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Abstract: Accidents at highway-rail grade crossings can cause fatalities and injuries, as well as
significant property damages. In order to prevent accidents, certain upgrades need to be made at
highway-rail grade crossings. However, due to limited monetary resources, only the most hazardous
highway-rail grade crossings should receive a priority for upgrading. Hence, accident/hazard
prediction models are required to identify the most hazardous highway-rail grade crossings for safety
improvement projects. This study selects and evaluates the accident and hazard prediction models
found in the highway-rail grade crossing safety literature to rank the highway-rail grade crossings
in the State of Florida. Three approaches are undertaken to evaluate the candidate accident and
hazard prediction models, including the chi-square statistic, grouping of crossings based on the actual
accident data, and Spearman rank correlation coefficient. The analysis was conducted for the 589
highway-rail grade crossings located in the State of Florida using the data available through the
highway-rail grade crossing inventory database maintained by the Federal Railroad Administration.
As a result of the performed analysis, a new hazard prediction model, named as the Florida Priority
Index Formula, is recommended to rank/prioritize the highway-rail grade crossings in the State of
Florida. The Florida Priority Index Formula provides a more accurate ranking of highway-rail grade
crossings as compared to the alternative methods. The Florida Priority Index Formula assesses the
potential hazard of a given highway-rail grade crossing based on the average daily traffic volume,
average daily train volume, train speed, existing traffic control devices, accident history, and crossing
upgrade records.

Keywords: highway-rail grade crossings; accident prediction; hazard prediction; safety;
crossing prioritization

1. Introduction

The intersection of a railway and a roadway is generally referred to as a highway-rail grade
crossing. As reported by the Florida Department of Transportation (FDOT) in the year of 2011, the State
of Florida had a total of 4503 highway-rail grade crossings, 79% of which were controlled by the
State (i.e., public highway-rail grade crossings), while the rest were owned and maintained by private
entities [1]. All of these 4503 highway-rail grade crossings represent a potential for accident occurrence
between railway traffic and highway traffic. A highway-rail grade crossing accident may have serious
consequences, such as fatalities, injuries, property damage, spillage of hazardous materials, and delays
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in both highway and railway traffic [2–6]. Based on the data reported by the Federal Railroad
Administration (FRA), a total of 47,995 highway-rail accidents were recorded in the United States (U.S.)
from January 2000 to December 2018, resulting in 5778 fatalities and 18,752 injuries [7]. During this
period, the State of Florida experienced 1649 highway-rail accidents, which involved 268 deaths and
755 injuries [7]. According to the FRA’s Office of Safety Analysis, the majority of rail-related accidents,
which were recorded in the State of Florida, had the following features: (1) occurred at public crossings;
(2) resulted due to risky driver behavior; (3) involved motor vehicles; and (4) occurred at locations
with active warning devices [1]. However, there has been a notable reduction in the number of
highway-rail grade crossing accidents since the year of 2008, which may be ascribed to several factors,
including: (1) improvements in highway-rail grade crossings’ warning devices; (2) enhanced outreach
and education; (3) safer driving behavior; and (4) changes in travel patterns [1].

The Federal Highway Administration (FHWA) specifies that elimination should be considered as
the first option for an unsafe highway-rail grade crossing [1]. The options to eliminate a highway-rail
grade crossing include: (1) grade separation; (2) closing the highway-rail grade crossing to highway
traffic; and (3) closing the highway-rail grade crossing to railroad traffic through relocation or
abandonment of the rail line. With the removal of the connection between the highway and the
railway, the elimination of a highway-rail grade crossing reduces the risk of accidents substantially.
The decision to eliminate a highway-rail grade crossing depends on safety, operational, financial,
and social considerations. For instance, communities usually do not prefer elimination of highway-rail
grade crossings due to the perceived diminution in convenience, longer emergency response time, and
reduced access to schools as well as other strategic places [4]. When the elimination of a highway-rail
grade crossing is not a preferred alternative, several other countermeasures can be undertaken to
prevent accidents, such as upgrading of highway-rail grade crossing surface, replacement of warning
signs, installation of reflective strips, replacement of gate mechanism, installation of median barrier
systems, etc. However, applying countermeasures to all the highway-rail grade crossings in a region
is not economically feasible. Generally, about $7.5 million is allotted for the highway-rail grade
crossing upgrades in the State of Florida, which can be used for upgrading 35–45 highway-rail grade
crossings [1].

Hence, only the most hazardous highway-rail grade crossings can be upgraded, which necessitates
ranking methodologies to prioritize highway-rail grade crossings for safety improvement projects.
The ranking and selection of the most hazardous highway-rail grade crossings can be performed using
accident and hazard prediction models. The accident prediction models can be used to forecast the
expected number of accidents over a certain time period. On the other hand, the hazard prediction
models can be used to forecast the expected vulnerability of highway-rail grade crossings to accidents
without specifying the number of predicted accidents. A number of accident and hazard prediction
formulae were reported in the existing highway-rail grade crossing safety literature. However, some of
them may not be applicable to the highway-rail grade crossings in the State of Florida due to lack of
data, failure to consider certain important operational and physical characteristics by a given formula,
significant inaccuracy in the rankings of highway-rail grade crossings proposed by a given formula,
and other factors. Moreover, an accident or hazard prediction formula can be accurate for one state
but may not work for the other states. Therefore, this study aims to evaluate the accident and hazard
prediction formulae which have been widely used in the highway-rail grade crossing safety literature
in order to prioritize the highway-rail grade crossings in the State of Florida for upgrades.

In particular, a total of 589 highway-rail grade crossings located in the State of Florida were
selected for analysis. Out of these 589 highway-rail grade crossings, 489 highway-rail grade crossings
experienced accidents between 2007 and 2017, 50 highway-rail grade crossings have passive protection
with the highest exposure but without accidents, and the remaining 50 highway-rail grade crossings
have active protection with the highest exposure but without accidents. The FRA’s highway-rail grade
crossing accident database and the FRA’s highway-rail grade crossing inventory database were used
as primary data sources. Three approaches were undertaken to evaluate the candidate accident and
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hazard prediction models including the chi-square statistic, grouping of crossings based on the actual
accident data, and Spearman rank correlation coefficient. Based on the conducted analysis, the most
promising model will be recommended to rank/prioritize the highway-rail grade crossings in the State
of Florida.

The remainder of this manuscript is organized as follows. Section 2 presents a concise overview of
the research efforts on highway-rail grade crossing accidents. Section 3 selects the candidate accident
and hazard prediction models from the ones which have been widely used in the highway-rail grade
crossing safety literature. Section 4 provides a detailed description of the evaluation methodology
adopted in this study. Section 5 presents the findings from the evaluation of the candidate accident and
hazard prediction models for the highway-rail grade crossings in the State of Florida. Finally, Section 6
concludes this study and discusses future prospects.

2. Relevant Literature

2.1. Review of the Previous Efforts

This section of the manuscript presents an overview of the research efforts on the accident
prediction models and the hazard prediction models, which have been used over the years to prioritize
highway-rail grade crossings for upgrades. The scientific literature and the efforts undertaken by the
state Departments of Transportation (DOTs) will be further reviewed throughout this section.

2.1.1. Review of Scientific Literature

A number of scientific articles on highway-rail grade crossing safety have been published to
date [2,4,8–21]. For example, Austin and Carson [10] argued that the Peabody Dimmick Formula,
the New Hampshire Index, and the National Cooperative Highway Research Program (NCHRP)
Report 50 Accident Prediction Formula have a limited descriptive potential, as these formulae rely
on a few explanatory variables only. It was also outlined that the U.S. DOT Accident Prediction
Formula had complexity issues because of its three-stage structure, and it was losing accuracy over
time. Hence, the study presented an alternative model which was based on the negative binomial
regression. It was underlined that the proposed model was simpler than the U.S. DOT Accident
Prediction Formula and had great potential. Saccomanno et al. [11] proposed a risk-based model to
identify the highway-rail grade crossings with high vulnerability to accidents. The developed model
incorporated two prediction components, including the following: (a) accident frequency prediction;
and (b) accident consequence. The developed methodology was applied for the highway-rail grade
crossings, which are located in Canada.

Oh et al. [13] developed several statistical models to establish relationships between highway-rail
grade crossing accidents and crossing characteristics. It was found that the number of accidents at
highway-rail grade crossings increased with increasing total traffic volume and average daily train
volume. The proximity of highway-rail grade crossings to commercial areas and the distance of the train
detector from crossings also substantially influenced the accident occurrence. Yan et al. [15] developed
a hierarchical tree-based regression model to analyze train-vehicle accidents at passive highway-rail
grade crossings. The FRA’s database and 27 years of the train-vehicle accident history in the U.S. (from
1980 to 2006) were considered in the study. The results demonstrated that installation of stop signs at
passive highway-rail grade crossings can significantly improve the safety level. Chadwick et al. [4]
conducted a literature review regarding highway-rail grade crossing accidents for high-speed passenger
rail and heavy freight rail in the U.S. It was highlighted that adoption of high-speed passenger rail
services on the existing freight railroads most likely would cause additional safety issues.

