
1
2
‖w‖2 +

C
n

n∑
j=1

Rε
[
y j, f

(
x j

)]
(9)

where, D(f ) is the generalized optimal function, ‖w‖2 is the complexity of the model, C is the penalty
parameter, and Rε is the error control function of ε. Thus, the optimization problem is defined
as follows:

min Q(W, ξ) = 1
2‖w‖

2 + C
n∑

j=1
ξ j + ξn

j

WTφ
(
x j

)
+ b− y j ≤ ε+ ξ j

y j −WTφ
(
x j

)
− b ≤ ε+ ξ∗ j

ξ j ≥ 0, ξ∗ j ≥ 0, j = 1, 2, .., n

(10)
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where, ξ j and ξ∗ j are the relation factors. Adjusting the partial derivatives of W, b, ξ j, and ξ∗ j to 0 and
using the Lagrangian equation, an optimization problem can be formulated as follows:

L(W, a, b, ε, y) = min 1
2

n∑
j=1

(ar − a∗r)
THr, j∗

ar − a∗r + ε
n∑

j=1
(ar − a∗r) +

n∑
j=1

yr(ar − a∗r)

n∑
r=1

(ar − a∗r) = 0, (0 ≤ ar, a∗r ≤ C)

Hr, j = K
(
x, x j

)
= φ(xr)

Tφ
(
x j

)
, (r = 1, 2, .., n)

(11)

where, K
(
x, x j

)
is the kernel function. The most popular kernel function is the radial basis function:

K
(
x, x j

)
= exp

−
∣∣∣x− x j

∣∣∣2
2γ2

 (12)

where, γ is the radial basis function parameter. The SVM based model uses the grid search algorithm
(GS) to find the optimal value of parameters C and γ. Specifically, a set of initial values is chosen for
both parameters γ and C. To select γ and C using cross-validation, the available data are divided into k
subsets. One subset is regarded as testing data and then assessed using the remaining k-1 training
subsets. Then, the cross-validation error is computed using the split error for the SVM model using
different values of C and γ. Various combination of parameters C and γ are evaluated and the one
yielding the lowest cross-validation error is chosen and used to train the SVM model for the whole
dataset. The structure of the SVM model is shown in Figure 2.
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2.5. Optimization Algorithms

2.5.1. Grasshoppers Optimization Algorithm (GOA)

Grasshoppers are regarded as pests because they damage agricultural crops. They are a group of
insects that can generate large insect swarms. The mathematical function to investigate the swarming
behavior of grasshoppers is demonstrated with the following equation [45]:

Xi = Si + Gi + Ai (13)

where, Xi is the position of the ith grasshopper, Si is the classical interaction, Gi is the gravity force on
the ith grasshopper, and Ai is the wind advection. The classical interaction is simulated as follows:

Si =
N∑

j=1

s
(
di j

)
d̂i j (14)

where, dij is the distance between the ith and jth grasshoppers, and s is a function for the definition of
the strength of social forces.

di j =
∣∣∣xi − x j

∣∣∣
d̂i j =

x j−xi
di j

(15)

The function s is computed as follows:

s(r) = f e−
r
l − e−r (16)

where, f is the intensity of attraction, and l is the attractive length scale. The distance between
grasshoppers ranges between 0 and 15. Repulsion is observed in the interval [0 2.079]. The grasshoppers
enter the comfort zone if they are far from 2.079 units from other grasshoppers. G component is
computed as follows:

Gi = −gêg (17)

where, g is the gravitational constant and êg is a unity vector towards the center of the earth. The A
parameter is computed as follows:

Ai = uêw (18)

where, u is a constant drift and êw is a unit vector in the direction of the wind. Finally, the new position
of a grasshopper is computed using its common position, the food source position, and the position of
all other grasshoppers:

Xi =
N∑

j=1
j,i

s
(∣∣∣x j − xi

∣∣∣)x j − xi

di j
− gêg + uêw (19)

where, N is the number of grasshoppers. However, Equation (18) cannot be directly used for
optimization because grasshoppers do not converge to a specified point. Thus, a corrected equation is
used to update the grasshopper’s position:

Xd
i = c


N∑

j=1
j,i

c
ubd − lbd

2
s
(∣∣∣∣xd

j − xd
i

∣∣∣∣)x j − xi

di j

+ T̂d (20)

where, ub is the upper bound; lbd is the lower bound; T̂d is the value of the Dth dimension in the target
space (optimal solution found so far); and c is a decreasing coefficient to shrink the comfort zone,
repulsion zone, and attraction zone. Figure 2 shows the flowchart of GOA.
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2.5.2. Weed Algorithm (WA)

Weeds have a very adaptive nature that converts them to undesirable plants in agriculture.
Figure 3 shows the flowchart of the WA algorithm [46]. The WA starts with initializing a random
population of weeds in the search space. A predefined number of weeds are randomly distributed
over the entire dimensional space, indicated as a solution space. The fitness of weeds is assessed by
considering its fitness function to optimize the problem. Each agent of the current population can
produce some seeds via a predefined region considering its own location. In this way, the number of
produced seeds relies on its fitness function in the population regarding the best and worst solutions,
as observed in Figure 3. The number of seeds is computed as follows [46]:

Number(o f )seed(around)weedi =
Fi − Fworst

Fbest − Fworst
(Sminmax + Smin) (21)

where, Fworst is the worst fitness function, Fbest is the best fitness function, Smin is the minimum number
of seeds, Smax is the maximum number of seeds, and Fi is ith fitness function. The distribution of seeds
is random over the search space and is based on the standard deviation σi and zero mean. The standard
deviation of the distribution of seeds varies as follows:

σcur =

(
itermax()

n
)(

itermax()
n
)(
σinit − σ f inal

)
+ σ f inal

(22)

where, itermax is the maximum number of iterations, σcur is the standard deviation at the current
iteration, σ f inal is the final value of standard deviation, σinit is the predefined initial value of standard
deviation, and n is the nonlinear modulation index. Seeds are produced by each weed and then are
distributed over the space. The competitive exclusion is the final level in the WA. If a weed does
not generate seeds, it will be extinct. If all the weeds generate seeds, the number of weeds increases
exponentially. Therefore, the number of seeds is limited to the maximum value (Pmax). The weeds
with better fitness function are allowed to reproduce. Weeds with worse fitness function are removed
(see Figure 4).
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2.5.3. Cat Swarm Optimization (CSO)

