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Abstract: This research examines the phenomenon of food delivery services from the mobile app user’s
perspective and how consumers’ lifestyles are changing because of the convenience provided by the
apps. By means of an online survey targeted at US food delivery app customers, our study analyzes the
main motivations that lead them to use and recommend these technology-based services. The results
of the study revealed that some of the theory of planned behavior model variables (i.e., attitude
toward the behavior, subjective norms), influence customer use and word-of-mouth (WOM) intentions.
Security influences intention to spread WOM, whereas customer lifestyle compatibility influences
intention to use the food delivery apps. A post hoc analysis revealed that perceived control is only
important for older customers, who need to perceive that they control the apps before they will
recommend them to other customers. The findings of the study are discussed and contrasted with
previous research in the field. The managerial implications derived from the findings provide practical
guidance for food delivery app companies. Further research avenues are suggested to encourage
scholars to continue investigating the challenge of the diffusion of mobile apps in the food delivery
and related sectors.

Keywords: food delivery; mobile apps; security; lifestyle; WOM; consumer behavior; digital markets;
home delivery; smartphones

1. Introduction

Today’s accelerated lifestyle and the intense use of technologies encourage customers to purchase
through mobile apps [1,2]. People search for new alternatives to make everyday tasks easier and
adapted to their lifestyles [3,4]. In particular, last-mile logistic services are increasingly offering
innovative solutions ranging from home deliveries to logistic service providers placing e-commerce
packages in self-collection points [5]. Home delivery services are convenient for online shoppers [6] and
are an essential part of urban logistics services [7]. Furthermore, thanks to mobile phone applications,
home delivery services have become even more important because customers prefer to enjoy products
at the right time, right place, in the right quantity, and in the right condition [6,8].

The delivery service phenomenon has been defined as “the delivery service offered by a store
to deliver its products to the buyer’s home” [9]. Among online delivery services, food delivery is
one of the fastest growing [10]. Although the concept is not new, several companies have emerged
in recent years and gained worldwide popularity because of increased mobile app penetration [11].
Home delivery provides value-added to all the actors in the system, which, while it adds complexity
to the distribution process, creates competitive advantage by better satisfying customers [12,13].

In the food delivery subsector home delivery is the activity in which a food distribution service
company acts as an intermediary between restaurants or bars and customers [14]. The business
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model of food delivery companies is based on the advantages offered by the Internet, that is, on the
technological capability to connect different distribution process agents. Today, this business is worth
some USD 94,385,000,000 globally [15]. Food delivery companies are taking control of the food business
market because they offer an easy and fast service oriented to better fulfill customers’ demands for
convenience [16]. Indeed, revenues are expected to achieve an annual growth rate of 9.3%, reaching a
market volume of USD 134,490,000,000 by 2023 [15]. Previous studies in the distribution field have
confirmed that the use of apps is crucial for gaining a competitive advantage in the sector [11].

Mobile apps are today an essential part of everyday life [17]. High-speed Internet access,
the increased proliferation of smartphones [2], advances in personalized and interactive apps
(e.g., geo-tracking [18]), and the fast rhythm of modern life [19] have created a fertile environment for
the adoption of mobile applications. Indeed, the 2.7 billion smartphone users across the world spend
90% of the time they spend on their mobiles on apps [20]. The average smartphone owner uses 30 apps
per month and nine apps per day; this development has changed individuals´ lifestyles and turned
occasional app use into a daily habit [21]. Focusing on food delivery, a third of US customers of these
services spend more than USD 50 per order [22], and food orders placed via mobile apps will be a USD
38,000,000,000 industry by the end of 2020 [23]. The mobile food delivery app market in the US is led
by Seamless, followed by GrubHub (with 20 million active users and 115,000 associated restaurants)
and Uber Eats [24]. In Europe, the market is led by apps that operate in several countries, such as
the Denmark-based Just-Eat (24 million active global customers and 93,700 restaurants), the British
Deliveroo, and the Spanish Glovo [25]. By using food delivery apps, customers can access food from
where they want and order their favorites from a wide range of restaurants at convenient times and
locations [11]. Although food delivery apps are an important delivery context, little is known about
why people use and recommend them. Therefore, it is crucial for practitioners and academics to
better understand customers’ perceptions and motivations to use food delivery apps and to spread
word-of-mouth (WOM) about them among other customers [26].

The technology, especially the mobile app, plays a central role in the food delivery process.
In particular, in last-mile logistic services, online technologies allow companies to deliver orders to a
specific place at a specific moment with high accuracy and reliability [27]. The food delivery service
commonly has a fixed cost, which is based on agreements made with the establishments and on the
distance between the restaurant and the consumer’s address. This simple process led to a diffusion of
these food delivery mobile apps among customers and fierce competition between platforms. In this
sense, the previous literature identified some key factors in mobile app use and recommendation,
such as attitude toward the app [28,29]. On the other hand, previous studies returned contradictory
results about the influence of other factors, such as consumers’ perceived control [30–32], an aspect that
can be strategic in the food delivery context [33]. Furthermore, other social factors could be important
in the context of mobile app usage, such as lifestyle compatibility, which has not yet been examined in
the literature in this field. It will, thus, be very important for the food service companies to assess the
principal factors that motivate the customer to use, and diffuse WOM about, their apps before they
add further innovative features/updates; this will allow them to better adapt to consumers’ needs and
demands (e.g., drones reduce energy consumption and carbon dioxide emissions [34].)