Hao and Daniel [16] assessed the influence of existing protection on driver injury severity in
highway-rail grade crossing accidents. The ordered probit models were developed for both passive
and active protection. The results indicated that speeds of vehicles and trains had a significant
impact on driver injury severity. In particular, vehicles and trains traveling at speeds greater than
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50 mph substantially increased the probability of fatal accidents for both passive and active crossings.
Lu and Tolliver [18] applied various modeling techniques using the same datasets in order to tackle the
under-dispersion issue (i.e., sample mean is greater than sample variance). The study results indicated
that the existing protection, train volume, traffic volume, maximum train speed, highway pavement,
number of tracks, and accident history were the critical factors influencing the occurrence of accidents
at highway-rail grade crossings. Khan et al. [20] proposed a binary logit regression model which was
validated with 2000–2016 highway-rail grade crossing accident data and collected for the State of
North Dakota. Several important predictors were highlighted, including the number of daily trains,
number of through railroad tracks, maximum typical train speed, number of highway/traffic lanes,
and presence of pavement markings.

Many of the aforementioned studies aimed to improve safety of highway-rail grade crossings in
the U.S. However, there are many studies that investigated safety issues and evaluated different
safety improvements for highway-rail grade crossings in other countries as well, including
Australia [3,5,22–27], Finland [28], Great Britain [29], Hungary [30], and Taiwan [31], among others.
Therefore, accidents at highway-rail grade crossings can be considered as an important issue not only
in the U.S. but around the globe.

2.1.2. Review of the State DOT Efforts

The Virginia Highway & Transportation Research Council analyzed nationally recognized
accident/hazard prediction models [32]. The study identified 13 accident/hazard prediction models,
five of which were selected for evaluation, including: (1) the U.S. DOT Accident Prediction Formula;
(2) the Peabody-Dimmick Formula; (3) the NCHRP Report 50 Accident Prediction Formula; (4) the
Coleman-Stewart Model; and (5) the New Hampshire Formula. The chi-square test and the power
factor analysis revealed that the U.S. DOT Accident Prediction Formula was superior to the other
formulae in terms of ranking the most hazardous highway-rail grade crossings in the State of Virginia.
Bowman [33] performed a survey among the rail-highway safety program coordinators in each state of
the U.S., excluding Hawaii. The following accident/hazard prediction formulae were identified by the
survey: (1) the NCHRP Report 50 Accident Prediction Formula—adopted by one state; (2) the Peabody
Dimmick Formula—adopted by two states; (3) the New Hampshire Hazard Index Formula—adopted
by six states; and (4) the U.S. DOT Accident Prediction Formula—adopted by 11 states. Custom
accident/hazard prediction formulae were used by 13 states that participated in the conducted survey.
The survey results outlined that about 83% of the states that relied on the New Hampshire Hazard
Index Formula were generally satisfied with its performance. Moreover, about 82% of the states were
satisfied with the U.S. DOT Accident Prediction Formula.

The Illinois DOT and the Illinois Transportation Research Center performed a study with an
objective to evaluate various accident and hazard prediction formulae for the State of Illinois [34].
A total of 32 states participated in the survey that was undertaken as a part of the project. The key
predictors used in various accident and hazard prediction formulae were discussed. Furthermore, the
study conducted a comprehensive regression analysis to identify the factors that influence the accident
occurrence the most based on the highway-rail grade crossing data for the State of Illinois. The Modified
Expected Accident Frequency Formula was proposed by the study to prioritize highway-rail grade
crossings. The University of Missouri-Columbia/Rolla conducted a study in collaboration with the
Missouri DOT, aiming to evaluate a total of seven accident/hazard prediction models [35]. A new
exposure index formula was also proposed, which relied on the features of the Kansas Design Hazard
Rating Formula. The Spearman rank correlation coefficient factor was adopted in the study to quantify
the difference between the predicted rankings and the baseline rankings (i.e., the rankings that were
based on the actual accident data). The analysis results demonstrated that the Illinois Hazard Index
Formula was the most accurate for active highway-rail grade crossings. On the other hand, the
California Hazard Rating Formula was the most accurate for passive highway-rail grade crossings.
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Weissmann et al. [36] performed a study aiming to design a new methodology for prioritizing
public highway-rail grade crossings for safety improvement projects in the State of Texas. The Revised
Texas Priority Index was developed in order to address the existing drawbacks of the previously used
Texas Priority Index Formula. The results from the analysis, conducted using 2011 accident data for
9108 highway-rail grade crossings in the State of Texas, showed a clear superiority of the Revised Texas
Priority Index over the original Texas Priority Index Formula in terms of ranking the most hazardous
highway-rail grade crossings. A benefit-cost analysis had been used by the Iowa DOT to prioritize the
highway-rail grade crossings for safety improvement projects in the State of Iowa [37]. Furthermore,
the Iowa DOT, in collaboration with the Institute for Transportation at Iowa State University, presented
a weighted-index method along with a Microsoft Excel spreadsheet-based tool in order to prioritize
the most hazardous public highway-rail grade crossings [38]. A number of factors were identified
which were deemed critical by the stakeholders, including the truck traffic volume, traffic volume,
proximity to schools, proximity to emergency medical services, and road system type, as well as
out-of-distance travel.

Ryan and Mielke [39] identified the most common factors used in the existing accident/hazard
prediction formulae with the aim to prioritize the highway-rail grade crossings in the State of Nevada.
Based on the collected data, it was found that the train volume and the highway traffic volume were
the key components for each one of the considered accident/hazard prediction formulae. It was also
stated that the Nevada Hazard Index Model, which was used by the Nevada DOT at that time, should
include a factor for train speed. Sperry et al. [40] evaluated the U.S. DOT Accident Prediction Formula
against several alternative formulae for the highway-rail grade crossings in the State of Ohio. A total
of six formulae were considered, including the following: (1) the Texas Priority Index Formula; (2) the
North Carolina Investigative Index Formula; (3) the Missouri Exposure Index Formula; (4) the Florida
Accident Prediction and Safety Index Formula; (5) the NCHRP Report 50 Accident Prediction Formula;
and (6) the New Hampshire Hazard Index Formula. The U.S. DOT Accident Prediction Formula was
found to be superior to the alternative formulae.

2.2. Literature Summary and Contributions of This Work

A review of the previous research efforts suggests that accident and hazard prediction formulae
could become outdated. Moreover, an accident/hazard prediction formula can be accurate for one state
but may not work for the other states. Besides, the values of different predictors may not be available in
the state highway-rail grade crossing accident databases for certain accident/hazard prediction models.
Considering the significant number of accidents at the highway-rail grade crossings in the State of
Florida, this study aims to evaluate different accident/hazard prediction formulae for the highway-rail
grade crossings in the State of Florida using the publicly available information provided by the FRA’s
highway-rail grade crossing accident database and the FRA’s highway-rail grade crossing inventory
database. Three evaluation approaches, identified from the reviewed literature, will be undertaken
in this study, including the following: (1) chi-square statistic; (2) grouping of crossings based on the
actual accident data; and (3) Spearman rank correlation coefficient. Based on the results, a final model
will be recommended for the highway-rail grade crossings in the State of Florida.

3. Selection of the Candidate Accident and Hazard Prediction Models

The accident/hazard prediction formulae, identified throughout review of the highway-rail
grade crossing safety literature, were classified into two groups: (1) accident prediction formulae;
and (2) hazard prediction formulae. The accident prediction models can be used to forecast the
expected number of accidents over a certain time period. On the other hand, the hazard prediction
models can be used to forecast the expected vulnerability of highway-rail grade crossings to accidents
without specifying the number of predicted accidents. A total of 21 accident/hazard prediction formulae
have been identified as a result of the conducted literature review. Out of 21 identified formulae, six
formulae or 29% can be categorized as accident prediction formulae. The remaining 15 formulae or
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71% can be categorized as hazard prediction formulae. The accident prediction formulae include the
following [34,37]:

• Coleman-Stewart Model;
• NCHRP Report 50 Accident Prediction Formula;
• Peabody-Dimmick Formula;
• U.S. DOT Accident Prediction Formula;
• Iowa Accident Prediction Formula; and
• Jaqua Formula.

The hazard prediction formulae include the following [34,36,39]:

• New Hampshire Hazard Index Formula;
• Arkansas Hazard Rating Formula;
• California Hazard Rating Formula;
• Connecticut Hazard Rating Formula;
• Florida Accident Prediction and Safety Index Formula;
• Illinois Hazard Index Formula;
• Kansas Design Hazard Rating Formula;
• Michigan Hazard Index Formula;
• Missouri Exposure Index Formula;
• Nevada Hazard Index Formula;
• New Mexico Hazard Index Formula;
• North Carolina Investigative Index Formula;
• South Dakota Hazard Index Formula;
• Texas Priority Index Formula; and
• Revised Texas Priority Index Formula.