Recently, CSO has gained popularity among other optimization algorithms because of its
exploration ability and is widely used in different fields, such as wireless sensor networks [47],
robotics [48], data clustering [49], and dynamic multi-objective algorithms [50]. Chu et al. (2006)
introduced the cat swarm algorithm [51]. Figure 5 shows the flowchart of CSO. The CSO uses
hunting and resting skills for optimization. First, the initial population of cats is initialized randomly.
The seeking mode and tracing mode are two important operation modes in the CSO model. The seeking
mode demonstrates the resting ability of cats which change their position and remain alert. This mode
is regarded as a local search for the solutions. The seeking memory pool (SMP), the seeking range
of selected dimension (SRD), and counts of dimension to change (CDS) affect the cat’s behavior.
The number of duplicate cats is denoted by SMP. CDC shows that the dimensions are to be mutated
and SRD denotes change value of chosen dimensions. In the seeking mode, most of the cat’s time is in
the resting time, even though they remain alert [52]. The seeking mode includes the following levels:

• Generate replicas of the cats as per SMP.
• The position of each copy is updated as follows:

xk,d =

[
(1 + (2× rand− 1) ∗ SRD) ∗ x j,d ← i f (D) ∈ N

x j,d ← otherwise

]
(23)

where, xk,d is the position of the kth cat in the dth dimension (new position of the cat), rand is the
random number, N is the number of cats, D is the number of dimensions, and x j,d is the position
of jth cat in the d dimension (old position of the cat).
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• Compute the objective function for all copies and choose the best objective function value (xbest)
of the cat.

• Substitute xj,p with the best cat if the xbest is better than xj,p in terms of the objective function value.

The hunting skill of cats is represented by the tracing mode. Cats trace the objectives with high
energy by changing their locations with their own velocities. The velocity is updated as follows:

v j,d,new = ω× v j,d + r1 × c1 ×
(
xbest,d − x j,d

)
(24)

where, ω is the inertia weight, c1 is a constant, and v j,d is the velocity of jth cat in the d dimension, and
v j,d,new is the new velocity of the jth cat. The position of cats in the tracing mode is updated as follows:

x j,d = x j,d + v jd (25)

where, x j,d,new is the jth position of the kth cat in the dth dimension (new position of the cat).
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2.5.4. Particle Swarm Optimization (PSO)

In PSO, a set of particles that are generated randomly search the best adjacent solutions for
optimization. The updating equations for the new position and velocity of particles are written as [53]:

xid(t + 1) = xid(t) + vid(t + 1) (26)

vid(t + 1) = ψ ∗ vid(t) + r1 ∗ c1 ∗ [pid(t) − xid(t)] + r2 ∗ c2 ∗ [gd(t) − xid(t)] (27)

where, d is the number of dominions; ψ is the inertia weight; r1 and r2 are the random values; c1 and c2

are the acceleration coefficients; gd(t) is the global best position obtained by neighbors; and pid is the
personal best position.
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The particles find the solutions of optimization problems by adjusting the position and velocity of
particles. The main advantages of PSO are easy implementation and computational efficiency.

2.5.5. Genetic Algorithm (GA)

Genetic algorithm is one of the most popular algorithms that is extensively applied for optimization
problems. Each chromosome in GA is a candidate solution [19]. The genes of chromosomes simulate
the variables of optimization. First, the initial population of chromosomes is randomly initialized for
optimization and the selection operator is used to select the best chromosomes for the production of
the next generation. The chromosomes with better fitness values have a great chance of being chosen
by the selection operator. The crossover operator is used to exchange genes between two chromosomes
for producing new solutions. Finally, the mutation operator is used to cause changes in the genes.
The mutation operator is applied to the chromosomes of new genes to generate different solutions
with new genes. If the convergence criteria are satisfied, the algorithm stops; otherwise, the algorithm
runs again. The drawback of GA shows that GA requires a high number of iterations [20].

2.5.6. Krill Herd Algorithm (KHA)

Gandomi and Alavi [54] introduced the KHA using the krill’s behavior in nature [54]. The KHA
is widely used in different fields, such as text document clustering analysis [55] and structural seismic
reliability [56]. The KHA acts, based on three main concepts: (1) mutation-induced, (2) foraging
mutation, and (3) physical diffusion. The following formulation uses the three behaviors mentioned
above [54]:

dYi
dt

= Ni + Fi + Di (28)

where, Y is the location of the ith krill, Ni is the motion induced by another krill, Fi is the foraging
motion, and Di is the physical diffusion of the ith krill. Equation (28) describes the motion-induced by
another individual krill.

Nnew,i = N
(
αlocal,i + αt arg et,i

)
nold,imax

(29)

where, Nmax is the maximum induced speed, αlocal,i is the neighbor’s local effect, αt arg et,i is the krill’s
target direction, ωn is the inertia weight of induced motion, and Nold,i is the old motion-induced for the
ith individual krill. The foraging motion can be formulated as:

Fi = V f
(
β f ood,i + βbest,i

)
+ω f Fold,i (30)

where, V f is the foraging speed, β f ood,i is the food attractive, βbest,i is the effect of the best fitness of the
ith krill, and Fold,i is the last foraging motion. The diffusion can be computed as:

Di = Dmax (31)

where, Dmax is the maximum diffusion speed, and δ is the random direction.
Finally, the position of a krill is computed as follows:

Xnew,i = Xold,i + ∆t
dXi
dt

(32)

where, Xnew,i is the value of the next individual krill location, and Xold,i represents the current position of
solution number I, and ∆t is the essential constant. Figure 5 shows the flowchart of the krill algorithm.

2.6. Principal Component Analysis (PCA)

PCA is a statistical orthogonal transformation to obtain a set of values of linearly uncorrelated
(principal components) from a set of observations. When the user has the number of inputs but he
cannot identify the appropriate inputs, the PCA is used to reduce the number of inputs. The final data
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set should be able to demonstrate most of the variance of the original input data by creating a variable
reduction [57]. PCA can be explained, based on the following equation [57]:

Zi = ai1 + ai2 + . . .+ aipxp (33)

where, Zi shows the principal component, aip is the related eigenvector, and xi is the input variable.
The information is obtained by solving Equation (34):

|R− λI| = 0 (34)

where, R is the variance-covariance matrix, I is the unit matrix, and λ is the eigenvalues.

2.7. Taguchi Model

The random parameters of optimization algorithms are the most important parameters affecting
the outputs of the optimization algorithms. Thus, determining the appropriate values of random
parameters is necessary to construct the optimization models. The Taguchi model is widely used to
design different parameters of different experiments or experimental models. First, the initial level is
determined for each of the random parameters in the optimization algorithms. In the Taguchi method,
parameters are classified into two groups: (1) controllable, and (2) uncontrollable (noise). In the
Taguchi model, each parameter combination that has a higher S (signal)/N (noise) ratio is regarded as
the best combination [58].