Over the last three decades marketing research has focused strongly on new technology evaluation
and adoption [35–39]. Social-psychological models are useful tools in this regard for analyzing
decision-making factors and processes; the theory of planned behavior (TPB) [35] is a model commonly
used to predict consumer intentions and behaviors in this domain [36]. The TPB proposes that
the individual’s attitudes, subjective perceptions about others’ opinions, and self-perceptions about
available resources (e.g., skills) determine his/her behavioral intentions and behaviors [40]. However,
some authors found that in specific digital contexts customers are motivated by particular technological
and sociological factors, such as perceptions of security [41] and customer lifestyle [36]. Security
breaches associated with online commercial transactions are a major impediment to the more rapid
development of online delivery apps [42]. For example, in September 2019, 172 available Android
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apps contained some form of malware, and these apps had been installed more than 335 million
times [43]. Prior studies noted that Internet transactions require customers to place their trust in
the firm’s security, since they have to provide personal information and credit card numbers [44,45].
From a complimentary sociological approach, the previous literature identified lifestyle as a main
determinant of the individual’s intention to adopt products, brands, and services [36,46]. Lifestyle
is a well-known research variable for segmenting target markets [47]. Therefore, we aim to better
understand the relative importance of security perceptions and consumer lifestyles, in order to design
appropriate solutions, thereby attracting new and retaining current users.

To advance the previous knowledge in the field we aim to confirm whether the traditional variables
proposed in the technology adoption literature continue to be relevant in this novel context, and to
what extent specific technological and sociological factors directly related to food delivery mobile
apps (i.e., security and lifestyle compatibility) play an important role in customer decision-making.
In addition, whereas previous research into food delivery app adoption focused on intention to use,
our research goes one step further by proposing that both consumer use and WOM (word-of-mouth)
intentions are crucial for the success of these technology-based services. This contribution is particularly
valuable, given the growing importance of consumer WOM as a source of information that impacts on
other customers’ opinions and decisions [48,49]. Consequently, based on the TPB [35] and previous
research into technology acceptance in the current home delivery setting, our study proposes an
integrated framework to evaluate the main motivators of customers’ use of, and WOM intentions for,
online food delivery services.

The contribution of this research is threefold. First, the article contributes to the better
understanding of the food delivery phenomenon and the nature of the basic determinants
(e.g., subjective norms as a social influence) that are contributing to the growth of the food delivery
industry from a customer perspective. A post hoc analysis helps clarify the role of perceived control,
which seems to be partly dependent on the customer’s age. Second, as the business model relies
on technology (i.e., smartphone applications, online orders), we explore whether perceived security,
previously examined in other contexts (e.g., e-commerce), is relevant in the case of food delivery apps.
Third, we explore whether a sociological aspect, mobile app lifestyle compatibility—if mobile apps fit
the consumer’s lifestyle—has an impact on customers’ intention to use, and to spread WOM about,
these services. Finally, we provide practitioners with a useful guide to the key factors (e.g., demographic
segmentation) that must be managed to guarantee the success and sustainability of these recently
introduced services.

The paper is structured as follows. An initial section explains the food delivery service concept,
how it works, and how it has evolved in recent years. The literature review section then discusses the
TPB model, and the current importance of perceived security and customer lifestyle in the success
of mobile apps. The research hypotheses are then formulated. Thereafter, the methodology section
describes the procedure conducted to collect customers’ opinions and perceptions about food delivery
mobile apps and the analyses performed to test the hypotheses. The discussion section then presents the
main conclusions derived from the results and their implications for management. Finally, we describe
the main limitations of the study and suggest further research lines to advance this emerging field.
Overall, this research clarifies which traditional and novel context-specific factors motivate customers
to use and recommend food delivery mobile apps and contribute to the successful diffusion of these
technology-based services.

2. Literature Review

Theoretical Underpinnings

The theory of planned behavior (TPB), which considers the roles of the individual and social
influence, is one of the most extensively accepted in the explanation of technology adoption
behaviors [38]. The TPB, developed by Ajzen [35], has been used to explain various behaviors
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such as understanding how users interact with virtual communities [50], online services [37], students’
intention to use technology [51], mobile services [38], last-mile logistic services [5], and drone
delivery [52].

The TPB is based on the theory of reasoned action (TRA). The TRA proposes that behavioral
intentions are conditioned by attitudes and subjective, or social, norms that pressure the individual to
adopt specific behaviors [53,54]. More recently, Ajzen added to the TRA model a third explanatory
element of consumer intentions and behavior, the variable of perceived control [55,56], thus developing
the TPB model. Consequently, the TPB model establishes that individual attitudes, subjective norms,
and perceived control explain the behavioral intention of the individual and, thus, actual behaviors [35].

To better understand the diffusion of food delivery apps among customers, this research aims to
explain the two most crucial indicators of customer loyalty in mobile app-based businesses: intention
to use the food delivery app and WOM intentions, that is, the intention to recommend the app to other
customers [57]. Warshaw and Davis [58] defined intention to use as “the degree to which a person
has formulated conscious plans to perform or not perform some specified future behavior.” In turn,
WOM is direct face-to-face or online (eWOM) interpersonal communication. Consumers tend to assign
greater credibility to information provided by other consumers similar to themselves than to traditional
advertising; consequently, WOM recommendations play a more important role in reducing perceived
risk when selecting alternatives [59]. This is especially important in service provision because the
intangibility of services means that potential consumers cannot possess relevant knowledge before
using them [60]. Therefore, other people’s assessments are particularly important when evaluating
services [61]. Thus, WOM intention is understood as informal communication between people about a
brand, organization, or service, where the communicator is perceived as non-commercial [62].

To explain these two loyalty-related behavioral intentions (food delivery app use and WOM),
we propose, see Figure 1, a holistic research framework in which key determinants identified in previous
literature (i.e., the TPB model: attitude, the subjective norm, perceived control) are complemented by
perceptions about technological (i.e., security) and sociological aspects (i.e., lifestyle).

