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Abstract: Although road transport plays a vital role in promoting the development of China’s national
economy, it also produces much harmful output in the process of road transport. Various types of
harmful output generate high social costs. In order to improve efficiency and protect the environment
at the same time, a variety of undesirable outputs need to be considered when evaluating the
environmental efficiency of road transport. In this paper, the performance of the road transport systems
in 30 regions of China is evaluated considering multiple harmful outputs (noise, carbon emission,
direct property losses), by employing the directional distance function. Further, a convergence
analysis of the environmental efficiency of road transport is carried out. The empirical results show
that the environmental efficiency of overall road transport in China increased from 0.8851 to 0.9633
from 2010 to 2017. Moreover, the environmental efficiency gaps between the eastern, central and
western areas have narrowed over time, but still exist. Additionally, the results of σ convergence
analysis show that convergence of environmental efficiency exists in the whole country and the
western area, while only weak convergence exists in the eastern and central areas. Both absolute β

convergence and conditional β convergence exist in the eastern, central and western areas. While the
environmental efficiency improved over the study period, the environmental efficiencies of road
transport in some provinces remain inefficient, which deserves more attention from those seeking
to improve environmental efficiency. The paper concludes with suggestions for improving the
environmental efficiency of road transport.
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1. Introduction

Road transport is an indispensable part of China’s comprehensive transport system and plays
a crucial role in promoting regional economic development and logistics operation [1,2]. In recent
years, with the government’s emphasis on road transport and the development of social economy,
the investment of relevant departments in road construction has increased significantly. By the end
of November 2019, China’s fixed-asset investment in roads reached 2024.214 billion yuan, up 1.9%
from the same period in 2018 [3]. With the steady growth of market investment, the highway mileage
of China’s road transport is also increasing every year. The length of China’s road transport reached
4.8465 million kilometers in 2018, an increase of 73,000 km compared with 2017 [4]. At present, China’s
road freight market still occupies the largest proportion in the whole freight market. By November
2019, China’s freight volume had reached 486.31 million tons, with China’s road freight volume the
largest, at 77.81 percent [3].

While road transport has made brilliant achievements, it will also face a series of negative problems
caused by its success. Road transport not only produces air pollution but also emits greenhouse gases
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that contribute to global warming [5]. From 2009 to 2012, the average annual emission of carbon dioxide
from the road transport sector in China reached 529.31 million tons [6]. Moreover, traffic accidents are
a leading cause of casualties and property damage [7]. From 2010 to 2017, the direct property loss
caused by traffic accidents increased from 0.92 billion to 1.21 billion, and the average direct property
loss during this period reached 1.09 billion [3]. The average noise level in road transport is 69 dB,
which is higher than the environmental noise standard and constitutes another environmental issue [4].
These environmental and safety issues do affect the performance and long-term development of the
road transport sector, perhaps so much that it cannot maintain its competitive advantage in integrated
transport systems. Therefore, it is necessary to assess the environmental efficiency, considering the
environmental and safety problems caused by road transport, so as to provide managers and decision
makers with a basis for planning and action.

Many studies omit consideration of multiple undesirable outputs, and various undesirable
outputs, such as traffic accidents and noise, are easily ignored. Therefore, this paper selects carbon
dioxide emission, noise and direct property loss caused by traffic accidents as the undesirable outputs
to evaluate, along with the traditional efficiency evaluation index. The directional distance function
(DDF), which takes into account both good and harmful outputs, is used to assess the environmental
efficiency of the road transport. On this basis, the convergence of environmental efficiency is tested.

The purpose of this paper is to measure the environmental efficiency of China’s road transport by
considering a variety of undesirable outputs, and to analyze whether the environmental efficiency
has reached a stable level. There are two main contributions of this paper. As for the method,
data envelopment analysis with the DDF is used to evaluate the performance of road transport
departments; using this technique, both good and bad output are considered, and the convergence of
the environmental efficiency can be tested. As for the variable selection, we choose carbon dioxide
emission, direct property loss caused by traffic accidents and noise as the indicators of undesirable
output. The models of most of the existing literature use carbon dioxide emission or traffic accidents as
the single undesirable output, and a few publications consider traffic noise.