S/N = −10 log

1
n

n∑
i=1

Y2
i

 (35)

where, n is the number of data, and Yi is the fitness function that is obtained by the Taguchi model.
For example, consider the PSO algorithm with four parameters and three levels. When the population
size is at level 1, the acceleration coefficient is tested at levels 1, 2, 3, and 4. Similarly, the inertia
coefficient is tested at levels 1, 2, 3, and 4.

2.8. Hybrid ANN, ANFIS, and SVM Models with Optimization Algorithms

The optimization algorithms can be used as a robust training algorithm for the ANN models.
The process starts with the initialization of a group of random agents (particles, chromosomes,
krill, grasshoppers, weeds, or cats). The position of agents represents the ANN weights and biases.
Following this level, using the initial biases and weights (i.e., the initial position of agents), the hybrid
ANN-optimization algorithms are trained, and the error between the observed and estimated value is
calculated. At each iteration, the calculated error is decreased by the updating of agent locations.

The model procedure in ANFIS-optimization algorithm models starts with the initialization of
a set of agents (particles, chromosomes, krill, grasshoppers, weeds, or cats) and continues with the
random choice of agents and finally adjusts a location for each agent. First, the ANFIS model is trained.
Then, the consequent and premise parameters are optimized by the optimization algorithms. The root
mean square error (RMSE) is defined as an objective function. The aim of optimization algorithms
is to minimize the objective function value with finding the appropriate values of consequent and
premise parameters.

In SVM, the C parameter and kernel function parameters have significant effects on the accuracy
of the SVM. The random population of agents (particles, chromosomes, krill, grasshoppers, weeds, or
cats) are initialized for training the SVM parameters. The RMSE is defined as an objective function.
The aim of hybrid SVM-optimization algorithm models is to minimize model errors. Figure 2 shows
the developed framework of hybrid ANN, ANFIS, and SVM-optimization models for modeling
groundwater level.
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Thus, the model parameters are considered as decision variables for optimization algorithms.
The optimization algorithms aim to minimize the error function to find the optimal value of model
parameters. The PCA selects the appropriate input combinations. Then the hybrid and standalone
models uses the input combinations to forecast GEWL. The models uses the optimized model parameters
to accurately forecast monthly GWL.

2.9. Uncertainty Analysis of Soft Computing Models

The input data and the inability of model structure are the sources of uncertainty. In this research,
an integrated framework is developed to simultaneously evaluate the input data and model structure.

Input Data Uncertainty
The combined Bayesian uncertainty was used to compute the uncertainty contributed by input

data. The input error model was used to account for the uncertainty of input data [59]:

Ha,t = KHt, K ∼ N
(
m, σ2

m

)
(36)

where, Ha,t: the adjusted groundwater level (GWL), Ht: the observed GWL, t: the given month, K: the
normally distributed random, m: mean, and σm: variance. For each soft computing model, m and σm

were added to the system. A dynamically dimensioned search was used to find the value of m: mean
and σm: variance as defined by [59].

Mode Structure Uncertainty
Bayesian model average (BMA) is used for model uncertainty. The posterior model probability

and averaging over the best models were used to estimate the uncertainty of the models. The weighted
average prediction of quantity of target variable is computed as follows [59]:

H j =
k∑

k=1

βkF jk + e j (37)

where, Fj: the point prediction of each model, ej: noise, βk: the weight vector of model, H: n observation
of GWL, k: number of models, and j: number of observations. For accurate application of BMA model,
the standard deviation of normal probability distribution functions and weights should be estimated
accurately. The log-likelihood function is used to calculate the weights and standard deviation as
follows [59]:

L(βBMA, σBMA
∣∣∣F, H) =

n∑
i=1

log


k∑

k=1

βk
1√

2πσ2
k

exp
[
−

1
2
σ−2

k

(
H j − F jk

)2
] (38)

where, βBMA: maximum likelihood Bayesian weight. Markov Chain Monte Carlo (MCMC) simulations
are used to compute the log-likelihood function. The integrated framework is defined as follows:

1. A number of models are selected to simulate the GWL.
2. The prior probability is assigned to each model.
3. An error input model is defined.
4. The posterior distribution of input error models and model parameters are obtained.
5. A predetermined number of GWLs for each model is provided using probabilistic parameter

estimations obtained from level 2 to level 4.
6. The variance and weight of models are estimated.
7. The weights for ensemble members of models are summed to compute the weight models.
8. To the experimental soft computing models. The following indices were used to quantify the

uncertainty of models:

p =
1
n

count[H|XL ≤ H ≤ XU] (39)
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d = dx
σx

dx = 1
k

k∑
l=1

(XU −XL)
(40)

9. where k is the number of observed data, XU is the upper bound of data, XL is the lower bound of
data, σx is standard deviation, p is bracketed by 95% of predicted uncertainties, d is the distance
between the upper and lower bounds, and dx is the average distance between the upper and
lower bounds [59,60].

2.10. Statistical Indices for Evaluation of Different Models

In this study, the following indices were used to evaluate the performance of models:
Root mean square error:

RMSE =

√√
1
N

n∑
t=1

((H0(t)) − (Hs(t)))
2 (41)

Mean absolute error:

MAE =
1
N

1∑
t=1

∣∣∣H0(t) −Hs(t)
∣∣∣2 (42)

Nash Sutcliffe efficiency:

NSE = 1−

∑n
i=1

∣∣∣Hs(t) −H0(t)
∣∣∣2∑n

i=1

∣∣∣Hs −H0(t)
∣∣∣2 (43)

Percent bias (PBIAS):

PBIAS =


∑n

i=1(Hs(t) −H0(t))
2∑n

i=1(H
t
o)

2

 (44)

where, N is the number of data, H0 is the observed value, and Ps is the predicted value.
RMSE and MAE show a good match between observed data and estimated values when it equals

0. The NSE shows a good match between the observed values and estimated values when it equals 1.
The best value of PBIAS is zero.