As a result of a detailed literature review, the following predictors were found to be the most
common in the identified accident and hazard prediction models: (1) total number of trains per day;
(2) total number of vehicles per day; (3) existing protection (i.e., type of warning devices used at
a highway-rail grade crossing); (4) accident history; (5) train speed; (6) number of tracks; (7) sight
distance; (8) number of traffic lanes; (9) highway vehicular speed; and (10) location (i.e., urban or rural
designation). These predictors have been widely used by different state DOTs for ranking highway-rail
grade crossings for safety improvement projects in the respective states.

Note that some of the accident and hazard prediction formulae could not be evaluated for the State
of Florida due to the limited data available in the FRA’s highway-rail grade crossing accident database
and the FRA’s highway-rail grade crossing inventory database. For example, the FRA’s highway-rail
grade crossing accident database and the FRA’s highway-rail grade crossing inventory database do not
provide the information regarding the sight distance at highway-rail grade crossings, which serves as
a predictor for a number of hazard prediction models (e.g., the Kansas Design Hazard Rating Formula,
the Missouri Exposure Index Formula, the New Mexico Hazard Index Formula, the South Dakota
Hazard Index Formula). Furthermore, the North Carolina Investigative Index Formula requires the
information regarding the average number of school bus passengers [34], which is not provided in the
FRA’s highway-rail grade crossing inventory database. The Nevada Hazard Index Model relies on
the total number of near misses within the past three years in order to estimate a hazard index for a
given highway-rail grade crossing [39], which is not available in the FRA’s highway-rail grade crossing
accident database.

The Florida Accident Prediction and Safety Index Formula was not evaluated in this study due
to the fact that it requires information regarding the sight distance at highway-rail grade crossings.
However, the existing state highway-rail grade crossing inventory databases do not provide any
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up-to-date information regarding the sight distance at the highway-rail grade crossings in Florida.
Hence, the Florida Accident Prediction and Safety Index Formula had to be withdrawn from the
analysis. Therefore, four accident prediction formulae and six hazard prediction formulae were selected
for the final analysis due to the data availability issue. A detailed description of the candidate accident
prediction models and the candidate hazard prediction models that were considered in this study
is provided in the Appendix A. Note that the description of the models was compiled based on the
available literature [34–42].

4. Evaluation Methodology

This section of the manuscript focuses on the methodology and criteria that were used to evaluate
the candidate accident/hazard prediction models.

4.1. Input Data and Key Assumptions

As indicated earlier, the FRA’s highway-rail grade crossing accident database and the FRA’s
highway-rail grade crossing inventory database were used as the primary data sources to evaluate
the candidate accident/hazard prediction models for the highway-rail grade crossings in the State
of Florida. A number of assumptions were adopted throughout the evaluation process. The key
assumptions include the following:

1. A given highway-rail grade crossing will be excluded from the analysis if there is a missing value
(i.e., “empty cell”) in the FRA’s highway-rail grade crossing accident database and/or the FRA’s
highway-rail grade crossing inventory database for a certain predictor which is directly used by a
given accident/hazard prediction model.

2. If the FRA’s highway-rail grade crossing inventory database provides “zero” values for certain
predictors that are associated with a given highway-rail grade crossing (including AADT, total
number of trains per day, maximum train time table speed, number of main tracks, number of
main and other tracks, and number of traffic lanes), they will be reset to “1.” Such a modification
in the predictor values is required to assure that no abnormal accident or hazard prediction
values (e.g., “-∞”, “+∞”) will be returned by the candidate accident/hazard prediction models.
For example, if the AADT value and/or the total number of trains per day are reported to be
“zero” in the FRA’s highway-rail grade crossing inventory database for a given highway-rail
grade crossing (i.e., less than one vehicle and/or less than one train traverse a given highway-rail
grade crossing per day), there will be some issues when estimating the additional parameter (K)
for the Peabody-Dimmick Formula. The issue consists of the fact that the unbalanced accident
factor (lu) will become “zero,” which is outside the allowable boundaries as the lu value cannot
be lower than “0.5” throughout estimations of the additional parameter K (see the Appendix A
for more details). However, rounding the AADT value and the total number of trains per day to
“1” would resolve the issue.

3. If a given accident/hazard prediction model does not provide the protection factor values for
certain protection types, the worst-case values for protection factors will be used in the analysis.
For example, the New Hampshire Hazard Index Formula does not recommend any particular
protection factor value for the highway-rail grade crossings that are equipped with crossbucks.
Since the New Hampshire Hazard Index Formula assumes the worst-case protection factor value
for stop signs (i.e., PF = 1.00), the protection factor for the highway-rail grade crossings with
crossbucks will be set to PF = 1.00. Such an assumption is required in order to avoid a significant
elimination of highway-rail grade crossings from the analysis due to absence of the protection
factor values for certain protection types.

4. The accident data will be excluded from the analysis throughout the validation of a given
candidate accident/hazard prediction model if these data were used to develop that model.
For example, if a given candidate accident/hazard prediction model was developed using the
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2012–2016 accident data, that model can be validated using the 2017 accident data (or the data
collected for the years after 2016).

5. The actual accident data collected for the highway-rail grade crossings in the State of Florida for
the year of 2017 will be used to develop the baseline ranking of highway-rail grade crossings.
The exposure will serve as a secondary ranking criterion for the highway-rail grade crossings
(e.g., if the same number of accidents were recorded for two highway-rail grade crossings over
the considered time horizon, the highway-rail grade crossing that has a higher exposure value
will receive a higher rank). The exposure of a given highway-rail grade crossing will be estimated
based on the product of the number of trains per day and the number of vehicles per day.

6. The estimated values of the Spearman rank correlation coefficient will be multiplied by a factor
of “5” in order to accentuate the degree of correlation between the predicted rankings and the
baseline rankings for each one of the considered accident/hazard prediction models. Such an
approach is line with the methodology that was adopted by Qureshi et al. [35] to evaluate different
accident/hazard prediction models for the highway-rail grade crossings in the State of Missouri.

Note that only one year of the actual accident data (i.e., the year of 2017) was selected for evaluation
of the accident and hazard prediction models due to the following reasons:

• First, based on the information provided by the FDOT [1], the majority of accidents at the
highway-rail grade crossings in the State of Florida have similar features, including the following:
(1) the accidents are caused by risky behavior of drivers; (2) the accidents are recorded for public
highway-rail grade crossings; (3) the accidents primarily involve motor vehicles; and (4) the
accidents are recorded for the locations that have active warning devices. Furthermore, the number
of accidents at the highway-rail grade crossings in the State of Florida was reported to be within
the same range (i.e., ≈ 90÷ 100 accidents per year) over the past five years based on the information
provided by the FRA [7]. Therefore, the year of 2017 can be considered as a representative year for
evaluation of the accident and hazard prediction models.

• Second, the present study was initiated at the beginning of 2019. The FRA may update the past
records for the accidents that occurred several months ago in the highway-rail grade crossing
accident database. Therefore, the 2018 highway-rail grade crossing accident database was still
not finalized at the moment of conducting the present study, while the 2019 highway-rail grade
crossing accident database was not even completed. Therefore, the 2017 highway-rail grade
crossing accident database was the most accurate for evaluation of the accident and hazard
prediction models at the moment of conducting the present study.

• Third, the adopted approach (i.e., selection of one representative year of the accident data
for evaluation of the candidate accident and hazard prediction models for highway-rail grade
crossings in a given state) was found to be common in the highway-rail grade crossing safety
literature and was used by previously conducted studies [33–36].

4.2. Considered Highway-Rail Grade Crossings

The candidate accident/hazard prediction models were applied to the most hazardous highway-rail
grade crossings located in the State of Florida. A detailed analysis of the highway-rail grade crossing
accident data showed that at least one accident had been recorded for a total of 586 highway-rail grade
crossings in the State of Florida between the year of 2007 and the year of 2017. However, the candidate
accident/hazard prediction models could be evaluated only for 489 out of the 586 highway-rail grade
crossings, since the FRA’s highway-rail grade crossing inventory database did not have sufficient
information for the 97 highway-rail grade crossings that experienced at least one accident between
the year of 2007 and the year of 2017. Furthermore, 50 passive highway-rail grade crossings and
50 active highway-rail grade crossings, which did not have any accidents between the year of 2007
and the year of 2017 but had the highest exposure values, were considered throughout the analysis as
well. Therefore, a total of 589 highway-rail grade crossings were further analyzed using the candidate
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accident/hazard prediction models. Such an approach (selecting a diverse group of highway-rail
grade crossings only from all the existing highway-rail grade crossings to evaluate the candidate
accident/hazard prediction models in a given state) had been widely used in the highway-rail grade
crossing safety literature [33–35].