Next, Section 2 reviews the literature on transport environmental efficiency. Section 3 introduces
the DDF, data envelopment analysis (DEA), and the method of convergence analysis in the study of
environmental efficiency. Section 4 describes input-output indicators and data related to road transport,
as well as empirical results. Finally, the paper offers implications and highlights its main conclusions.
Appendix A is a Table of notation used in this study (Table A1).

2. Literature Review

2.1. A Review of Road Transport Efficiency Ignoring Environmental Factors

The existing literature contains both parametric methods and nonparametric methods to measure
road transport efficiency, represented by stochastic frontier analysis (SFA) and DEA, respectively.
DEA is a mature efficiency evaluation method which does not need any specific production function
form and has been widely used in the evaluation of transport efficiency [8]. Earlier, many scholars used
DEA to study transport efficiency. Karlaftis [9] used DEA to estimate the efficiency of 256 transport
systems in the United States. Jain et al. [10] employed a DEA method to analyze the efficiency of an
urban transit rail transport system, pointing out that privatization is conducive to the improvement of
transport efficiency. Yu and Fan [11] proposed a mixed structure network DEA to measure the technical
efficiency of Taiwan’s public transport system. Kumar [12] used traditional DEA and a super-efficiency
model to measure road transport efficiency, and Tobit analysis was used to explain the factors affecting
that efficiency. Yang et al. [13] evaluated urban road transport with a hybrid DEA model. From the
research of these scholars, it can be found that their DEA models only consider good output, ignore bad
output, and do not conform to the actual production process.

Other scholars use the parametric method SFA to evaluate transport efficiency. For example,
Holmgren and Johan [14] employed SFA as a tool for analyzing how the efficiency of public transport
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operations in 26 Swedish counties changes over time. Jarboui et al. [15] used SFA to comprehensively
analyze the technical efficiency of 54 public road transport operators in 18 countries. Ayadi and
Hammami [16] used the SFA method to evaluate the efficiency of 12 Tunisian bus transport companies
during the 2000–2010 period. SFA requires choosing an appropriate form of the production function,
and its model hypothesis is relatively complex, which brings difficulties to empirical research. For this
reason, many researchers prefer to use DEA to measure efficiency [17]. If the SFA production function
form is not selected correctly, then the skewness problem easily appears and the final calculation result
is not credible [18].

2.2. A Review of Road Transport Efficiency Considering Environmental Factors

Governments are paying increasing attention to the escalating issues involving environmental
deterioration [19]. Accordingly, many studies also focus on environmental performance when
considering efficiency, and many scholars have suggested that the impact of environmental factors on
transport efficiency should be considered [20–23]. Zhou et al. [24] used the output-oriented directional
distance function to measure the performance of China’s transport sector, considering CO2 emissions as
adverse output. Agarwal et al. [25] took traffic accidents as input variables and used DEA to measure
the efficiency of the traffic sector in India. Liu et al. [26] selected CO2 emissions as the only undesirable
output, and the non-radial DEA model was used to measure the environmental efficiency of road
and rail transport in 30 regions of China. Liu et al. [6] proposed a parallel DEA method based on
slacks, to evaluate the environmental efficiency of railway and road transport and the comprehensive
efficiency of both, considering carbon dioxide emissions.

Pal and Mitra [27] adopted traffic accidents as the undesirable output, measured the performance
of 37 road transport enterprises by using the DDF, and studied the factors causing traffic accidents by
using the Tobit model. Park et al. [28] employed slack-based DEA to measure environmental efficiency
in the American transport sector, taking CO2 emissions into account as a bad output. In addition, the
carbon efficiency and potential emission reductions of the 50 states were estimated. Wu et al. [29]
proposed an extended parallel DEA method to measure and compare the environmental efficiency
of passenger and freight for China’s road transport, taking into account CO2 emissions. Wang [5]
used the SBM-DEA model to evaluate the environmental efficiency of road transport, considering the
total number of accidental casualties due to traffic accidents, CO2 emissions, and PM2.5 as harmful
outputs. Piccioni [30] implemented a set of transport, cost and investment sub-models applied in series.
In such a context, road efficiency is linked to some parameters, such as maintenance costs (mileage)
and additional costs that compensate for the major negative externalities (environmental problems,
traffic jam) of road traffic. Wang et al. [31] predicted CO2 emissions from road freight in China in
different situations, by employing system optimization. Omrani et al. [32] used a comprehensive DEA
model to analyze the energy efficiency of Iran’s road transport sector, incorporating CO2 emissions
into the model as the only environmental factor.