3. Results and Discussion

3.1. Inputs Selection by PCA

In this study, 12 input variables (H(t-1), . . . ., H(t-12)) were considered to select the input lag times
of monthly GWL. As presented in the flowchart and framework of the current study in Figure 1, the first
step of the model developments is the appropriate selection of time lags for GWL modelling by PCA
analysis. Table 1 shows the variance contribution rate for PCAs as the principal component loadings.
There are the loadings of 12 principal components versus 12 input lag times of GWL. The first four PCs
variance summed up a contribution of 91%, among which the first PC variance had a contribution of
48% loadings. It was observed that the inputs H(t-1), H (t-2), H (t-3), H (t-4), and H (t-5) had higher
factor loading in comparison with other inputs of the PCs. Thus, the first four PCs were selected for
the hybrid soft computing models which included inputs H(t-1), H (t-2), H (t-3), H (t-4), and H (t-5)
because of their higher loading factor. This loading analysis of variables reduced the raw initial input
parameter numbers from 12 to 5, that decrease the model development efforts. The coefficients of more
0.75 are significant for Eigen value verifications [60].
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Table 1. Principal component loadings.

PC 1 2 3 4 5 6 7 8 9 10 11 12

H (t-1) 0.98 0.95 0.93 0.90 0.89 0.88 0.88 0.86 0.75 0.62 0.52 0.45
H (t-2) 0.84 0.82 0.88 0.86 0.85 0.84 0.85 0.82 0.62 0.60 0.51 0.44
H (t-3) 0.83 0.81 0.80 0.77 0.74 0.72 0.84 0.80 0.61 0.55 0.43 0.40
H (t-4) 0.82 0.80 0.78 0.76 0.75 074 0.83 0.78 0.60 0.54 0.39 0.37
H (t-5) 0.81 0.79 0.76 0.75 0.72 0.71 0.82 0.79 0.55 0.51 0.38 0.35
H (t-6) 0.73 0.67 0.74 0.73 0.71 0.70 0.80 0.77 0.54 0.50 0.37 0.34
H (t-7) 0.62 0.55 0.72 0.70 0.65 0.64 0.76 0.75 0.53 0.47 0.33 0.30
H (t-8) 0.61 0.50 0.71 0.69 0.54 0.52 0.65 0.64 0.51 0.46 0.30 0.29
H (t-9) 0.54 0.54 0.70 0.65 0.42 0.64 0.54 0.52 0.50 0.45 0.29 0.25

H (t-10) 0.42 0.42 0.69 0.66 0.41 0.62 0.45 0.44 0.49 0.42 0.28 0.26
H (t-11) 0.42 0.42 0.55 0.54 0.40 0.55 0.42 0.40 0.47 0.41 0.27 0.24
H (t-12) 0.40 0.40 0.45 0.43 0.38 0.52 0.40 0.38 0.46 0.38 0.25 0.23

Eigen value 5.78 3.22 1.12 0.90 0.6 0.27 0.05 0.03 0.02 0.003 0.003 0.03

Cumulative
variance 48% 74% 84% 91% 96% 99 99.5 99.7 99.99 99.99 99.99 100%

3.2. Selection of Random Parameters by the Taguchi Model

The Taguchi model was used to find the value of random parameters rather than the classical trial
and error methods. Table 2 shows the computed signal-to-noise (S/N) ratio for each random parameter
in the optimization module of the hybrid training of ANFIS. Each parameter had four levels and the
best level of each parameter is selected based on the S/N values. The S/N ratio was computed for each
level of parameters. The best value of parameters had the highest S/N rate. For example, sensitivity
analysis for different values of GOA parameters was done, as shown in Table 2. The results indicated
that the population size = 300 had the highest value of S/N. Thus, the optimal size of population was
300. The maximum S/N ratio for parameter l was 1.23. Thus, the optimal value of parameter l was 1.5.
The maximum S/N ratio for parameter f was 1.14. Thus, the optimal value of parameter f was 0.5.

Table 2. Results of Taguchi model for a: GOA, b: particle swarm optimization (PSO), c: genetic
algorithm (GA), d: WA, e: CSO, and f: krill algorithm.

(a)

Population size S/N l S/N f S/N

100 1.05 0.5 1.07 0.1 1.09
200 1.15 1 1.19 0.3 1.12
300 1.20 1.5 1.23 0.5 1.14
400 1.02 2 1.18 0.7 1.10

(b)

Population size S/N c1 S/N c2 S/N ω S/N

100 1.25 1.6 1.20 1.6 1.21 0.3 1.19
200 1.29 1.8 1.27 1.8 1.25 0.50 1.18
300 1.23 2.0 1.26 2.0 1.23 0.70 1.17
400 1.20 2.2 1.22 2.2 1.25 0.90 1.24
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Table 2. Cont.

(c)

Population size S/N Mutation probability S/N Crossover rate S/N

100 1.18 0.01 1.16 1.6 1.21
200 1.20 0.03 1.17 1.8 1.25
300 1.21 0.05 1.20 2.0 1.23
400 1.17 0.07 1.19 2.2 1.25

(d)

Pmax S/N n S/N

50 1.12 1 1.14
100 1.23 2 1.17
150 1.19 3 1.18
200 1.17 4 1.19

(e)

Population size S/N SMP S/N MR S/N

100 1.11 5 1.10 0.10 1.12
200 1.24 10 1.15 0.30 1.16
300 1.17 15 1.17 0.50 1.18
400 1.15 20 1.21 0.70 1.20

(f)

Population size S/N Vf S/N Nmax S/N

100 1.10 0.005 1.12 0.02 1.14
200 1.12 0.010 1.15 0.04 1.17
300 1.14 0.015 1.17 0.06 1.12
400 1.16 0.020 1.14 0.08 1.21

3.3. Results of Hybrid ANN, ANFIS, and SVM Models

In this section, the results of developed hybrid models are presented and compared with each
other and with the usual ANFIS, ANN, and SVM models. These models are hybridized with GOA,
CSO, KA, WA, PSO, and GA meta-heuristic optimization algorithms. The results of models in three
piezometers of 6, 9, and 10 as shown in Figure 6, are presented and discussed. These piezometers were
selected as samples to evaluate the ability of new hybrid models.
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• piezometer 6