Figure 1. Research framework.
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3. Hypotheses Development

3.1. The Influence of Attitudes

Previous literature focused widely on the concept of attitude and its influence on individuals’
behavioral intentions, as proposed in the TPB model. Among other contexts, the influence of attitude
was analyzed as a precursor of behavioral intentions in subjects’ choices of tourist destinations [63],
digital press [64], electronic public services [65], mobile commerce [66], and artificial intelligence
services [67].

Attitude is defined as “the degree to which a person has a favorable or unfavorable evaluation
or appraisal of the behavior” [35]. From this perspective, attitude can be considered an evaluative
response to the possible development of a certain action (e.g., the purchase of a product), which could,
to different extents, be a favorable or unfavorable response. Attitudes are acquired over time through
learning processes. Thus, when the individual needs to make a decision, a previously formed attitude
appears to guide behavior [68].

In our case, we understand attitude to be an overall evaluation that customers develop when
they use mobile food delivery apps. This evaluation may be positive or negative, to a greater or lesser
extent. For example, users of food delivery apps may have more or less positive attitudes, depending
on their assessments of the apps. Therefore, if a consumer develops a positive attitude after (s)he has
evaluated home delivery apps, his or her intention to use the apps and spread WOM about them will
be positive. Accordingly, we propose our first hypotheses:

Hypotheses 1a (H1a): Attitude toward food delivery apps increases intention to use the apps.

Hypotheses 1b (H1b): Attitude toward food delivery apps increases intention to spread WOM about
the apps.

3.2. The Influence of the Subjective Norm

The subjective norm reflects the strength of normative beliefs and the individual’s motivation to
comply with these beliefs [35]. Subjective norms reflect the social pressure that the individual perceives
about issues; they have a significant impact on his or her behavioral intentions [53]. Subjective norms
are largely based on the individual’s need for approval [69].

Focusing on food delivery apps, it should be noted that their extraordinary growth over the last
years [15,70] cannot be explained without taking account of the remarkable explosion of knowledge
(or buzz) about them among consumers [71]. Venkatesh and Davis [72] proposed that customers’
perceptions of subjective norms are related to value perceptions and social approval. Based on these
factors, consumers incorporate the beliefs of relevant others into their own belief structure; that is,
if a peer suggests that using a food delivery app is worthwhile, an individual may also come to
believe this [37]. The positive perception that society has of these new business models is likely to
influence the subjective norms of customers in deciding whether or not to use, and spread WOM
about, these services, and contributes to their generalized use among groups (e.g., friends, colleagues).
For these reasons we propose the following hypotheses:

Hypotheses 2a: (H2a) The subjective norm increases intention to use food delivery apps.

Hypotheses 2b (H2b): The subjective norm increases intention to spread WOM about food
delivery apps.

3.3. The Influence of Perceived Control

Perceived control reflects the individual’s perception of his or her ability to adopt a particular
behavior [35], that is, his/her belief that (s)he possesses the knowledge and/or resources required to
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develop a certain behavior [30]; an individual’s need for high levels of perceived control is negatively
related to his/her perceptions of self-efficacy [40].

Perceived control was considered by Bagozzi et al. [50] to be the ultimate cognitive determinant of
behavioral intentions. In fact, the adoption of some behaviors is often associated with difficulties that
are more relevant for certain population groups. Thus, if an individual feels unable to adopt a behavior,
this lack of self-confidence will constitute a major barrier that will make it difficult or impossible to
adopt it. Although home delivery system apps tend to very simple and provide an excellent user
experience [51], customers need to feel that they are able to control them in order to decide to use and
recommend them to others [37]. If an individual decides to use a food delivery app, knowing that
(s)he can control the app and its delivery protocols will undoubtedly make it much more likely that
(s)he will use the service and, as a result, will spread positive WOM about the experience. Therefore,
we propose:

Hypotheses 3a (H3a): Perceived control of the food delivery app increases intention to use the app.

Hypotheses 3b (H3b): Perceived control of the food delivery app increases intention to spread WOM
about the app.

3.4. The Influence of Perceived Security

The exponential growth of the mobile app market has been accompanied by a growth in mobile
users’ concerns about using them [17,73]. When using mobile apps consumers commonly need to give
personal information, which makes them particularly vulnerable to the malicious use of the data [74].
Some 64% of smartphone users reported they had concerns that apps could make them open to digital
identity theft [75].

Balapour, Nikkhah, and Sabherwal [17] defined perceived security in the mobile app context
as “the perception of the app provider’s appropriate actions to safeguard shared information from
security breaches during and after transmission through the mobile phone.” Previous studies in the
field found that perceived security is a key factor influencing behavioral intentions to install mobile
apps [76], to use mobile app features [77,78], and in customer satisfaction with mobile apps [74,79].
Specifically, Harris, Brookshire, and Chin [73] concluded that consumers’ perceptions of security are
crucial for dissipating risks associated with app use. Recently, Balapour, Nikkhah, and Sabherwal [17]
found that when users perceive that a company’s privacy policy is effective, they perceive it has higher
security levels and tend to install and use its mobile apps. Furthermore, prior research showed that the
consumer’s perceptions of financial or privacy risks have a negative influence on the image of food
delivery services [80].