In the literature considering environmental factors, scholars have two ways of dealing with harmful
outputs. One takes them as inputs and assumes that the harmful outputs are freely disposable [33,34].
The other treats them as outputs, supposing that they have weak disposability. However, the former
method is controversial for two reasons: first, considering the undesirable output as input is contrary
to the actual production process [17]; second, this method does not conform to the “null-jointness”
principle of undesirable outputs and desirable output. As for the transport efficiency, many scholars
only consider a single undesirable output such as CO2 emissions or traffic accidents; only rarely does
any work consider multiple undesirable outputs. However, the environmental problem encompasses
not only the atmospheric pollution caused by CO2 emissions, but also factors such as the troubles
caused by traffic noise. To sum up, we use the DDF model to assess the environmental efficiency of
road transport, considering both good output and three types of harmful output: CO2 emissions, noise
and direct property loss caused by traffic accidents. Then, convergence analysis is used to examine
whether there is convergence in the environmental efficiency of road transport.
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3. Methodology

3.1. The DDF Considering Undesirable Output

In reality, inputs produce both good outputs and harmful outputs. However, the traditional model
of data envelopment analysis ignores the undesirable output, so the calculated efficiency cannot fully
reflect the objective reality. The DDF model considers good output and bad output simultaneously,
and doing so can compensate for the shortcomings of the basic DEA model. The basic assumption
of DDF is that it increases the good output, while decreasing the bad output under the condition of
constant input; this is a great advantage of the DDF [27,34,35]. Referring to Chung et al. [35], the
production possibility set of the DDF is defined as follows:

P(x) = {(yd, yu) : x can produce (yd, yu) } (1)

Here, Formula (1) shows the relationship between the input and output, where yd is the desirable
output (good output), and yu is the undesirable output (bad output), such as noise. Formula (1) shows
that both good output yd and bad output yu are produced by input x. Formula (1) should satisfy the
following constraint conditions:

• The P(x) of the directional distance function is convex. The convexity was first asserted by
Färe et al. [36] and is also employed by Fan et al. [34].

• If x = 0, then yd = 0, yu = 0, which means that no output can be produced without input.
• Weak disposability of undesirable outputs: If (yd, yu) ∈ P(x) and 0 ≤ θ ≤ 1, then (θyd,θyb) ∈ P(x).
• Null-jointness: If (yd, yu) ∈ P(x) and yu = 0, then yd = 0.
• Strong disposability of desirable outputs: If (yd, yu) ∈ P(x) and s ≥ 0, then (yd

− s, yu) ∈ P(x).
• Free disposability of inputs: If z ≥ 0, then P(x− z) ∈ P(x).

The assumption of weak disposability states that when the input level is fixed, the undesirable
output will decline only when the desirable output is reduced, which implies that a cost is required
to reduce the harmful outputs [28]. In this paper, this hypothesis suggests that reductions in carbon
dioxide, noise and direct property losses from traffic accidents are possible if passenger or freight
turnover is reduced. In addition, the reduction of environmental emission can also be achieved by
making full use of existing transport resources and increasing the carrying capacity of vehicles, such as
carpooling, car sharing, electro-mobility, or the introduction of clean energy. The null-jointness means
that only by producing zero good outputs can we produce no harmful outputs [34]. Null-jointness in
this paper indicates that carbon dioxide, noise and traffic accidents are inevitably produced, as long as
there is road transport.