Table 3 and Figure 7a show the results of hybrid optimized and standalone soft computing models
for piezometer 6. Results indicated that ANFIS-GOA was the most accurate model and is selected as the
optimum model that was verified by a value of RMSE = 1.12 m, MAE = 0.812 m, NSE = 0.95, and PBIAS
= 0.12 for the training level. For the testing phase assessed with the ANFIS-GOA, results indicated a
value of RMSE: 1.21 m, MAE: 0.878 m, NSE: 0.93, and PBIAS: 0.15 which reflected better performance
in comparison to other models. From Table 3, results indicated that the SVM model with the higher
values of RMSE, MAE, and PBIAS and lower values of NSE was the worst model among other models.
Among the hybrid ANN models, the ANN-GOA outperformed the ANN-CSO, ANN-GA, ANN-PSO,
ANN-WA, and ANN-KA models with the best values for RMSE = 1.21 m, MAE = 0.878 m, NSE = 0.93,
PBIAS = 0.15 in the test stage. The ability of GA was lower than that of CSO, PSO, WA, and KA
because of higher values of RMSE, MAE, and PBIAS and lower values of NSE in train and test steps as
presented in Table 3. Among SVM models, the hybrid SVM-GOA was observed to have the lowest
value of NSE and the highest values of RMSE, MAE, and PBIAS. It was important to mention that
the standalone SVM, ANN, and ANFIS had worse performance than hybrid ANN, SVM, and ANFIS
models that indicates the superiority of hybridization in model developments. Among PSO, CSO, GA,
KA, and WA, the CSO had better results than the other optimization algorithms. The general results
showed that ANFSI model was superior to the SVM and ANN models. Additionally, the ANN model
had lower values of RMSE and MAE than did the SVM model. Additionally, the results of ANFIS-GOA
as the best model in piezometer 6 in comparison with standalone ANFIS shows that meta-heuristic
hybridizations improved the model performances in train and test steps. The percent of RMSE, MAE,
NSE, and PBIAS improvements by ANFIS-GOA in train step were 15%, 4%, 13%, and 208% and
these values for the test steps of ANFIS-GOA are 33%, 44.6%, 16.3%, and 173%, respectively, that
clearly confirm the superiority of developed hybridization schemes in GWL modelling. Additionally,
in Figure 7a, the scatter plots of training and testing steps visualize the performance of ANFIS-GOA
compared to the other models. Furthermore, simulations coincide very well with the observed values
and all of the data points concentrated over the y = x line with R2 = 0.93. Furthermore, this figure
shows that other hybridized models such as CSO, PSO, KA, WA, GA, and standalone ANFIS have less
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accuracy in high and low values of GWL, while the ANFIS-GOA over all of low to high values of GWL
performed accurately in regard to the observations.

Table 3. Statistical characteristics of applied hybrid models for piezometer 6.

Model
Training Testing

RMSE MAE NSE PBIAS R2 RMSE MAE NSE PBIAS R2

ANFIS-GOA 1.12 0.812 0.95 0.12 0.95 1.21 0.878 0.93 0.15 0.93
ANN-GOA 1.24 0.815 0.92 0.14 0.94 1.25 0.897 0.91 0.16 0.92
SVM-GOA 1.25 0.817 0.91 0.17 0.91 1.29 0.901 0.90 0.18 0.90

ANFIS-CSO 1.14 0.819 0.94 0.15 0.94 1.30 0.899 0.92 0.17 0.92
ANN-CSO 1.28 0.821 0.93 0.18 0.93 1.34 0.935 0.90 0.19 0.90
SVM-CSO 1.32 0.823 0.90 0.20 0.89 1.38 0.939 0.89 0.22 0.87
ANFIS-KA 1.19 0.825 0.93 0.16 0.93 1.41 1.01 0.91 0.24 0.90
ANN-KA 1.30 0.829 0.91 0.22 0.90 1.42 1.09 0.89 0.25 0.88
SVM-KA 1.33 0.832 0.89 0.24 0.88 1.43 1.12 0.87 0.26 0.85

ANFIS-WA 1.21 0.827 0.92 0.27 0.92 1.45 1.10 0.89 0.28 0.93
ANN-WA 1.32 0.832 0.90 0.29 0.90 1.47 1.14 0.86 0.31 0.87
SVM-WA 1.35 0.833 0.88 0.33 0.84 1.51 1.16 0.85 0.35 0.83

ANFIS-PSO 1.24 0.829 0.88 0.35 0.90 1.53 1.12 0.84 0.37 0.89
ANN-PSO 1.35 0.835 0.87 0.37 0.89 1.55 1.17 0.85 0.39 0.86
SVM-PSO 1.37 0.839 0.86 0.39 0.83 1.52 1.19 0.83 0.43 0.82
ANFIS-GA 1.28 0.835 0.87 0.35 0.88 1.59 1.21 0.82 0.37 0.87
ANN-GA 1.32 0.839 0.85 0.39 0.87 1.62 1.23 0.81 0.40 0.84
SVM-GA 1.35 0.842 0.83 0.41 0.82 1.71 1.25 0.80 0.42 0.81

ANFIS 1.30 0.844 0.84 0.37 0.85 1.61 1.27 0.80 0.41 0.83
ANN 1.38 0.849 0.82 0.43 0.87 1.73 1.29 0.78 0.45 0.84
SVM 1.40 0.851 0.81 0.45 0.80 1.75 1.32 0.77 0.47 0.79

• piezometer 9

Results of hybrid models for piezometer 9 in Figure 7b and Table 4 indicated that the hybrid ANN,
ANFIS, and SVM models had better performance than the standalone ANN, SVM, and ANFIS models,
the same as the results for piezometer 6 in the previous subsection. Among ANFIS hybrid models, the
hybrid ANFIS-GOA was confirmed to have the best performance with the smallest values of RMSE
= 1.16 m, MAE = 0.818 m, and PBIAS = 0.14 and the highest values of NSE = 0.94 in the training
stage and in testing stage these values were 1.22 m, 0.881 m, 0.17, and 0.92 respectively. The ANFIS
model provided the best RMSE, PBIAS, MAE, and NSE among other models. The best values of
RMSE, MAE, PBIAS, and NSE for ANN-GOA in the training phase were 1.25 m, 0.819 m, 0.91, and
0.19, respectively. Results indicated that the SVM model had the worst performance among other
models. For the testing phase assessed with SVM-GOA, the results indicated a value of RMSE: 1.31 m,
MAE: 0.903 m, NSE: 0.89, and PBIAS: 0.20 which reflected better performance than the SVM model
and indicates the improvements when SVM is hybridized with the GOA. Results of Table 4 indicated
that GOA and GA were the best and worst algorithms among other algorithms. As observed in Table 4
and Figure 7b, the evolutionary ANN models had more accuracy than the evolutionary SVM model
because of lower values of RMSE, MAE, and PBIAS and higher values of NSE. However, no major
differences were observed in GWL predictions of piezometers 6 and 9 predictions by ANFIS-GOA.
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Table 4. Statistical characteristics of applied hybrid models for piezometer 9.