Perceived security makes consumers trust that all the transaction processes will turn out well.
Higher security is perceived to provide a guarantee that personal data (e.g., name, address, credit
card number, etc.) will not be lost or stolen by third parties for illegal or unethical purposes [81].
Thus, consumers who perceive the transaction is secure are more likely to use, and to recommend,
food delivery apps; this may help other customers in their decision-making [82]. Taking this into
consideration, we propose that security perceptions about the mobile app will affect customers’ use of,
and WOM intentions toward, the service. Thus, the following hypotheses are presented:

Hypotheses 4a (H4a): Perceived security of the food delivery app increases intention to use the app.

Hypotheses 4b (H4b): Perceived security of the food delivery app increases intention to spread WOM
about the app.

3.5. The Influence of Customers’ Mobile App Lifestyle Compatibility

A central aspect of marketing research into personal characteristics and shopping involves
the predictive relationship between those characteristics and amount of time spent shopping [47].
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In particular, the study of individuals’ lifestyles provides a useful method of segmenting the target
market [46]. Lifestyle is a well-known concept in market research and consumer behavior, but it is
sometimes confused with subcultures, social movements, and status groups [83]. In the early eighties,
Cosmas [84] identified the concept with the individual’s way of life, specifically how (s)he spends
his/her time and money. Bourdieu [85] suggested that lifestyle is a system of classified and classifying
practices that represent the individual’s identity and values. Some years later, Peter and Olson [86]
defined lifestyle as “the manner in which people conduct their lives, including their activities, interests
and opinions.”

Accordingly, lifestyle compatibility influences individuals’ behavior and consumption choices of
products, brands, and services [46,87]. Thus, for marketing researchers, the identification of different
consumer lifestyles provides great advantage in predicting consumer behavior [36,88], specifically,
intention to use [89]. The adoption of a new product is driven by the need to determine a social
identity, which is reflected in the consumer’s lifestyle [90]; for example, previous research found that
lifestyle is an important predictor of mobile TV service adoption [36]. Similarly, Karahanna, Agarwal,
and Angst [91] suggested that the compatibility of one’s lifestyle with a technology that is related to
prior experience and values has a direct influence on technology use. In this line, some consumers
are accustomed to using apps (e.g., to communicate, buy, play, etc.), to the point where the apps are
fully integrated into their daily lives. Based on the above, in the growing food delivery app sector we
propose that consumers may have already developed lifestyle compatibility with continuous app use,
which could affect their intention to use the apps. In addition, if consumers are accustomed to interact
with apps, they will probably assume that food delivery apps will interest others [92], which would
increase their WOM about the apps. Thus, the following two hypotheses are proposed:

Hypotheses 5a (H5a): Mobile app lifestyle compatibility increases intention to use food delivery apps.

Hypotheses 5b (H5b): Mobile app lifestyle compatibility increases intention to spread WOM about
food delivery apps.

3.6. The Influence of Intention to Use on Intention to Spread WOM

Intention to use a product/service is motivated by the individual’s belief that the amount of
value received from consuming the product or service is greater than the value of not consuming
it [93]. Consumers who perceive this greater value are motivated to use and recommend the
product/service [57]. That is, through this positive WOM behavior, the consumer reinforces his/her own
decision [94]. Consumers contribute to societal knowledge by reporting the value of a given product or
service, in this case, a food delivery app. Brown et al. [95] suggested that previous satisfactory use of a
product or service has a clear influence on the generation of positive WOM, which becomes a behavior
that contributes to providing benefits to people around the consumer and which puts him/her in a
positive light. Consequently, in the food delivery app context, the consumer’s intention to use a food
delivery app could increase their WOM intention. Taking all these points into consideration, our last
hypothesis is:

Hypotheses 6 (H6): Intention to use the food delivery app increases intention to spread WOM about
the app.

3.7. Control Variables: Customer Demographics

In addition, based on previous marketing research on the determinants of service use and the
spreading of WOM among other customers (e.g., [81,96]), three key demographic variables (i.e., age,
gender, and occupation) are included in our framework as control variables. The number of studies
examining the role of age in consumer behavior has increased significantly in recent years [33,97].
Previous research suggested that age is an important factor in technology use, for example, in relation
to user interfaces associated with age-friendly design, such as reduction in menu complexity, better
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resolution, and larger screen and button sizes [98]. In addition, previous research found that age
affects the way in which information is processed [99], particularly in highly dynamic apps, [28].
Gender is also considered a key segmentation variable in marketing and plays an important role in
shaping consumers’ evaluations of products and services [100]. Gender differences have important
effects on decision-making processes [101]. Recent studies confirmed that gender clearly alters
preferences toward the use of platforms [97], apps [28], and technologies [102]. Finally, previous
research highlighted the importance of having an occupation in understanding how individuals make
use of technology in their everyday lives [33]. There are large differences in the behavioral patterns of
customers using Internet-based services (e.g., frequency, time of the day) based on the key personal
factor of occupation [103]. Therefore, understanding differences based on age, gender, and occupation
helps marketers to design more precise segmentation and apply different marketing strategies based
on different consumers’ needs.

4. Methodology

4.1. Data Collection

To test our research hypotheses, we conducted a survey with US users of food delivery mobile
apps. The questionnaire was designed and hosted on SurveyMonkey, through a specific link.
Some 250 participants were recruited from a panel of US customers by a market research agency.
The participants were invited to take part, receiving USD 1 for their collaboration. The questionnaire
was described as an opinion survey on food delivery apps conducted for academic purposes. The survey
was addressed to English-speaking customers who had used a food delivery app at least once in the
previous year. After a brief description of how food delivery mobile apps operate and some control
questions about their previous experience with these services, the participants had to answer questions
about the research framework variables. Two cases were eliminated because of incomplete responses;
thus, the final sample comprised 248 participants. Of these, 45.6% were women and 54.4% men;
14.5% were aged between 18 and 24 years, 29.4% between 25 and 34 years, 26.6% between 35 and
44 years, 16.5% between 45 and 54 years, 10.1% between 55 and 64 years, and 2.9% were older than 64;
56.9% had a full-time job, 10.5% had a part-time job, 10.9% were students, 8.1% were unemployed,
6.9% were retired, and the rest, 6.7%, belonged to other categories (e.g., homemaker).