Next, we shall use the DDF to measure the environmental efficiency of road transport. The DDF
analysis result has nothing to do with the measurement units of the input-output indexes. For the
same set of data, as long as the direction vector remains unchanged, the result remains unchanged,
even if the measuring units of input and output are different. The DDF score represents the distance
between the evaluated region and the optimal production boundary, which implies that the DDF
score is inversely proportional to environmental efficiency. If the DDF score is close to zero, then road
transport system is at the production frontier and is efficient. Based on the Formula (1), the general
form of the DDF is as follows:

→

DO(x, yd, yu; g) = max{β : (yd, yu) + βg ∈ P(x)} (2)
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As in Martini et al. [37], g = (gyd ,−gyu) is selected as the direction vector, which means that
desirable output is increased while undesirable output is reduced. According to Chambers et al. [38]
and based on the Formula (2), the DDF for DEA is defined as follows:

→

DO(x, yd, yu; gyd ,−gyu) = maxρ
Xλ ≤ xk

Ydλ− ρgyd ≥ yk

Yuλ+ ρgyu = bk
λ ≥ 0

(3)

In Formula (3), ρ represents the degree of inefficiency, X is the input, the Yd are the desirable
outputs, and the Yu are the undesirable outputs. The direction vectors of good outputs and bad
outputs are expressed in terms of gyd , gyu , where gyd ≥ 0, −gyu ≤ 0, which means that the improvement
direction of ineffective DMU is to increase good output and reduce bad output. The linear combination
coefficient is denoted by λ. The environmental efficiency value can be obtained as 1/(1 + ρ), of which
the value is greater than 0 and less than or equal to 1. The road transport is efficient if the environmental
efficiency value equals one, which suggests that transport efficiency in the related region is 100%.
Otherwise, that region’s road transport is inefficient [39].

3.2. Convergence Analysis of Environmental Efficiency

This section conducts a convergence analysis on the environmental efficiency of road transport,
so as to judge whether the difference will gradually narrow with the economic development, which is
helpful for management to judge whether the road transportation policy has achieved good results. If σ
convergence is satisfied, it can be judged that the difference between regions with different transport
efficiencies decreases over time. Absolute convergence β means that the initial level of road transport
is different in each region, but the regions with low environmental efficiency will catch up with the
regions with high environmental efficiency at a faster speed and finally reach the same long-term
stable level. Conditional β convergence means that regions with different environmental efficiency
eventually reach their own level of stability, due to the limitations of their own development [40].

3.2.1. σ Convergence

There are many indicators to judge whether there is σ convergence, such as coefficient of variation
and standard difference. Although the expressions of these indicators are different, the basic principle is
the same, reflecting the degree of dispersion. The gradual decrease of the indicator over time suggests
that the existence of σ convergence, while the opposite means its absence. In this paper, we select the
standard deviation as the index to test the σ convergence, so the expression of the standard deviation
is shown in Formula (4).

SDt =

√√√√
1

N − 1

N∑
i=1

(EFi,t −
1
N

N∑
i=1

EFi,t)

2

(4)

In this expression, N represents the number of research objects, EFi,t stands for the environmental

efficiency of road transport of the ith region at time t, and 1
N

N∑
i=1

EFi,t stands for the average environmental

efficiency of the 30 regions in period t, which starts at time t. The relation SDt+1 < SDt indicates that
the gap in the environmental efficiency between different regions gradually narrows over time.

3.2.2. β Convergence

The absolute β convergence assumes that the environmental efficiency of road transport will
eventually reach the same stable level, no matter whether the economic environment of each region
is the same. That is, the regions with lower environmental efficiency will catch up with the regions
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with high environmental efficiency at a faster speed [41]. Referring to Barro and Sala-i-Martin [42],
the regression equation of absolute β convergence is shown in Equation (5):

[ln(EFi,T) − ln(EFi,0)]/T = α+ β ln(EFi,0) + ε (5)

Equation (5) represents the growth rate of the environmental efficiency in region i from time t = 0
to t = T; ln(EFi,0) is the logarithm of the environmental efficiency of road transport in the ith region in
period 0, and β is its regression coefficient. We use cross-sectional data to carry out OLS regression.
If β is less than zero and passes the significance test, that indicates that there is a tendency for the
backward regions to catch up with the developed regions in terms of environmental efficiency of
road transport.

Considering the difference of the initial level in each region, the conditional β convergence
assumes that the environmental efficiency reaches different stable levels in each region. In other words,
conditional β convergence admits that the gap between backward regions and developed regions will
persist, and different regions have different steady levels [43]. According to Miller and Upadhyay [44],
the panel data fixed effect model is employed to test the conditional β convergence; its regression
equation is shown as Equation (6):

[ln(EFi,t) − ln(EFi,t−1)] = α+ β ln(EFi,t−1) + ε (6)

In Equation (6), the subscript t is a variable, which is different in different years. Conditional β
convergence uses panel data to test convergence. Moreover, α is the fixed effect term of panel data.
If β is less than zero and passes a significance test, the requirements of conditional β convergence
are met. The result shows that the environmental efficiency of the ith area converges to its own
stable-state level.