Model
Training Testing

RMSE MAE NSE PBIAS R2 RMSE MAE NSE PBIAS R2

ANFIS-GOA 1.16 0.818 0.94 0.14 0.96 1.22 0.881 0.92 0.17 0.94
ANN-GOA 1.25 0.819 0.91 0.15 0.95 1.27 0.899 0.90 0.18 0.93
SVM-GOA 1.27 0.821 0.90 0.19 0.91 1.31 0.903 0.89 0.20 0.90

ANFIS-CSO 1.18 0.820 0.93 0.16 0.95 1.32 0.901 0.91 0.19 0.93
ANN-CSO 1.29 0.823 0.92 0.19 0.94 1.36 0.938 0.88 0.18 0.92
SVM-CSO 1.33 0.825 0.91 0.22 0.89 1.39 0.940 0.87 0.20 0.88
ANFIS-KA 1.20 0.827 0.92 0.18 0.94 1.34 1.05 0.90 0.22 0.92
ANN-KA 1.31 0.831 0.90 0.23 0.91 1.44 1.10 0.86 0.23 0.90
SVM-KA 1.35 0.833 0.88 0.25 0.87 1.45 1.14 0.85 0.27 0.86

ANFIS-WA 1.22 0.829 0.91 0.28 0.91 1.49 1.12 0.83 0.29 0.90
ANN-WA 1.36 0.834 0.89 0.30 0.89 1.51 1.15 0.82 0.32 0.88
SVM-WA 1.38 0.835 0.87 0.34 0.86 1.53 1.17 0.83 0.37 0.85

ANFIS-PSO 1.27 0.831 0.86 0.36 0.87 1.55 1.19 0.81 0.39 0.86
ANN-PSO 1.39 0.837 0.85 0.38 0.87 1.57 1.23 0.80 0.40 0.85
SVM-PSO 1.40 0.840 0.84 0.40 0.85 1.59 1.25 0.83 0.45 0.84
ANFIS-GA 1.29 0.839 0.83 0.39 0.85 1.61 1.28 0.80 0.39 0.84
ANN-GA 1.42 0.840 0.82 0.40 0.86 1.63 1.29 0.79 0.42 0.84
SVM-GA 1.43 0.843 0.81 0.42 0.82 1.69 1.32 0.77 0.43 0.81

ANFIS 1.33 0.845 0.82 0.39 0.84 1.71 1.39 0.79 0.42 0.83
ANN 1.44 0.851 0.80 0.44 0.85 1.76 1.40 0.77 0.47 0.83
SVM 1.45 0.852 0.79 0.47 0.81 1.77 1.43 0.76 0.49 0.78

• piezometer 10

Here the results of models in piezometer 10 are evaluated. As observed in Table 5, results
indicated that the ANFIS-GOA was better in terms of minimizing RMSE, MAE, and PBIAS than the
other models. ANFIS-GOA reduced RMSE error by 7.01% and 7.04% compared to ANN-GOA and
SVM-GOA, respectively. The standalone ANFIS, ANN, and SVM models provided worse results than
the hybrid models. The SVM model provided the worst performance among other models. The NSE
of ANFIS-GOA, ANFIS-CSO, ANFIS-KA, ANFIS-WA, ANFIS-PSO, and ANFIS-GA was 0.91, 0.90, 0.89,
0.79, and 0.75, respectively. GA had the worst performance among other algorithms. As is shown
in Table 5, the error in the estimated GWL by using GA was more than that of PSO, KA, WA, GA,
CSO, and GOA. Overall, the percent of improvements in the ANFIS-GOA versus standalone ANFIS in
piezometer 6 were 14.4%, 3%, 17.8%, and 181% for RMSE, MAE, NSE, and PBIAS in training stage and
40.7%, 55%, 25%, and 132% in testing stage, respectively. These values again confirm that all of the
hybridized models performed more accurately than the stand-alone models and indicate the generality
of hybridizing Taguchi with training procedure compared to the classical standalone models.
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Table 5. Statistical characteristics of applied hybrid models for piezometer 10.

Model
Training Testing

RMSE MAE NSE PBIAS R2 RMSE MAE NSE PBIAS R2

ANFIS-GOA 1.18 0.819 0.93 0.16 0.96 1.23 0.911 0.91 0.19 0.94
ANN-GOA 1.27 0.821 0.90 0.17 0.95 1.28 0.921 0.90 0.20 0.94
SVM-GOA 1.29 0.823 0.89 0.20 0.89 1.32 0.925 0.87 0.21 0.88

ANFIS-CSO 1.20 0.822 0.92 0.17 0.95 1.34 0.914 0.90 0.22 0.93
ANN-CSO 1.31 0.824 0.91 0.20 0.92 1.37 0.926 0.87 0.23 0.90
SVM-CSO 1.35 0.827 0.90 0.23 0.87 1.40 0.930 0.86 0.25 0.86
ANFIS-KA 1.22 0.829 0.89 0.19 0.94 1.41 1.10 0.89 0.24 0.91
ANN-KA 1.33 0.833 0.87 0.24 0.89 1.43 1.12 0.85 0.26 0.88
SVM-KA 1.37 0.835 0.86 0.27 0.85 1.47 1.17 0.84 0.28 0.84

ANFIS-WA 1.24 0.837 0.90 0.29 0.90 1.50 1.14 0.82 0.30 0.89
ANN-WA 1.37 0.839 0.88 0.31 0.88 1.52 1.16 0.81 0.33 0.87
SVM-WA 1.39 0.840 0.86 0.35 0.84 1.54 1.18 0.80 0.38 0.82

ANFIS-PSO 1.29 0.838 0.85 0.37 0.89 1.56 1.20 0.79 0.40 0.87
ANN-PSO 1.40 0.842 0.84 0.39 0.87 1.58 1.25 0.78 0.41 0.86
SVM-PSO 1.41 0.844 0.83 0.41 0.83 1.60 1.27 0.77 0.43 0.81
ANFIS-GA 1.31 0.839 0.82 0.42 0.86 1.62 1.29 0.76 0.42 0.85
ANN-GA 1.44 0.845 0.81 0.43 0.88 1.65 1.32 0.75 0.44 0.85
SVM-GA 1.45 0.847 0.80 0.44 0.82 1.71 1.33 0.74 0.45 0.80

ANFIS 1.35 0.849 0.79 0.45 0.85 1.73 1.41 0.73 0.44 0.84
ANN 1.45 0.853 0.78 0.47 0.85 1.77 1.42 0.72 0.49 0.82
SVM 1.47 0.855 0.77 0.49 0.8 1.78 1.45 0.70 0.50 0.79