Figure 1 presents the distribution of the selected highway-rail grade crossings by protection type.
It can be observed that active protection devices (such as bells, wigwags, highway traffic signals,
flashing lights, gates, or other active devices) were installed at 494 highway-rail grade crossings
(or 83.9% of the highway-rail grade crossings considered in the analysis). On the other hand, passive
protection devices (such as crossbucks, stop signs, or other passive signs or signals) were installed
at 79 highway-rail grade crossings (or 13.4% of the highway-rail grade crossings considered in the
analysis). A total of 16 highway-rail grade crossings (or 2.7% of the highway-rail grade crossings
considered in the analysis) did not have any signals or signs.

Sustainability 2020, x, x FOR PEER REVIEW 9 of 27 

analysis). A total of 16 highway-rail grade crossings (or 2.7% of the highway-rail grade crossings 

considered in the analysis) did not have any signals or signs. 

 

Figure 1. Distribution of the Selected Highway-Rail Grade Crossings by Protection Type. 

The analysis of the highway classification data showed that a total of 447 roadways (or 75.9% of 

roadways) at the highway-rail grade crossings selected for evaluation of the candidate 

accident/hazard prediction models were categorized as urban roadways. A total of 142 roadways at 

the considered highway-rail grade crossings (or 24.1% of roadways) were categorized as rural 

roadways. Based on the available accident data, it was found that more accidents were recorded for 

the highway-rail grade crossings that were located in urban areas as compared to the ones that were 

located in rural areas. In particular, a total of 323 highway-rail grade crossings (or 54.8% of the 

highway-rail grade crossings considered in the analysis) experienced accidents between the year of 

2007 and the year of 2016 in urban areas. On the other hand, a total of 115 highway-rail grade 

crossings (or 19.5% of the highway-rail grade crossings considered in the analysis) experienced 

accidents between the year of 2007 and the year of 2016 in rural areas. A total of 537 highway-rail 

grade crossings (or 91.2%) had paved roadways, while 52 highway-rail grade crossings (or 8.8%) had 

unpaved roadways. Descriptive characteristics of some other operational features of the selected 

highway-rail grade crossings are presented in Table 1, including the average values (mean), median 

values (median), standard deviation values (STD), maximum values (max), and minimum values 

(min). 

Table 1. Descriptive Statistics for the Considered Highway-Rail Grade Crossings. 

Feature Mean Median STD Max Min 

AADT (vehicles per day) 13,267.71 7900 14,626.11 99,999 1 

Total number of trains per day 19.01 17 18.26 241 1 

Number of thru trains per day during daylight 9.66 6 10.23 62 1 

Number of main and other tracks 1.65 1 0.90 8 1 

Number of traffic lanes 3.05 2 1.51 9 1 

Maximum timetable speed (mph) 46.23 45 22.93 79 5 

Number of accidents in 11 years (2007–2017) 1.1868 1 1.01 8 0 

4.3. Approaches for the Evaluation of the Candidate Accident/Hazard Prediction Models 

The candidate accident/hazard prediction models were evaluated using the following 

approaches: (1) chi-square statistic; (2) grouping of crossings based on the actual accident data; and 

(3) Spearman rank correlation coefficient. 
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The analysis of the highway classification data showed that a total of 447 roadways (or 75.9% of
roadways) at the highway-rail grade crossings selected for evaluation of the candidate accident/hazard
prediction models were categorized as urban roadways. A total of 142 roadways at the considered
highway-rail grade crossings (or 24.1% of roadways) were categorized as rural roadways. Based on
the available accident data, it was found that more accidents were recorded for the highway-rail
grade crossings that were located in urban areas as compared to the ones that were located in rural
areas. In particular, a total of 323 highway-rail grade crossings (or 54.8% of the highway-rail grade
crossings considered in the analysis) experienced accidents between the year of 2007 and the year of
2016 in urban areas. On the other hand, a total of 115 highway-rail grade crossings (or 19.5% of the
highway-rail grade crossings considered in the analysis) experienced accidents between the year of
2007 and the year of 2016 in rural areas. A total of 537 highway-rail grade crossings (or 91.2%) had
paved roadways, while 52 highway-rail grade crossings (or 8.8%) had unpaved roadways. Descriptive
characteristics of some other operational features of the selected highway-rail grade crossings are
presented in Table 1, including the average values (mean), median values (median), standard deviation
values (STD), maximum values (max), and minimum values (min).
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Table 1. Descriptive Statistics for the Considered Highway-Rail Grade Crossings.

Feature Mean Median STD Max Min

AADT (vehicles per day) 13,267.71 7900 14,626.11 99,999 1

Total number of trains per day 19.01 17 18.26 241 1

Number of thru trains per day during daylight 9.66 6 10.23 62 1

Number of main and other tracks 1.65 1 0.90 8 1

Number of traffic lanes 3.05 2 1.51 9 1

Maximum timetable speed (mph) 46.23 45 22.93 79 5

Number of accidents in 11 years (2007–2017) 1.1868 1 1.01 8 0

4.3. Approaches for the Evaluation of the Candidate Accident/Hazard Prediction Models

The candidate accident/hazard prediction models were evaluated using the following approaches:
(1) chi-square statistic; (2) grouping of crossings based on the actual accident data; and (3) Spearman
rank correlation coefficient.

4.3.1. Chi-Square Statistic

The chi-square statistic had been used by some of the previously conducted studies on the
highway-rail grade crossing safety. In particular, the chi-square statistic was adopted by Faghri
and Demetsky [32] to evaluate a number of accident prediction models (i.e., the U.S. DOT Accident
Prediction Formula, the Coleman-Stewart Model, the Peabody-Dimmick Formula, and the NCHRP
Report 50 Accident Prediction Formula) for the highway-rail grade crossings that are located in the
State of Virginia. The chi-square formula, which will be further used to quantify the goodness of fit of
the candidate accident prediction models, can be calculated using the following equation [32,43,44]:

χ2 =
n∑

x=1

(AOx −ACx)
2

ACx
(1)

where:

χ2 = the chi-square statistic;
AOx = the number of accidents observed at highway-rail grade crossing x;
ACx = the number of accidents estimated using a given candidate accident prediction model for
highway-rail grade crossing x;
n = the number of highway-rail grade crossings.

The chi-square statistic value (χ2) quantifies the goodness of fit or correlation between the
estimated data and the observed data. If the chi-square statistic value is low, then the expected data
(i.e., the accident prediction value, provided by a given candidate accident prediction model for the
considered highway-rail grade crossing) fit the observed data well (i.e., the actual number of accidents
recorded for the considered highway-rail grade crossing). On the contrary, if the chi-square statistic
value is high, then the expected data do not fit the observed data well. Note that the chi-square
formula was used to assess accuracy of the accident prediction models and will not be applied for the
hazard prediction models (since the hazard prediction models do not specify the number of predicted
accidents), which is line with the methodology that was adopted by Faghri and Demetsky [32].

4.3.2. Grouping of Crossings Based on the Actual Accident Data

Based on the second approach, the actual or real-world accident data are used to validate the ability
of accident/hazard prediction models to rank highway-rail grade crossings for safety improvement
projects. A number of states adopted the latter approach in the past (e.g., the State of Alabama [33];
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the State of Illinois [34]; the State of Texas [36]; the State of Ohio [40]). The FRA’s highway-rail grade
crossing accident database was further used to retrieve the actual accident data. The highway-rail
grade crossings in the State of Florida were categorized into the top 15%, 20%, 25%, 30%, 40%, and
50% of the most hazardous highway-rail grade crossings using the actual accident data. After that,
the candidate accident/hazard prediction models were deployed to rank the highway-rail grade
crossings in the State of Florida using the data which were available in the FRA’s highway-rail grade
crossing accident database and the FRA’s highway-rail grade crossing inventory database. The ranking
of the highway-rail grade crossings was performed using the predicted number of accidents provided
by the candidate accident prediction models. Similarly, the hazard values, provided by the candidate
hazard prediction models, were also used to perform the ranking of the highway-rail grade crossings.

The number of highway-rail grade crossings—captured by a given candidate accident/hazard
prediction model for the top 15%, 20%, 25%, 30%, 40%, and 50% of the most hazardous highway-rail
grade crossings—was adopted as the key performance indicator for the model evaluation. The accident
prediction model or the hazard prediction model that captures the largest number of highway-rail
grade crossings for these hazardous highway-rail grade crossing categories can be further considered
as the most effective model. This approach has some similarities with the power factor method, which
was previously applied by Faghri and Demetsky [32] for the highway-rail grade crossings in the
State of Virginia. The objective of the power factor analysis is to estimate the percentage of accidents
that were recorded for the most hazardous highway-rail grade crossings, which were determined by
the candidate accident prediction model or the candidate hazard prediction model [32]. As it was
discussed earlier, the accident data were excluded from the analysis throughout the validation of
a given candidate accident/hazard prediction model if these data were used to develop that model.
For example, if a given candidate accident/hazard prediction model was developed using the 2012–2016
accident data, then that model could be validated using the 2017 accident data.