4. Empirical Results

4.1. Indicators and Data

In this paper, 30 provinces and municipalities in mainland China, each referred to as a region,
are selected as research samples for the study period from 2010 to 2017. This sample was also used in
the research by Liu et al. [6,18]. To make the research results more conducive to national policymaking,
this study groups these 30 regions in China into eastern, central and western areas, by adopting
the official classification [24]. Liu et al. [45] believed that infrastructure, energy and employees
are indispensable inputs in the process of road transport. The highway mileage is the most basic
infrastructure investment of the road transport department, which represents the scale of the road
transport system [46]. The major energy consumption in road transport is gasoline and diesel fuel,
so the consumption of gasoline and diesel is used as another input, as was done by Song et al. [47].
Moreover, the employees are the human resource input of the road transport industry, and the number
of employees is chosen as the input indicator in most studies on transport efficiency [29]. Compared
with the number of operating vehicles used by Cui and Li [48], the number of seats in operating cars
and the load capacity of operating trucks can better reflect the service capacity of operating vehicles.

The services provided by the road transport sector include passenger and freight transport,
so freight and passenger volumes are used as desirable outputs by Chen et al. [49]. However, passenger
turnover and freight turnover have been used to better reflect the capacity of road transport services
than passenger and freight volumes [6,48]. Therefore, this paper selects the passenger turnover and
freight turnover of each administrative region as the desirable output indicators, which respectively
represent the total number of passengers or the total weight of freight through the road transport
system multiplied by the travel or transport distance [26]. Road transport inevitably emits greenhouse
gases, causes traffic accidents and produces noise, all of which can cause huge economic losses and
severe social costs that require attention [7,50]. In addition, compared with the number of traffic
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accidents, the direct property loss caused by traffic accidents can more directly reflect the degree of
damage to the society, so this model uses the loss to measure traffic accidents.

According to the actual situation of the road transport industry, based on previous research on the
efficiency of road transport, and considering the authenticity and availability of data, this paper selected
six input indicators, namely highway mileage, the number of employees, gasoline consumption, diesel
consumption, tonnage of road operating truck and passenger seating capacity. Two desirable output
indicators were selected, namely passenger turnover and freight turnover. Moreover, noise, CO2 emissions
and direct property losses caused by traffic accidents are employed as undesirable outputs.

The above input-output data are all available from the China energy statistical yearbook 2011–2018
and China statistical yearbook 2011–2018. Due to the lack of equivalent sound levels for road transport
in some provinces, this paper selects the equivalent sound level in provincial capitals as the noise data
index. Unfortunately, there are no direct statistical data about CO2 emissions from road transport in
these regions. However, carbon dioxide mainly comes from the consumption of automobile fuel, so we
chose the consumption of gasoline and diesel during road transport as a measure corresponding to
the carbon dioxide emissions. Referring to previous studies by Wang and He [17] and Liu et al. [45],
carbon dioxide emissions can be calculated using Equation (7).

CE =
n∑

i=1

Ai ×CCFi ×COFi ×HEi ×
12
44

(7)

In Formula (7), CE stands for carbon dioxide emission, and Ai, CCFi, COFi, and HEi respectively
represent the consumption, carbon content factor, hydrocarbon coefficient, and equivalent thermal
energy of the ith region. The fraction 44/12 denotes the conversion coefficient of carbon into carbon
dioxide, which is the ratio of the relative molecular weight of carbon dioxide to the relative molecular
weight of carbon, so CCFi ×COFi ×HEi ×

12
44 is the coefficient of carbon emission about the ith energy.

The data on the consumption of gasoline and diesel oil during road transport comes from the China
energy statistical yearbook 2011–2018. According to Formula (7), the carbon dioxide emissions of each
region can be calculated. The general input-output statistics for road transport are shown in Table 1.

Table 1. Descriptive statistics on indicators in 30 regions of China, from 2010 to 2017.

Variables Unit Maximum Minimum Mean Std. dev.