3.4. Analysis of Scatterplots of Soft Computing Models

• piezometer 6

Scatterplots for the soft computing models are provided in Figure 7a for the training and testing
phases. It is clear that the hybrid ANFIS-GOA predictions were much closer to the measured data
in the testing and training phases with a higher coefficient of determination. This result indicated a
better correlation and a larger degree of statistical match between measured and predicted data of
ANFIS-GOA relative to the other hybrid ANN and SVM models. The R2 values were found to vary
in the range of 0.84–0.94 and 0.79–0.91 for the ANN (hybrid ANN models and based ANN model)
and SVM models (hybrid SVM models and based SVM model), respectively. The SVM model had the
lowest R2 among other models. Additionally, the ANFIS-GA, ANN-GA, and SVM-GA models had the
lowest R2 among other hybrid ANFIS, ANN, and SVM models. There is a weak agreement between
the lower and higher values of the actual and estimated GWLs in this scatter plots of piezometer 6,
unlike the ANFIS-GOA results.

• piezometer 9

As observed in Figure 7b, the R2 values of testing phase were 0.94, 0.93, 0.92, 0.90, 0.86, 0.84,
and 0.83 for ANFIS-GOA, ANFIS-CSO, ANFIS-KA, ANFIS-WA, ANFIS-PSO, ANFIS-GA, and ANFIS
model, respectively. GOA had a better performance than other optimization algorithms. The outputs
indicated that all hybrid optimized ANFIS, ANN, and SVM models outperformed the standalone
ANFIS, ANN, and SVM models. As the results in Table 4 show incorporating the Taguchi and GOA in
ANFIS training enhanced the R2 values 13% in comparison with the standalone ANFIS and in all of the
developed models the hybridized meta-heuristic models outperformed the single standalone models.

• Piezometer 10

The results of Figure 7c indicated that the ANFIS-GOA and SVM models produced the best and the
worst results, respectively. It is clear that developed hybrid ANFIS-GOA model forecasting of GWL was
less scattered and closer to the straight line of 1:1 than those the other models and it shows impressive
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results in regard to the other models. For training and testing phases, GA had a worse performance
than CSO, PSO, KA, WA, and GOA because of the lower values of R2. The standalone ANFIS model
had the worst performance among the ANFIS-GOA, ANFIS-CSO, ANFIS-WA, ANFIS-PSO, ANFIS-GA,
and ANFIS-KA models. The ANFIS-GOA model with R2 = 0.94 as is presented in Table 5, the values of
GWL simulated by the ANFIS-GOA are almost equal to the observed values of GWL. The linear fit of
the forecasted GWL and measured GWL results have a high correlation coefficient that is very close to
1.00 (R2 =0.97) and a perfect correlation coefficient (R2 value) of 0.94, confirmed that the simulation
model has provided a very good prediction of the observed values of GWL. Additionally, 94% of the
observed GWL values accurately fit the hybrid ANFIS-GOA model predictions.

3.5. Uncertainty Analysis of Soft Computing Models

As stated in the aims of the current study, the uncertainty analysis of hybrid intelligence models is
another major contribution and novelty of the present study. The same as the previous subsections,
in this section the results of uncertainty analysis of hybrid models in selected three piezometers are
provided and comparative evaluation between different hybrid models are presented. The hybrids of
ANFIS, SVM, and ANN models with GOA, WA, KA, PSO, and GA are joined with the non-parametric
Monte-Carlo Simulations (MCSs) to quantify the uncertainty of developed models in GWL simulations.
The probability of model predictions in MCSs is considered as a degree of uncertainty of model results
and demonstrates the probabilities in the GWL forecasting bands that enclosed the observed GWL
inside these bounds of probability.

• Piezometer 6

In the trained hybrid models, the uncertainty in the model trained parameters and weights is the
major source of uncertainty in model results. Here the effects of uncertainty in trained, optimization,
and determination of parameters, and weights of intelligence developed hybrid models for piezometer
6 are presented. For training and testing stage, the uncertainty of the models results in piezometer 6
are provided in Figure 8a and in Table 6. The uncertainty results are quantified by the two indices of p
and d and visualized by the uncertainty bounds of 95%. At first, the values of p show how many of
the observed GWL values in the training and testing stages are positioned inside the 95% confidence
bounds. Secondly, the d-factor as the measure of deviations should be small also. Figure 8 indicated
that the highest and lowest d was obtained for SVM and ANFIS-GOA, respectively. Based on p and d
indices, CSO had better performance than PSO, GA, KA, and WA. Results indicated that the standalone
ANN, ANFIS, and SVM models had higher d and lower p than hybrid ANFIS, ANN, and SVM models
that indicate higher uncertainty in the standalone model results. The overall comparison of the results
indicated that the ANN model outperformed the SVM model. The d values of uncertainties of models
in Table 6 show that in all of developed models for GWL the d value is lower than 1, that proves the
superior tight bounds of developed models. The best results are derived by the ANFIS-GOA with
d = 012 and p = 0.94 indicates that developed model 95% of observations are covered by the uncertainty
bounds. The desired values for p in model uncertainty analysis have values greater than 80% [49].

• Piezometer 9

As presented in Table 6 and in Figure 8b, SVM-GOA and SVM had the lowest and highest d
among SVM models. According to Table 6, GOA outperformed CSO and KA, but both algorithms
were better than GA, PSO, and WA. The p-value of the standalone ANFIS model was increased by the
optimization algorithms. GA provided lower performance in the optimization of ANN with p equal to
0.83 and d equal to 0.24, compared to WA, GOA, PSO, KA, CSO, and WA.

Again, the comparisons confirm the superiority of ANFIS-GOA in uncertainty verifications that
have p = 0.94 and d = 0.16. As confirmed by these values of p in all of the developed models, all of
them are satisfactory and the major part of GWL simulations are enclosed by the 95% prediction
interval based on model prediction in Monte Carlo simulations. However, the d values that measure
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the average distance from upper and lower limits of prediction interval, for the ANFIS-GOA models
are significantly and considerably smaller than those of all of the other models. In general, the benefits
of ANFIS-GOA models over the other models is two-fold. At first, the GOA based models provide a
more accurate prediction of GWL with fewer errors. Secondly, the confidence interval of ANFIS-GOA
model results is much narrower and yet encloses almost the greatest percent of observation in MCSs.

Table 6. The results of uncertainty of soft computing models.