4.3.3. Spearman Rank Correlation Coefficient

Based on the third approach, the performance of the candidate accident/hazard prediction
models was assessed using the Spearman rank correlation coefficient. The Spearman rank correlation
coefficient had been previously used by Qureshi et al. [35] to evaluate certain accident/hazard prediction
models for the highway-rail grade crossings in the State of Missouri. The Spearman rank correlation
coefficient can be defined as a nonparametric measure for rank correlation. The values of the Spearman
rank correlation coefficient can range between −1 and +1. A value of −1 corresponds to a perfect
negative correlation between the predicted ranking set, which was derived by the candidate model
(i.e., the ranking of highway-rail grade crossings obtained using a given candidate accident/hazard
prediction model), and the baseline ranking set (i.e., the ranking of highway-rail grade crossings
obtained using the actual accident data). A value of +1 for Spearman rank correlation coefficient shows
that there is a perfect positive correlation between the predicted ranking set and the baseline ranking
set. On the other hand, a value of 0 demonstrates that no correlation exists between the considered
datasets [35].

The Spearman rank correlation coefficient can be calculated using the following equation [35,45]:

rs =

(
1
n

)∑n
x=1[

(
Px − P

)
·

(
Bx − B

)
]√

[
(

1
n

)∑n
x=1

(
Px − P

)2
]·[

(
1
n

)∑n
x=1

(
Bx − B

)2
]

(2)

where:

rs = the Spearman rank correlation coefficient;
Px = the rank of highway-rail grade crossing x, proposed by a given candidate accident/hazard
prediction model;
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P = the average ranking value of highway-rail grade crossings, proposed by a given candidate/hazard
accident prediction model;
Bx = the baseline rank of highway-rail grade crossing x;

B = the average baseline ranking value;
n = the number of highway-rail grade crossings.

The estimated values of the Spearman rank correlation coefficient will be multiplied by a factor
of 5 in order to accentuate the degree of correlation between the predicted rankings and the baseline
rankings for each one of the considered accident/hazard prediction models. The latter approach is
in line with the methodology that was used by the study conducted by Qureshi et al. [35] for the
highway-rail grade crossings in the State of Missouri. The FRA’s highway-rail grade crossing accident
database was used to develop the baseline ranking of the highway-rail grade crossings in the State of
Florida based on the actual accident data.

5. Case Study

This section of the manuscript provides the results that were revealed from the analysis of the
candidate accident and hazard prediction models for the highway-rail grade crossings in the State
of Florida. Along with the canonical Connecticut Hazard Rating Formula, the canonical California
Hazard Rating Formula, and the canonical Texas Priority Index Formula, this study evaluated the
modified versions of the aforementioned formulae. The modified formulae will be further referred to
as the Modified Connecticut Hazard Rating Formula, the Modified California Hazard Rating Formula,
and the Modified Texas Priority Index Formula, respectively. The total number of accidents in the last
five years, the last 10 years, and the last 5 years are used within the canonical Connecticut Hazard
Rating Formula, the canonical California Hazard Rating Formula, and the canonical Texas Priority
Index Formula, respectively. The canonical versions of the formulae have a major drawback since they
do not consider upgrades at highway-rail grade crossings that generally cause significant changes in
the crossing operational characteristics. In order to address this drawback, the Modified Connecticut
Hazard Rating Formula, the Modified California Hazard Rating Formula, and the Modified Texas
Priority Index Formula consider the total number of accidents which were observed in the last years
(i.e., the last 5 years, the last 10 years, and the last 5 years, respectively) or after the year of the most
recent upgrade (in case if the crossing was upgraded).

The accident data, downloaded from the FRA’s highway-rail grade crossing accident database
for the year of 2017, were used throughout evaluation of the candidate accident/hazard prediction
models. On the other hand, the accident data between 2007 and 2016 were used by the candidate
accident/hazard prediction models to develop the predicted rankings of highway-rail grade crossings.
The baseline rankings of highway-rail grade crossings, derived using the actual accident data for the
year of 2017, were compared against the rankings of highway-rail grade crossings, derived using the
candidate accident/hazard prediction models. MATLAB [46] was used to conduct all the statistical
analyses throughout this study.

5.1. Analysis of the Accident Prediction Models Based on the Chi-Square Statistic

The chi-square test was performed, where the observed number of accidents was obtained from
the FRA’s highway-rail grade crossing accident database for the year of 2017 and the predicted number
of accidents was obtained using the candidate accident prediction models. The results of the conducted
analysis are provided in Figure 2. It can be observed that the Peabody-Dimmick Formula had the
closest fit to the observed number of accidents that were recorded for the 589 highway-rail grade
crossings. In particular, the lowest value of chi-square statistic (χ2 = 482.74) was estimated for the
Peabody-Dimmick Formula. On the other hand, the chi-square statistic values comprised 1341.68,
1800.79, and 17,099.01 for the Coleman-Stewart Model, the U.S. DOT Accident Prediction Formula, and
the NCHRP Report 50 Accident Prediction Formula, respectively (see Figure 2). Therefore, the worst
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performance was demonstrated by the NCHRP Report 50 Accident Prediction Formula for the
considered highway-rail grade crossings in the State of Florida. As it was indicated earlier, the
chi-square statistic values were not computed for the hazard prediction models as the predicted
number of accidents is necessary in order to conduct the chi-square test.

Sustainability 2020, x, x FOR PEER REVIEW 12 of 27 

modified versions of the aforementioned formulae. The modified formulae will be further referred 

to as the Modified Connecticut Hazard Rating Formula, the Modified California Hazard Rating 

Formula, and the Modified Texas Priority Index Formula, respectively. The total number of accidents 

in the last five years, the last 10 years, and the last 5 years are used within the canonical Connecticut 

Hazard Rating Formula, the canonical California Hazard Rating Formula, and the canonical Texas 

Priority Index Formula, respectively. The canonical versions of the formulae have a major drawback 

since they do not consider upgrades at highway-rail grade crossings that generally cause significant 

changes in the crossing operational characteristics. In order to address this drawback, the Modified 

Connecticut Hazard Rating Formula, the Modified California Hazard Rating Formula, and the 

Modified Texas Priority Index Formula consider the total number of accidents which were observed 

in the last years (i.e., the last 5 years, the last 10 years, and the last 5 years, respectively) or after the 

year of the most recent upgrade (in case if the crossing was upgraded). 

The accident data, downloaded from the FRA’s highway-rail grade crossing accident database 

for the year of 2017, were used throughout evaluation of the candidate accident/hazard prediction 

models. On the other hand, the accident data between 2007 and 2016 were used by the candidate 

accident/hazard prediction models to develop the predicted rankings of highway-rail grade 

crossings. The baseline rankings of highway-rail grade crossings, derived using the actual accident 

data for the year of 2017, were compared against the rankings of highway-rail grade crossings, 

derived using the candidate accident/hazard prediction models. MATLAB [46] was used to conduct 

all the statistical analyses throughout this study. 

5.1. Analysis of the Accident Prediction Models Based on the Chi-Square Statistic 

The chi-square test was performed, where the observed number of accidents was obtained from 

the FRA’s highway-rail grade crossing accident database for the year of 2017 and the predicted 

number of accidents was obtained using the candidate accident prediction models. The results of the 

conducted analysis are provided in Figure 2. It can be observed that the Peabody-Dimmick Formula 

had the closest fit to the observed number of accidents that were recorded for the 589 highway-rail 

grade crossings. In particular, the lowest value of chi-square statistic (𝜒2 = 482.74) was estimated for 

the Peabody-Dimmick Formula. On the other hand, the chi-square statistic values comprised 1341.68, 

1800.79, and 17,099.01 for the Coleman-Stewart Model, the U.S. DOT Accident Prediction Formula, 

and the NCHRP Report 50 Accident Prediction Formula, respectively (see Figure 2). Therefore, the 

worst performance was demonstrated by the NCHRP Report 50 Accident Prediction Formula for the 

considered highway-rail grade crossings in the State of Florida. As it was indicated earlier, the chi-

square statistic values were not computed for the hazard prediction models as the predicted number 

of accidents is necessary in order to conduct the chi-square test. 

 

Figure 2. The Chi-Square Statistic Values for the Candidate Accident/Hazard Prediction Models. 

5.2. Analysis of the Accident/Hazard Prediction Models Based on the Crossing Groups 

Figure 2. The Chi-Square Statistic Values for the Candidate Accident/Hazard Prediction Models.

5.2. Analysis of the Accident/Hazard Prediction Models Based on the Crossing Groups

Figure 3 presents the number of the most hazardous highway-rail grade crossings, captured
by the candidate accident/hazard prediction models. The results from the conducted analysis show
that the Texas Priority Index Formula, the Modified Texas Priority Index Formula, and the Michigan
Hazard Index Formula typically performed better as compared to the other candidate accident/hazard
prediction models since they were able to capture more highway-rail grade crossings in the groups
that represent the top 15%, 20%, 25%, 30%, 40%, and 50% of the most hazardous highway-rail grade
crossings in the State of Florida. Furthermore, it can be observed that less highway-rail grade crossings
were generally captured by the U.S. DOT Accident Prediction Formula for the considered highway-rail
grade crossing groups. The Connecticut Hazard Rating Formula and the Modified Connecticut
Hazard Rating Formula also showcased a quite weak performance as compared to the other candidate
accident/hazard prediction models which were considered throughout the analysis.