4.2. Research Instrument and Measure Validation

To operationalize the constructs of the research model measurement scales were adapted from the
previous literature on food delivery services and technology use. Specifically, measures of attitude
toward food delivery apps were adapted from Belanche et al. [104], the subjective norm scale was
taken from Cheung and To [105] and Gracia et al. [106], the perceived control scale was taken from
Taylor and Todd [30] and Yang [31], the security scale items were based on Kim et al. [107], the mobile
app lifestyle compatibility scale was adapted from Taylor and Todd [30] and Dinsmore et al. [108],
intention to use the food delivery app was measured with the scale of Yang [31] and, finally, the WOM
intention scale was taken from Belanche et al. [57]. Each of these scales consisted of three items except
for attitude, which was measured by four items. All the study constructs were measured by 7-point
Likert scales (1 being “totally disagree” and 7 “totally agree”). Table 1 presents the items of each scale
developed to measure the constructs, and their factor loadings and significance.

Partial least squares structural equation modeling (PLS-SEM) was used to analyze the research
model and test the hypotheses. Specifically, statistical software SmartPLS 3.0 was employed.
PLS modeling is particularly useful for testing research models formed by numerous variables
under normality and non-normality data distribution assumptions (e.g., age, occupation) to identify
the main drivers of a key construct, and when sample size is limited [109,110], as is the case with
our study.
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Table 1. Measures used for the study constructs.

Factor Loading t-Value

Attitude

Using this food delivery app is a good idea 0.908 64.505

Using this food delivery app is a wise idea 0.930 92.042

I like the idea of using this food delivery app 0.932 92.071

Using this food delivery app would be pleasant 0.959 174.372

Subjective Norm

My family would think I should use this app 0.943 71.072

My friends would think that I should use this app 0.973 237.591

My colleagues would think that I should use this app 0.962 147.535

Perceived Control

When I use this app I feel that I have control over the
things I do 0.913 83.707

The use of this app would be under my control 0.874 35.495

When using this app I do not feel confused 0.901 61.244

Security

I think this app has mechanisms to ensure the safe
transmission of its users’ information 0.946 78.513

This app allows me to make payments securely 0.935 86.718

I feel safe using the app for conducting transactions 0.907 56.119

Mobile App lifestyle compatibility

Using mobile apps fits well with my lifestyle 0.978 224.228

Using mobile apps fits into my lifestyle 0.980 274.780

The setup of mobile apps is compatible with my lifestyle 0.964 131.055

Intention to Use

I intend to use this service 0.976 237.345

I think I will use this service 0.976 238.865

I predict I will use this service 0.968 138.579

WOM Intention

If someone asked me about this service, I would give a
positive opinion 0.965 127.890

If I had the opportunity, I would highlight the advantages
of this service 0.954 113.350

I would recommend this service 0.980 308.965

As an initial assessment of measurement validity we confirmed that all item loadings scored around
0.9 on their respective constructs (see Table 1), which is higher than the recommended benchmark
of 0.7 [111]. As shown in Table 2, the composite reliabilities of all the constructs are higher than 0.9,
proving their internal consistency. As an additional indicator of convergent validity, it was shown
that the average variance extracted (AVE) values were also higher than 0.8 for all constructs (again,
well above the benchmark of 0.5 [112], see Table 2).
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Table 2. Construct reliability.

Composite Reliability Average Variance Extracted (AVE)

Attitude 0.964 0.870

Subjective Norm 0.972 0.921

Perceived Control 0.925 0.803

Security 0.950 0.863

App lifestyle compatibility 0.982 0.949

Intention to Use 0.982 0.947

WOM Intention 0.977 0.933

To test for discriminant validity, we checked whether the value of the square roots of the AVEs
were greater than their inter-construct correlations [112]. All construct pairs satisfied this criterion,
supporting the discriminant validity of the measures. Table 3 shows the square root of the AVE values
of the constructs in our framework, and the correlations among all the study measures.

Table 3. Correlations and discriminant validity.

1. 2 3 4 5 6 7 8 9 10

1. Attitude 0.933

2. Subjective Norm 0.773 0.960

3. Perceived Control 0.755 0.624 0.896

4. Security 0.425 0.385 0.450 0.929

5. App lifestyle
compatibility 0.707 0.612 0.635 0.482 0.974

6. Intention to Use 0.837 0.817 0.643 0.410 0.681 0.973

7. WOM Intention 0.835 0.824 0.665 0.472 0.645 0.885 0.966

8. Age 0.004 0.008 0.049 0.026 −0.018 0.009 0.075 NA

9. Gender 0.093 0.033 0.096 −0.076 0.006 0.079 0.016 −0.069 NA

10. Occupation 0.021 −0.034 0.036 0.054 0.076 0.064 0.002 −0.039 0.102 NA

Notes: NA: not available. The diagonal elements (in bold) are the square roots of the AVEs (variance shared between
constructs and their measures); off-diagonal elements are the correlations among variables.

Finally, we tested for global model fit measures using PLS-SEM. Specifically, we verified that the
normed fit index (NFI) was 0.89, which is close to the recommended 0.90 [113]. The standardized
root-mean-square residual (SRMR) of the research model is 0.04, which is below 0.08, indicating good
model fit [113].