Model
Piezometer 6 Piezometer 9 Piezometer 10

p d p d p d

ANFIS-GOA 0.94 0.14 0.94 0.16 0.95 0.17
ANN-GOA 0.93 0.16 0.91 0.17 0.93 0.19
SVM-GOA 0.86 0.23 0.86 0.20 0.89 0.27

ANFIS-CSO 0.93 0.15 0.93 0.15 0.92 0.17
ANN-CSO 0.91 0.19 0.92 0.21 0.91 0.20
SVM-CSO 0.84 0.21 0.88 0.23 0.88 0.29
ANFIS-KA 0.90 0.15 0.92 0.17 0.89 0.18
ANN-KA 0.89 0.20 0.87 0.19 0.87 0.21
SVM-KA 0.86 0.21 0.89 0.19 0.86 0.29

ANFIS-WA 0.90 0.19 0.89 0.19 0.85 0.18
ANN-WA 0.86 0.23 0.84 0.24 0.84 0.19
SVM-WA 0.89 0.27 0.85 0.25 0.83 0.29

ANFIS-PSO 0.89 0.21 0.86 0.19 0.84 0.19
ANN-PSO 0.84 0.25 0.85 0.20 0.82 0.21
SVM-PSO 0.84 0.27 0.84 0.24 0.81 0.31
ANFIS-GA 0.87 0.20 0.83 0.24 0.82 0.20
ANN-GA 0.84 0.27 0.86 0.25 0.80 0.25
SVM-GA 0.80 0.32 0.89 0.29 0.79 0.30

ANFIS 0.85 0.20 0.87 0.24 0.78 0.20
ANN 0.82 0.28 0.83 0.24 0.77 0.27
SVM 0.80 0.35 0.82 0.29 0.76 0.33

• Piezometer 10

From Table 6, it was observed that ANFIS-GOA yielded the most dominant performance
among other models. The weakest model in the optimization of the ANFIS model was ANFIS-GA
with a p of 0.82 and d of 0.20. The ANN model provided better performance than the SVM model.
The corresponding performance values of the SVM-GA model had p of 0.79 and d of 0.30. The standalone
SVM model had the worst performance among other models.
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However, general results indicated that the ANFIS-GOA has the best performance among other
models. Figure 9 shows the coefficient of variation for different optimization algorithms. ANFIS-GOA
had a lower coefficient of variation than other models and optimization algorithms. The worst results
were for GA. In general, there are three main sources that generate the uncertainty of model outputs:
the first one is the data and knowledge uncertainty, the second one is the parametric uncertainty due to



Sustainability 2020, 12, 4023 36 of 42

unknown model parameters, and the third one is the structural uncertainty due to physical complexity
of phenomena. The main contribution of the current paper is the uncertainty analysis of hybrid models
prediction of GWL in the form of parametric uncertainty due to regulatory parameters and weights
produced in the training stage of models.

3.6. Spatiotemporal Variation of GWL

The previous section indicated that the GOA improved the performance of ANN, ANFIS, and
SVM models. The results indicated that the GOA had better performance than other optimization
algorithms. As shown in Figure 9, the hybrid GOA models (ANFIS-GOA, ANN-GOA, and SVM-GOA)
have low variation coefficients in modeling.

Most literature reviews revealed only a few quantity comparisons. Furthermore, they did not
include the spatiotemporal variation of GWL. In this section, the latitude, longitude, H(t-1), H (t-2),
H (t-3), H (t-4), and H (t-5), hydraulic conductivity (HC), and specific yield of nine observed wells
(well 6, 9, 10, 24, 11, 4, 7, 8, and 1) were used to provide the spatiotemporal variation of GWL for
different months. The Ardebil plain is a heterogeneous aquifer. Thus, the hydraulic conductivity and
specific yield spatially vary in the Ardebil plain. HC is a measure of a material’s capacity to transmit
water. The specific yield is defined as the ratio of the volume of water that an aquifer will yield by
gravity to the total volume of the aquifer. A pumping test method was used to obtain the value of the
hydraulic conductivity and specific yield. Figure 10 shows the measured hydraulic conductivity and
specific yield for the Ardebil plain. In this section, the ANFIS, ANN, and SVM models with the best
algorithm (GOA) were used to provide the spatiotemporal variation of GWL. The difference between
estimated GWL models and observed GWL was computed for all months of years. The RMSE was
used as an error function to compare the estimated data with the observed data. From Figure 11, it was
clear that the ANFIS-GOA provided more accurate estimation than ANN-GOA and SVM-GOA. It was
clear that the RMSE of ANFIS-GOA varied from white (1.2 m) to dark blue (2.2), while the RMSE of
ANN-GOA and SVM-GOA varied from 1.7 (yellow) to 2.7 m (light green). Thus, results indicated
that ANFIS-GOA has higher accuracy for the heterogeneous aquifers. The heterogeneous aquifers
are considered as complex hydraulic systems because their hydraulic parameters vary spatially and
temporally. Additionally, the climate parameters, such as temperature and rainfall, can increase the
complexity of prediction of GWL for heterogeneous aquifers.
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4. Conclusions

In this study, the ANFIS, ANN, and SVM models were used to predict groundwater level.
The GOA, CSO, GA, PSO, WA, and KA were used to fine-tune and integrate with the ANN, SVM, and
ANFIS models. Three piezometers (6, 9, and 10) in the Ardebil plain were considered as a case study for
the GWL investigation. The input combinations of time series (up to 12-month lag) were reduced using
principal component analysis (PCA). For the testing phase and piezometer 6 ANFIS-GOA indicated a
value of RMSE: 1.21, MAE: 0.878, NSE: 0.93, and PBIAS: 0.15 which reflected better performance than
the other models. The R2 values were found to vary in the range of 0.84–0.94 and 0.79–0.91 for the ANN
(hybrid ANN models and based ANN model) and SVM models (hybrid SVM models and based SVM
model), respectively. The results indicated that the SVM model had the lowest R2 among other models.
It was observed that the ANFIS-GOA yielded the most dominant performance among other models.
From uncertainty analysis, the weakest model in the optimization of the ANFIS model was ANFIS-GA
with a p = 0.87 and d = 0.21. However, general results indicated that the ANFIS-GOA had better
performance than other models. Additionally, the results of spatiotemporal variations maps of GWL
showed that ANFIS-GOA has high accuracy for the heterogeneous Ardebil aquifer. Future studies can
evaluate the accuracy of these models under climate change conditions. The climate parameters such
as temperature and rainfall can be simulated for future periods. Then, these parameters can be used as
input to the models to simulate GWL for the future periods.
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