The candidate accident prediction models were typically outperformed by the candidate hazard
prediction models for the considered highway-rail grade crossings in the State of Florida. Such a
finding can be explicated by the nature of the accident prediction models. Specifically, the accident
prediction models are based on many coefficients which have to be calibrated using the historical
data that contain the operational and physical characteristics of the highway-rail grade crossings in a
given state. Changes in the operational and physical characteristics of highway-rail grade crossings are
unavoidable over time. Hence, some of the coefficients become outdated for certain accident prediction
models. Moreover, if the coefficient values were calibrated for the highway-rail grade crossings of
a particular state or the entire U.S., these values may not be appropriate for the highway-rail grade
crossings that are located in the State of Florida. On the other hand, the hazard prediction models are
typically more generic and do not use a large number of coefficients which have to be continuously
updated over a certain period of time. The hazard prediction models assess the crossing hazard
based on the key operational and physical characteristics (e.g., number of trains per day, number of
vehicles per day, existing protection, train speed, accident history, number of traffic lanes, number of
tracks, etc.).

Furthermore, the analysis results show that the canonical Connecticut Hazard Rating Formula,
the canonical California Hazard Rating Formula, and the canonical Texas Priority Index Formula were
typically outperformed by the Modified Connecticut Hazard Rating Formula, the Modified California
Hazard Rating Formula, and the Modified Texas Priority Index Formula, respectively. Such a finding
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can be explicated by the fact that the Modified Connecticut Hazard Rating Formula, the Modified
California Hazard Rating Formula, and the Modified Texas Priority Index Formula consider the total
number of accidents which were observed in the last years (i.e., the last 5 years, the last 10 years, and the
last 5 years, respectively) or after the year of the most recent upgrade (if the crossing was upgraded).
On the other hand, the canonical versions of these hazard prediction formulae ignore the upgrades
that were previously implemented at the considered highway-rail grade crossings. Application
of different highway-rail grade crossing upgrades may substantially change their operational and
physical characteristics and negatively influence the accuracy of the canonical Connecticut Hazard
Rating Formula, the canonical California Hazard Rating Formula, and the canonical Texas Priority
Index Formula.Sustainability 2020, x, x FOR PEER REVIEW 14 of 27 
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Figure 3. The Number of Highway-Rail Grade Crossings Captured by the Candidate Accident/Hazard
Prediction Models.

The scope of this study also included an additional analysis, aiming to determine the number of
common highway-rail grade crossings that were selected by all the considered accident and hazard
prediction models for each one of the highway-rail grade crossing groups (each group was analyzed
individually). The considered accident and hazard prediction models were able to identify a total
of 10, 24, 31, 36, 68, and 148 common highway-rail grade crossings in the groups that represent the
top 15%, 20%, 25%, 30%, 40%, and 50% of the most hazardous highway-rail grade crossings in the
State of Florida, respectively. The common highway-rail grade crossings that were identified by all
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the considered accident and hazard prediction models for a given highway-rail grade crossing group
(e.g., top 15% of the most hazardous highway-rail grade crossings) should receive more attention from
the relevant stakeholders throughout selection of safety improvement projects.

5.3. Analysis of the Accident/Hazard Prediction Models Based on the Spearman Rank Correlation Coefficient

Figure 4 presents the Spearman rank correlation coefficient values which were estimated for the
candidate accident/hazard prediction models. The results from the conducted analysis demonstrate
that the Texas Priority Index Formula, the Modified Texas Priority Index Formula, and the Michigan
Hazard Index Formula had the closest match with the rankings of highway-rail grade crossings,
which were obtained based on the actual accident data. In particular, the Spearman rank correlation
coefficient values comprised 3.636, 3.641, and 3.732 for the Texas Priority Index Formula, the Modified
Texas Priority Index Formula, and the Michigan Hazard Index Formula, respectively. Note that the
Spearman rank correlation coefficient value of −5 indicates a perfect negative correlation between
the predicted rankings and the baseline rankings, while the value of +5 implies a perfect positive
correlation. Hence, the Spearman rank correlation coefficients of the Texas Priority Index Formula,
the Modified Texas Priority Index Formula, and the Michigan Hazard Index Formula show a strong
positive relationship between the predicted rankings and the baseline rankings.
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It was found that the U.S. DOT Accident Prediction Formula, the Connecticut Hazard Rating
Formula, and the Modified Connecticut Hazard Rating Formula had the lowest Spearman rank
correlation coefficient values (i.e., 1.500, 2.377, and 2.384, respectively), which show a fairly weak positive
relationship between the predicted rankings and the baseline rankings. Moreover, the candidate
accident prediction models generally had lower Spearman rank correlation coefficient values as
compared to the candidate hazard prediction models (see Figure 4). The latter finding confirms that
the predicted rankings of the highway-rail grade crossings in the State of Florida, provided by the
candidate hazard prediction models, were more accurate as compared to the ones that were provided
by the candidate accident prediction models (which is in line with the results that were revealed from
the analysis of the candidate accident/hazard prediction models based on the crossing groups—see
Section 5.2 of the manuscript for more details).

The conducted analysis also showcases that the canonical Connecticut Hazard Rating Formula,
the canonical California Hazard Rating Formula, and the canonical Texas Priority Index Formula
had lower Spearman rank correlation coefficient values as compared to the Modified Connecticut
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Hazard Rating Formula, the Modified California Hazard Rating Formula, and the Modified Texas
Priority Index Formula, respectively. The latter finding confirms that the modified versions of the
Connecticut Hazard Rating Formula, the California Hazard Rating Formula, and the Texas Priority
Index Formula provided more accurate rankings of the highway-rail grade crossings in the State of
Florida as compared to the ones that were provided by the canonical versions of the formulae (which is
in line with the results that were revealed from the analysis of the candidate accident/hazard prediction
models based on the crossing groups—see Section 5.2 of the manuscript for more details). The accuracy
of the modified versions of the aforementioned hazard prediction formulae can be justified by the fact
that they directly account for the upgrades at highway-rail grade crossings in order to estimate the
number of accidents that occurred in the past.

5.4. Final Model Recommendation

A detailed evaluation of the 13 candidate accident/hazard prediction models demonstrated that
the Texas Priority Index Formula, the Modified Texas Priority Index Formula, and the Michigan
Hazard Index Formula outperformed the other candidate accident/hazard prediction models in terms
of the adopted performance indicators for the highway-rail grade crossings in the State of Florida.
In particular, the Texas Priority Index Formula, the Modified Texas Priority Index Formula, and the
Michigan Hazard Index Formula were able to capture more highway-rail grade crossings in the groups
that represent the top 15%, 20%, 25%, 30%, 40%, and 50% of the most hazardous highway-rail grade
crossings in the State of Florida. Moreover, the Texas Priority Index Formula, the Modified Texas
Priority Index Formula, and the Michigan Hazard Index Formula returned the highest values of the
Spearman rank correlation coefficient (i.e., 3.636, 3.641, and 3.732, respectively).

The Texas Priority Index Formula and the Modified Texas Priority Index Formula are more
advantageous as compared to the Michigan Hazard Index Formula since they directly account for the
accident history at highway-rail grade crossings. However, the canonical Texas Priority Index Formula
does not consider any upgrades throughout estimations of the hazard index for highway-rail grade
crossings and had a lower Spearman rank correlation coefficient value as compared to the Modified
Texas Priority Index Formula. Therefore, this study recommends the Modified Texas Priority Index
Formula, which will be further referred to as the “Florida Priority Index Formula”, for prioritizing
the highway-rail grade crossings for safety improvement projects in the State of Florida. The Florida
Priority Index can be calculated for the highway-rail grade crossings using the following equation:

FPI = V·T·(0.1·S)·PF·
(
0.01·A1.15

)
(3)

where:

FPI = the Florida Priority Index;
V = average daily traffic volume;
T = average daily train volume;
S = train speed, mph;
PF = protection factor; 1.00 for passive; 0.70 for mast-mounted flashing lights; 0.15 for cantilever
flashing lights; and 0.10 for gates;
A = accident history parameter = the number of accidents in the past 5 years or the number of accidents
since the latest upgrade, if the latest upgrade was made within the past 5 years (default = 1).

6. Conclusions and Future Work

A significant number of accidents are reported at highway-rail grade crossings across the United
States (U.S.) every year. For example, a total of 1649 highway-rail accidents which resulted in 268 deaths
and 755 injuries were reported for the highway-rail grade crossings in the State of Florida between
January 2000 and December 2018. The state Departments of Transportation (DOTs) implement
certain countermeasures to prevent accidents, such as upgrading of highway-rail grade crossing
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surface, replacement of warning signs, installation of reflective strips, replacement of gate mechanism,
installation of median barrier systems, and others. However, applying countermeasures to all the
highway-rail grade crossings in a region is not economically feasible. Therefore, highway-rail grade
crossings have to be prioritized for safety improvement projects. This study focused on evaluation of
the accident and hazard prediction formulae which have been widely used in the literature for the
highway-rail grade crossings in the State of Florida.