5. Results

To test the hypotheses and the structural model, the SmartPLS algorithm, followed by
bootstrapping with 5000 subsamples, was employed [114]. The results are shown in Table 4. Regarding
the hypotheses related to attitude toward the food delivery app, the results indicated that customer
attitude positively influenced intention to use the mobile app (β = 0.458, p < 0.01) and WOM intention
(β = 0.229, p < 0.01), supporting H1a and H1b, respectively. The subjective norm also had a significant
positive influence on both intention to use the food delivery app (β = 0.414, p < 0.01) and WOM
intention (β = 0.219, p < 0.01), supporting H2a and H2b. Contrary to our predictions, customers’
perceived control of the food delivery app did not significantly influence their intention to use it
(β = −0.052, p > 0.10), nor did their WOM intention (β = 0.027, p > 0.10); thus, H3a and H3b are not
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supported. Perceived security also did not significantly influence intention to use food delivery apps
(β = 0.018, p > 0.10), thus H4a is not supported. In turn, customers’ perceptions of security increased
their WOM intention (β = 0.095, p < 0.05), supporting H4b. Finally, mobile app lifestyle compatibility
had a positive and significant influence on intention to use (β = 0.124, p < 0.05), supporting H5a.
Nevertheless, lifestyle did not significantly influence WOM intention (β =−0.040, p > 0.10); thus, H5b is
not supported. Intention to use also positively affected WOM intention (β = 0.496, p < 0.01), supporting
H6. In regard to the control variables, that is, age, gender and occupation, most of their effects on
the dependent variables are not significant. Nevertheless, age positively influenced WOM intention
(β = 0.060, p < 0.05), whereas occupation, that is, having a job, positively influenced intention to use
food delivery apps (β = 0.058, p < 0.05).

Table 4. Results: estimated parameters.

Dependent Variables

Intention to Use WOM Intention

Attitude 0.458 ** 0.229 **

Subjective Norm 0.414 ** 0.219 **

Perceived Control −0.052 n.s. 0.027 n.s.

Security 0.018 n.s. 0.095 **

App lifestyle compatibility 0.124 * −0.049 n.s.

Age 0.012 n.s. 0.060 *

Gender 0.023 n.s. −0.040 n.s.

Occupation 0.058 * 0.023 n.s.

Intention to Use 0.496 **

Notes: * p < 0.05, ** p < 0.01, n.s. non-significant.

The research model explains the dependent variables to a great extent for both intention to use
food delivery mobile apps (R2 = 0.778) and WOM intention (R2 = 0.839). These levels of explained
variance can be considered high because they are above those habitually obtained in previous studies
that explain behavioral intentions toward technology-based services [72]. As an additional assessment
of the model’s predictive capability we analyzed the Stone–Geisser’s Q2 [115,116]. The Stone–Geisser’s
criterion evaluates the model’s capacity to predict indicators of the endogenous latent variables
through the blindfolding technique [117]. In our model, the Q2 indicator reached a value of 0.734 for
intention to use, and 0.773 for WOM intention. Since both Q2 values are well above zero, the observed
values are well reconstructed [111], indicating the suitability of our research model in terms of good
predictive relevance.

Post Hoc Analysis: Moderating Effect of Age on Perceived Control

After observing the model results, we tried to identify why we did not find an effect of perceived
control on intention to use (H3a) and WOM intention (H3b). This lack of influence is particularly
noteworthy, since previous research into technology-based services has usually found that the variable
has a significant positive influence (e.g., [30]), although it is sometimes non-significant in the field
of mobile shopping behavior (e.g., [31,32]). Perhaps customers are already accustomed to using
mobile apps for many purchase, communication, and entertainment activities, and they use and
recommend these apps to others independent of their own ability to operate these technological tools.
However, mobile apps often involve many options, interfaces, and interactive features not always
very well understood or employed by their users. Indeed, some users find them too complex, and
companies are continuously launching new app updates to increase users’ experience and control of
these technology-based services [118].
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Ultimately, the question is whether perceived control never has a significant effect on use
and WOM intentions, or if this holds only for certain situations or individuals. Consider, for
example, older customers who are less confident about how to use new technologies. Age is, in fact,
often considered a moderating factor in technology acceptance [119], specifically in mobile payment
systems’ adoption [120]. Older customers have more difficulty than the young in processing and
responding to online stimuli [121], perceiving that they lack technological self-efficacy [122], and tend
to be more resistant to change and to experimenting with new technologies [123]. Thus, perceived
control may be particularly important for older customers, whereas younger customers might evaluate
food delivery mobile apps without taking this factor into account.

Therefore, we performed an additional analysis to assess the potential moderating role of age
on the relationships between perceived control and the dependent variables (i.e., intention to use,
WOM intention). To test these influences, the moderating effects of age were included in the research
framework. In line with previous research [124], the moderation was introduced as an interaction term
between the standardized scores of the two variables (perceived control and age intervals). The results
of this post hoc analysis revealed that age does not moderate the effect of perceived control on intention
to use (β = −0.015, p > 0.10); however, age did significantly moderate the effect of perceived control on
WOM intention (β = 0.065, p < 0.01). This significant effect indicates that perceived control positively
influences WOM intention among older people. This finding suggests that older users would tend to
recommend food delivery apps only when they perceive they are able to control them.

6. Discussion

The generalized use of the Internet and smartphone technologies has given companies the
opportunity to reach a wide international customer base, which has created a highly competitive
market to be the most popular app. In this context, food delivery services are today one of the
fastest growing sectors and are expected to continue to grow and evolve during the next years [10].
In particular, these new technological platforms connect restaurants and customers in a quick and
convenient way using mobile apps. To understand this new global business model and its implications,
our study is based in the TPB model developed by Ajzen [35]. However, little is known about the key
technological and sociological factors that motivate customers to use and recommend food delivery
services. Table 5 summarizes the findings of the study, which are discussed hereafter.