A total of 21 accident/hazard prediction models were discovered throughout review of the
relevant literature. Only four accident prediction models and six hazard prediction models were
selected for a detailed evaluation due to the limited data, which are available in the Federal Railroad
Administration’s (FRA’s) highway-rail grade crossing accident database and the FRA’s highway-rail
grade crossing inventory database. In addition, modified versions of the Connecticut Hazard Rating
Formula, the California Hazard Rating Formula, and the Texas Priority Index Formula were developed
and assessed. The key difference between the canonical Connecticut Hazard Rating Formula, the
canonical California Hazard Rating Formula, the canonical Texas Priority Index Formula, and their
modified versions consists in the approach for estimating the number of accidents which occurred
in the last years (i.e., the modified versions of the formulae directly account for the upgrades and
estimate the number of accidents since the latest upgrade). The candidate accident/hazard prediction
models were applied to the 589 most hazardous highway-rail grade crossings located in the State of
Florida. A total of three performance indicators were used to assess the performance of the candidate
accident/hazard prediction models, including the following: (1) chi-square statistic; (2) grouping of
crossings based on the actual accident data; and (3) Spearman rank correlation coefficient.

A detailed evaluation of the 13 candidate accident/hazard prediction models demonstrated that
the Texas Priority Index Formula, the Modified Texas Priority Index Formula, and the Michigan
Hazard Index Formula outperformed the other candidate accident/hazard prediction models in terms
of the adopted performance indicators for the highway-rail grade crossings in the State of Florida.
The Modified Texas Priority Index Formula (referred to as the “Florida Priority Index Formula”)
was found to be methodologically superior to the canonical Texas Priority Index Formula as well as
the Michigan Hazard Index Formula and was recommended for prioritizing the highway-rail grade
crossings for safety improvement projects in the State of Florida. The Florida Priority Index Formula
assesses a potential hazard of a given highway-rail grade crossing based on the average daily traffic
volume, average daily train volume, train speed, protection factor, and accident history parameter.
Unlike the canonical Texas Priority Index Formula, the Florida Priority Index Formula computes the
accident history parameter based on the total number of accidents in the last five years or since the
year of the last improvement (if there was an upgrade).

It is expected that the findings of this study and the developed Florida Priority Index Formula
will assist the Florida DOT (FDOT) with an accurate prioritization of the highway-rail grade crossings
in the State of Florida for safety improvement projects. This study can be extended further in several
ways. First, a hazard prediction methodology for different severity categories (e.g., fatality, injury,
property damage only, etc.) should be devised as an extension of the Florida Priority Index Formula.
Second, additional factors could be considered in the proposed hazard prediction formula (e.g., vehicle
composition, percentage of heavy vehicles, highway type, posted highway speed limit). Third, more
advanced statistical methods could be developed for hazard prediction of the highway-rail grade
crossings in the State of Florida and then compared to the Florida Priority Index Formula. Fourth,
a resource allocation model, which directly relies on the Florida Priority Index values, should be
developed to identify the highway-rail grade crossings that must be upgraded and select the appropriate
upgrading type. Exact and heuristic methods should be considered to solve the developed resource
allocation model. Fifth, the developed Florida Priority Index Formula should be evaluated for other
states in the U.S., as it may be effective for ranking highway-rail grade crossings for safety improvement
projects in the other states as well (not just Florida). Sixth, the protection factor values of the Florida
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Priority Index Formula should be calibrated for different types of warning devices (e.g., crossbucks,
wigwags, bells).
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Appendix A

This Appendix provides a detailed description of the candidate accident prediction models and
the candidate hazard prediction models that were considered in this study.

Candidate Accident Prediction Formulae
This section of the manuscript provides a detailed description of the candidate accident prediction

models, which were further evaluated for the highway-rail grade crossings in the State of Florida.
Coleman-Stewart Model. Sources: Faghri and Demetsky [32], Elzohairy and Benekohal [34]

log10A = B0 + B1·log10C + B2·log10T + B3·(log10T)2 (A1)

where:

A = average number of accidents per highway-rail grade crossing per year;
C = average daily vehicular movements (if C = 0, use 0.5 instead);
T = average daily train movements (if T = 0, use 0.5 instead);
B0, B1, B2, and B3 = coefficients of the accident prediction equation.

Tables A1 and A2 present the values of coefficients for the accident prediction equation (derived
based on a multiple linear regression analysis) and the associated R-squared values, which were
reported by Coleman and Stewart. Table A1 provides the information for urban highway-rail grade
crossings, while Table A2 reports the data for rural highway-rail grade crossings. Note that Tables A1
and A2 present the values of the Coleman-Stewart Model coefficients based on protection type
(i.e., automatic gates, flashing lights, crossbucks, other active protection types, stop signs, and no
protection) and number of tracks (i.e., single track or multiple tracks). For example, the value of the B0

coefficient comprises −2.17 for single-track urban highway-rail grade crossings with automatic gates
(see Table A1). However, the value of the B0 coefficient was found to be higher in rural settings and
comprises −1.42 for single-track rural highway-rail grade crossings with automatic gates (see Table A2).
Similarly, the values of the B0 coefficient comprise −2.58 and −1.63 for multiple-track highway-rail
grade crossings with automatic gates that are located in urban and rural settings, respectively.
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Table A1. The Coleman-Stewart Model coefficients and R-Squared Values for Urban Highway-Rail
Grade Crossings.

Single-Track Multiple-Track

Item B0 B1 B2 B3 R2 Item B0 B1 B2 B3 R2

Automatic gates −2.17 0.16 0.96 −0.35 0.186 Automatic gates −2.58 0.23 1.30 −0.42 0.396

Flashing lights −2.85 0.37 1.16 −0.42 0.729 Flashing lights −2.50 0.36 0.68 −0.09 0.691

Crossbucks −2.38 0.26 0.78 −0.18 0.684 Crossbucks −2.49 0.32 0.63 −0.02 0.706

Other active −2.13 0.30 0.72 −0.30 0.770 Other active −2.16 0.36 0.19 0.08 0.650

Stop signs −2.98 0.42 1.96 −1.13 0.590 Stop signs −1.43 0.09 0.18 0.16 0.350

None −2.46 0.16 1.24 −0.56 0.240 None −3.00 0.41 0.63 −0.02 0.580

Table A2. The Coleman-Stewart Model Coefficients and R-Squared Values for Rural Highway-Rail
Grade Crossings.

Single-Track Multiple-Track

Item B0 B1 B2 B3 R2 Item B0 B1 B2 B3 R2

Automatic gates −1.42 0.08 −0.15 0.25 0.200 Automatic gates −1.63 0.22 −0.17 0.05 0.142

Flashing lights −3.56 0.62 0.92 −0.38 0.857 Flashing lights −2.75 0.38 1.02 −0.36 0.674

Crossbucks −2.77 0.40 0.89 −0.29 0.698 Crossbucks −2.39 0.46 −0.50 0.53 0.780

Other active −2.25 0.34 0.34 −0.01 0.533 Other active −2.32 0.33 0.80 −0.35 0.310

Stop signs −2.97 0.61 −0.02 0.29 0.689 Stop signs −1.87 0.18 0.67 −0.34 0.320

None −3.62 0.67 0.22 0.26 0.756 None - - - - -

NCHRP Report 50 Accident Prediction Formula. Sources: Elzohairy and Benekohal [34], U.S.
DOT [41], Chadwick et al. [4], Ryan and Mielke [39]

Number o f accidents per year = A·B·T (A2)

where:

A = factor based on a 10-year annual average daily traffic (AADT) (see Table A3);
B = factor based on the existing warning devices and urban/rural classification (see Table A4);
T = current train volume per day.

Table A3. The “A” factor Values for Highway Vehicles Per Day.

Vehicles Per Day
(10-Year AADT) “A” Factor Vehicles Per Day

(10-Year AADT) “A” Factor

250 0.000347 9000 0.011435

500 0.000694 10,000 0.012674

1000 0.001377 12,000 0.015012

2000 0.002627 14,000 0.017315

3000 0.003981 16,000 0.019549

4000 0.005208 18,000 0.021736

5000 0.006516 20,000 0.023877

6000 0.007720 25,000 0.029051

7000 0.009005 30,000 0.034757

8000 0.010278
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Table A4. The “B” Factor Values for the Existing Warning Devices.

Type of Warning Device “B ” Factor

Crossbucks, highway volume less than 500 per day 3.89

Crossbucks, urban 3.06

Crossbucks, rural 3.08

Stop signs, highway volume less than 500 per day 4.51

Stop signs 1.15

Wigwags 0.61

Flashing lights, urban 0.23

Flashing lights, rural 0.93

Gates, urban 0.08

Gates, rural 0.19

Peabody-Dimmick Formula. Sources: U.S. DOT [41], Chadwick et al. [4], Ryan and Mielke [39]

A5 = K +
1.28·V0.170

·T0.151

P0.171
(A3)

where:

A5 = expected number of accidents in 5 years;
V = annual average daily traffic factor;
T = average daily train traffic factor;
P = protection coefficient;
K = additional parameter.

The values of different factors which are required to estimate the expected number of accidents in
five years (A5) can be determined from Table A5 and the set of curves presented in Figures A1–A3.
Furthermore, the additional parameter (K) is estimated based on the unbalanced accident factor (lu).
The unbalanced accident factor (lu) can be calculated using the following equation:

lu = 1.28·
V·T

P
(A4)

Table A5. The Values of Protection Coefficient, P for Different Types of Warning Devices.

Type of Warning Device Protection Coefficient (P)

Signs 1.65

Bells 1.78

Wigwag 1.99

Wigwag and bells 2.03

Flashing lights 2.18

Flashing lights and bells 2.25

Wigwag and flashing lights 2.27

Wigwag, flashing lights, and bells 2.35

Watchman, 8 h 2.27

Watchman, 16 h 2.43

Watchman, 24 h 2.52

Gates, 24 h 2.56

Gates, automatic 2.70
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The U.S. DOT Accident Prediction Formula is based on three stages, including the following:
(1) estimation of the initial accident prediction; (2) estimation of the second accident prediction;
and (3) estimation of the final accident prediction.
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The Initial Accident Prediction

a = K·EI·MT·DT·HP·MS·HT·HL (A5)

where:

a = the initial accident prediction, accidents per year at a highway-rail grade crossing;
K = formula constant;
EI = factor for exposure index based on the product of highway and train traffic;
MT = factor for the number of main tracks;
DT = factor for the number of through trains per day during daylight;
HP = factor for highway paved (yes or no);
MS = factor for maximum timetable speed;
HT = factor for highway type;
HL = factor for the number of highway lanes.

Table A6 presents the values of the highway-rail grade crossing characteristic factors for the
highway-rail grade crossings with different types of protection (i.e., passive, flashing lights, and gates).

Table A6. The Highway-Rail Grade Crossing Characteristic Factors for the Initial U.S. DOT Accident
Prediction Formula.
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Notes: c = annual average number of highway vehicles per day (total of both directions); t = average total train
movements per day; mt = number of main tracks; d = average number of thru trains per day during daylight;
hp = highway paved; 1.0 for paved; and 2.0 for unpaved;ms = maximum timetable speed, mph; ht = highway type
factor value (see Table A7); hl = number of highway lanes.

Table A7. The Values of Highway Type Factor, ht for Different Types of Highway.

Urban/Rural Classification Highway Type Inventory Code ht

Rural

Interstate 01 1

Other principal arterial 02 2

Minor arterial 06 3

Major collector 07 4

Minor collector 08 5

Local 09 6

Urban

Interstate 11 1

Other freeway and expressway 12 2

Other principal arterial 14 3

Minor arterial 16 4

Collector 17 5

Local 19 6



Sustainability 2020, 12, 4291 23 of 27

The Second Accident Prediction

B =
T0

T0 + T
(a) +

T0

T0 + T

(N
T

)
(A6)

where:

B = the second accident prediction, accidents per year at a highway-rail grade crossing;
a = initial accident prediction, accidents per year at a highway-rail grade crossing;
N
T = accident history prediction, accidents per year, where N is the number of observed accidents in T
years at a highway-rail grade crossing;
T0 = formula weighting factor = 1

0.05+a .

The second accident prediction formula will yield the most accurate results when all the available
accident history is considered. However, the accident history, collected for more than five years, can be
misleading as a result of the changes in the highway-rail grade crossing characteristics that occur over
time. If a given highway-rail grade crossing was upgraded within the last five years (e.g., installation
of flashing lights at a passive highway-rail grade crossing), the accident history after upgrades should
be considered in the estimation of the second accident prediction.

The Final Accident Prediction
The final accident prediction (A) relies on the application of a normalizing constant in order to

consider the current accident trends. The normalizing constant should be estimated for each category
of highway-rail grade crossings (crossings with passive traffic control, crossings with flashing lights,
and crossings with gates) by setting the sum of the number of predicted accidents multiplied by the
corresponding normalizing constant equal to the number of accidents, which were recorded over a
given time period.

Candidate Hazard Prediction Formulae
This section of the manuscript provides a detailed description of the candidate hazard prediction

models, which will be further evaluated for the highway-rail grade crossings in the State of Florida.
New Hampshire Hazard Index Formula. Sources: Chadwick et al. [4], Ryan and Mielke [39].

NHHI = V·T·PF (A7)

where:

NHHI = the New Hampshire Hazard Index;
V = annual average daily traffic;
T = average daily volume of trains;
PF = protection factor; 1.0 for stop signs; 0.6 for flashing lights; and 0.1 for gates.

California Hazard Rating Formula. Sources: Elzohairy and Benekohal [34], Qureshi et al. [35]

CaHI =
V·T·PF

1000
+ AH (A8)

where:

CaHI = the California Hazard Index;
V = number of vehicles;
T = number of trains;
PF = protection factor; 1.00 for stop signs or crossbucks; 0.67 for wigwags; 0.33 for flashing lights; and
0.13 for gates;
AH = accident history (the total number of accidents in the last 10 years multiplied by a factor of “3”).



Sustainability 2020, 12, 4291 24 of 27

Connecticut Hazard Rating Formula. Sources: Elzohairy and Benekohal [34], Qureshi et al. [35]

CoHI =
(T + 1)·(A + 1)·AADT·PF

100
(A9)

where:

CoHI = the Connecticut Hazard Index;
AADT = annual average daily traffic;
T = number of trains per day;
PF = protection factor (see Table A8);
A = accident history (the total number of accidents in the last 5 years).

Table A8. The Protection Factor Values for the Connecticut Hazard Rating Formula.

Traffic Control Devices Protection Factor (PF)
Passive warning devices 1.25

Stop sign control 1.00
Stop sign and protect control 0.75

Manually activated traffic signal 0.75
Railroad flashing lights 0.25

Traffic signal control with preemption 0.25
Gates with railroad flashing lights 0.01

Inactive rail line 0.001

Illinois Hazard Index Formula. Sources: Elzohairy and Benekohal [34], Qureshi et al. [35]

IHI = 10−6
·A2.59088

·B0.09673
·C0.40227

·D0.59262
·

(
15.59·N5.60977 + PF

)
(A10)

where:

IHI = the Illinois Hazard Index;
A = ln(ADT·NTT);
ADT = average daily traffic;
NTT = number of total trains per day;
B = maximum timetable speed, mph;
C = number of main and other tracks;
D = number of highway lanes;
N = average number of accidents per year (typically, over a 5-year period);
PF = protection factor; 86.39 for crossbucks; 68.97 for flashing lights; and 37.57 for gates.

Michigan Hazard Index Formula. Sources: Elzohairy and Benekohal [34]
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Table A9. The Protection Factor Values Used by the Michigan DOT.

Traffic Control Devices Protection Factor (PF)

Reflectorized crossbuck with or without a yield sign 1.00

Stop sign 0.80

Stop and flag procedures 0.75

Flashing-light signals 0.30

Flashing-light signals with cantilever arms 0.27

Flashing-light signals with cantilever arms and traffic signal interconnect 0.24

Flashing-light signals with half-roadway gates 0.11

Flashing-light signals with cantilever arms and half-roadway gates 0.08

Flashing-light signals with cantilever arms, half-roadway gates, and
traffic signal interconnection 0.05

The addition of warranted motion sensor or predictor circuitry further reduces PF by 0.02.

The New Hampshire Hazard Index Formula had been used by the Michigan DOT to prioritize
the highway-rail grade crossings for safety improvement projects. The key difference between the
methodology used by the Michigan DOT and the canonical New Hampshire Hazard Index Formula
consists of changes in the protection factor (PF) values. Table A9 presents the values of the protection
factor adopted by the State of Michigan for various types of countermeasures. If the value of Michigan
Hazard Index exceeds 4000 for a given highway-rail grade crossing, which may already have stop
signs, crossbuck signs, yield signs, wigwag signals, bells, or manual warning, a system of flashing
lights can be recommended for installation at that highway-rail grade crossing.

Texas Priority Index Formula. Sources: Ryan and Mielke [39]

TPI = V·T·(0.1·S)·PF·
(
0.01·A1.15

)
(A11)

where:

TPI = the Texas Priority Index;
V = average daily traffic volume;
T = average daily train volume;
S = train speed, mph;
PF = protection factor; 1.00 for passive; 0.70 for mast-mounted flashing lights; 0.15 for cantilever
flashing lights; and 0.10 for gates;
A = train accidents in the past 5 years (default = 1).
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