Table 5. Summary of findings and hypotheses tests.

Relationship Result

Attitude→ Intention to Use H1a: Supported

Attitude→WOM Intention H1b: Supported

Subjective Norm→ Intention to Use H2a: Supported

Subjective Norm→WOM Intention H2b: Supported

Perceived Control→ Intention to Use H3a: Not supported

Perceived Control→WOM Intention H3b: Not supported a

Security→ Intention to Use H4a: Not supported

Security→WOM Intention H4b: Supported

App Lifestyle Compatibility→ Intention to Use H5a: Supported

App Lifestyle Compatibility→WOM Intention H5b: Not supported

Intention to Use→WOM Intention H6: Supported

Note: a the post hoc analysis revealed a significant moderating effect of age, that is, this relationship is significant for
older customers.
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6.1. Principal Findings

Our results indicated that attitudes toward food delivery apps significantly predict consumers’
behavioral intention to use and to spread WOM about the food delivery service. This conclusion is
consistent with previous research, which also found that customer attitude is a predictor of behavioral
intentions toward innovative services [28] and recommendations of services [125]. This finding suggests
that consumers have a well-established attitude toward these apps and their implicit advantages
(e.g., they remove the need to visit food shops or to cook at home); thus, the customer’s favorable
attitude plays an important role in the decision to use and recommend these services to other customers.

Our findings also showed that subjective norms related to food delivery apps significantly
influenced customers’ behaviors and WOM intentions. These findings suggest that consumers attach
importance to the comments that those close to them make about food delivery apps. Thus, our
results are consistent with previous studies, which concluded that the opinions held by family,
friends, and colleagues influence individuals’ decision-making in terms of use [33,43] and in terms of
recommending the service to others [48]. A consumer may think that people in his/her environment,
who know him/her well, can help him/her make good choices.

Our initial results did not show that perceived control had a significant influence on the two loyalty
intention variables. Given that mobile apps are continuously developing and younger consumers
are more accustomed to interacting with these updates, we carried out a post hoc analysis to identify
whether age might moderate the influence of perceived control on use and WOM intentions. Our results
indicated that age moderates the effect of perceived control on WOM intention; that is, the effect of
perceived control is significant for older customers. These findings revealed that younger consumers’
decisions about food delivery apps are unaffected by perceptions that they control the apps, but that
older customers (often having less confidence in their own ability to operate technologies) tend to
value this characteristic when evaluating food delivery apps. In particular, perceived control is crucial
for older customers in terms of making recommendations to others, suggesting that this customer
segment needs to feel in control of an app before encouraging others to use it. These results are similar
to those from previous studies, for example, in drone food delivery services, which have suggested
that when older people have confidence in their use of a service they tend to recommend it to others
more than do younger people [33].

The results of our study show that customer perceptions of security do not significantly influence
intention to use, but do significantly influence WOM intentions. Therefore, our findings suggest that
security concerns are important at a social level when deciding whether to recommend the service to
others. This finding accords with previous studies, which have shown that a sense of responsibility
drives prosocial behaviors such as making recommendations [82]. In other words, consumers are
willing to take individual risks when using food delivery apps but will avoid exposing others to
possible negative consequences.

Interestingly, our results showed that mobile app lifestyle compatibility has a significant influence
on intention to use food delivery services, but not on intention to spread WOM about the service.
These results suggest that consumers’ lifestyles are important in the decision to use the apps at the
personal, or private, level. Nevertheless, individuals may consider that, while they understand their
own way of life, they may be unsure about others’ lifestyles. Thus, consumers’ lifestyles might affect
the use of food delivery apps in a private context; however, consumers seem to understand that food
delivery apps may not match others’ lifestyles, and thus they prefer not to give possibly misleading
information to other customers [49].

As proposed in the previous literature, intention to use positively affects WOM [57]. In the food
delivery context, mobile apps offer consumers advantages, such as a wide variety of different food
types, a user-friendly design, and real-time information about their order status. When consumers
have positive experiences with apps they tend to inform other potential users about the app’s benefits.
Through this action, consumers feel good about their choices and the assistance they provide to the
people in their close environment [94].
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Finally, although the results of our study showed that gender does not affect intention to use
and WOM intentions, we found that having an occupation exerted a significant effect on intention
to use food delivery apps. In contrast to previous literature that does not often treat occupation as a
potential variable in the explanation of behavior, our study revealed that employed people tend to
use these applications more often than those who have no occupation. This finding is not surprising
as, in comparison to other groups without occupations (e.g., unemployed, retired), workers tend to
have more money and less time to cook or to go food shopping; thus, food delivery apps are a very
convenient alternative for this customer segment.

6.2. Theoretical Implications

Focusing on the TPB model variables (i.e., attitude, the subjective norm, and perceived control),
this study analyzes their impacts on the use and WOM intentions of food delivery mobile apps.
Our research corroborated that attitude, a rational evaluation of choices based on the assessment of
potential outcomes [35], is important in shaping use and WOM intentions in this context. The subjective
norm, which is associated with normative beliefs and the individual’s motivation to comply with
these beliefs [35], is also an important motivational factor behind customers’ behavioral intentions.
In this vein, a customer may internalize others’ recommendations and be motivated to pass them on
to other customers. In this context, that food delivery apps are a modern, convenient service that
might interest others. Indeed, this pattern replicates viral marketing processes, that is, individuals
who receive valuable information share it with others in their networks [126].

Perceived control is related to the access that individuals have to the resources and abilities needed
to perform certain behaviors, for example, technology, time, and skills. As previously mentioned,
while being an important determinant in adoption of other technologies [30], the role of perceived
control in the context of food delivery services is uncertain. Indeed, some previous studies on the use
of mobile apps found that perceived control sometimes exerts a significant influence, and sometimes it
does not (e.g., [31,32]). To address this issue, our research proposed that perceived control may be
important sometimes, at least for some societal groups. A post hoc analysis revealed that the influence
of perceived control is moderated by age, that is, perceived control is important for older customers of
food delivery apps. Our research contributes by clarifying in which cases this theoretical relation is
significant. Our findings suggested that age (as a moderating factor) might be included in the TPB
framework when evaluating the influence of perceived control in similar contexts.

Focusing on the customers’ perceptions about technology features, perceived security is associated
with the app provider’s actions to safeguard client information from security breaches during and
after it is transmitted through the mobile phone [16]. Our research showed that customers recommend
food delivery apps if they consider that they are secure. In this regard, our study contributes to the
increasing body of evidence that suggests that customers are highly concerned about technology
threats that may affect other members of the community.

From a more sociological approach our research contributes to the exploration of mobile app
lifestyle compatibility as a precursor of loyalty felt toward food delivery apps. Previous studies noted
that lifestyle is a key determinant in new technology adoption [36] and in the use of innovations [127],
which suggests that people tend to adopt those technologies compatible with their values, norms,
past experiences, and self-perception [128]. People normally use and recommend those things that
fit their values, in very simple ways (e.g., replicating simple patterns that fit well with one’s daily
life). Our study confirms that customers’ intentions to use food delivery apps are affected by their
lifestyles, which suggests that this factor should not be ignored when analyzing customers’ adoption
of everyday technologies.

6.3. Managerial Implications

The results of our study show that customers’ behavioral intentions toward food delivery services
are influenced by their attitudes and subjective norms. Thus, companies should attach importance
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to the design of valuable user-friendly mobile apps; this will increase their customers’ perceptions
about the worth of these technology-based services. From their first interaction with the app customers
should enjoy a positive and engaging experience. Furthermore, advertising campaigns should be
carried out to persuade customers of the advantages of food delivery apps to increase their use and
WOM intentions.

Given the importance of subjective norms as a social influence that determines individual
customers’ decisions regarding food delivery apps, special attention should be paid to increase the
diffusion of information about these apps among peers. For instance, companies might implement
rating schemes for food delivery apps to provide advice to those considering using or recommending
them. To facilitate WOM among customers, companies might introduce social media platforms as
part of their strategies [129]. In addition, professionals might follow win-win strategies to encourage
consumers to spread WOM (e.g., those customers introducing another customer to the service could
receive a discount on their next food order).

Food delivery companies and app developers should try to increase customers’ perceived control
when using apps, especially among older consumers. Companies should help this group to use their
apps. To this end, training courses or video tutorials would be very useful customer-oriented actions.
Other design-led strategies focused on this group of customers might use large clear letters and avoid
showing disturbing ads during the operation of the app. In addition, the perception of higher control
would motivate older customers to recommend the food delivery app to others, thus increasing the
diffusion of the service among this target group.

Another way to increase WOM among customers of all ages would be to increase the information
security of the food delivery app. Food delivery companies should provide customers with clear
information about their security measures, not only as a basic feature but as a strategy to spread among
customers and their networks. Managers need to understand that customers are concerned about
security breaches. Investing in data protection and barriers against malware and providing privacy
policy guidelines would help users improve their security perceptions. App developers should not
only meet the minimum security standards established by industry regulations [16], but the highest
security standards of the food delivery apps in the market.

Finally, our study concluded that both customers’ lifestyles and having an occupation influence
intention to use food delivery services. Consequently, companies should promote food delivery apps
as services that match customers’ lifestyles (e.g., eating at home, ordering by mobile phone) and as
being particularly convenient for people who are busy in their work life. Advertising campaigns could
take this into account when designing commercials (e.g., showing people using the food delivery
app after a long working day). Promotions may also be adapted to these target groups. For instance,
cross-selling tactics could be used to encourage users of other apps (e.g., mobile communication apps)
to download food delivery apps; in addition, special discounts might be applied during office hours or
when delivering to workplaces.

6.4. Limitations and Further Research Lines

The present study has some limitations that open interesting research avenues for future research.
To generalize the results, the research could be replicated in other countries with different cultural
orientations. Companies offering food delivery services may be different, depending on the country or
even the city in which they operate; in some cases, some companies may have been established in a
city for many years, whereas others may have just arrived, which may influence customer perceptions
about their services. More detailed research into users’ profiles and cultures might help professionals
understand the specific personal and situational factors that might influence the use and WOM of
their services.

A deeper study examining security concerns might help academics and practitioners to better
understand consumers’ worries about technologies and how to address them. In this respect it is
important to distinguish between the different kinds of security issues that might arise in the use of
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these mobile apps. Complementarily, experimental studies could help academics and practitioners
better understand how specific changes in app design and marketing campaigns might impact on the
use and WOM of food delivery apps.

In addition, retailing is evolving at an extremely high speed [130]. As a result, new businesses
such as smart lockers are entering the last-mile delivery sector [27]. In this ultra-competitive
retail environment, understanding the new forms of value creation is crucial. Furthermore, due to
global warming and environmental pollution concerns, companies are trying to provide eco-friendly
products/services to meet customers’ environmental demands of food delivery services [131]. Thus,
future research must take account of the lifestyle compatibility of green food delivery services not only
in regard to mobile apps, but also in relation to electric motorbikes and drones [132].
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