Highway mileage Thousand
kilometer 33 1.20 14.43 7.61

Number of employees Person 397,181 8188 105,493.45 80,737.17
Gasoline Consumption 104 tons 598.24 4.62 150.55 129.30

Diesel consumption 104 tons 1282.30 41.95 333.06 217.36
Tonnage of operating truck Ton 14,083,495 156,500 3,082,883.30 2,679,123
Passenger seating capacity 104 seats 168.56 7.91 70.57 38.33

Freight turnover 100 million
tons-km 7899.32 75.42 1901.32 1821.26

Passenger turnover 100 million
person-km 2470.11 40.33 433.81 367.56

Noise dB(A) 73.80 62.20 68.57 1.27
Direct property loss 104 yuan 11,994.80 362.80 3627.95 2327.55

CO2 emission Ton 5055.88 185.83 1524.72 989.98

4.2. Results and Analysis

The DDF model explained above was used to evaluate the environmental efficiency of road
transport in 30 regions of China from 2010 to 2017, and MATLAB software was used for computing
the optimal solution β * in the model. By the formula θ = 1/(1 + ρ), ρ was converted to be an
environmental efficiency value θ, which is less than or equal to 1. The empirical results are given in
Table 2 below.
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Table 2. Environmental efficiency of road transport in 30 regions of China: 2010–2017.

Region 2010 2011 2012 2013 2014 2015 2016 2017 Area Mean Rank

Beijing 1 1 1 1 0.8376 1 1 0.9678 Eastern 0.9757 9
Tianjin 1 1 1 0.9696 0.8295 1 1 1 Eastern 0.9749 10
Hebei 0.9770 1 1 1 1 1 1 1 Eastern 0.9971 4
Shanxi 0.6028 0.6099 0.6150 0.7453 0.6850 0.6974 0.6861 0.7180 Central 0.6699 24

Inner Mongolia 1 1 1 0.9102 1 1 1 1 Central 0.9888 6
Liaoning 0.6846 0.7787 0.8039 0.9433 0.9556 1 1 1 Eastern 0.8958 16

Jilin 0.6640 0.6579 0.7083 0.8221 0.7459 0.9166 0.9248 0.8214 Central 0.7826 21
Heilongjiang 0.6257 0.6207 0.6619 0.7062 0.7092 0.7284 0.9261 1 Central 0.7473 23

Shanghai 1 0.8584 0.8401 1 1 1 1 1 Eastern 0.9623 12
Jiangsu 1 0.9815 1 1 1 1 1 1 Eastern 0.9977 3

Zhejiang 0.9636 0.9301 0.8524 1 0.8873 1 1 1 Eastern 0.9542 13
Anhui 1 1 1 1 1 1 1 1 Central 1 1
Fujian 0.7010 0.7021 0.7210 0.8805 0.7915 0.8313 0.8537 0.8288 Eastern 0.7887 20
Jiangxi 0.8864 0.7906 0.8846 0.8868 0.8338 1 1 1 Central 0.9103 15

Shandong 1 1 1 0.9921 0.9558 1 1 1 Eastern 0.9935 5
Henan 0.9971 1 1 1 1 1 1 1 Central 0.9996 2
Hubei 0.9697 1 0.9714 0.8310 0.7974 0.9699 0.9742 0.9665 Central 0.9350 14
Hunan 1 1 1 1 1 1 1 1 Central 1 1

Guangdong 1 1 1 1 1 1 1 1 Eastern 1 1
Guangxi 1 1 1 1 1 1 1 1 Western 1 1
Hainan 1 1 1 1 1 1 1 1 Eastern 1 1

Chongqing 0.9052 1 1 1 1 1 1 1 Western 0.9882 7
Sichuan 1 1 1 1 1 1 1 1 Western 1 1
Guizhou 0.8781 1 1 1 1 1 1 1 Western 0.9848 8
Yunnan 0.6747 0.7225 0.7377 0.8524 0.7269 0.8025 0.8672 0.8524 Western 0.7795 22
Shaanxi 0.6735 0.7290 0.7583 0.8179 0.8125 0.8678 0.9531 1 Western 0.8265 19
Gansu 0.8376 0.8771 1 1 1 1 1 1 Western 0.9643 11

Qinghai 0.6539 0.7136 0.8457 0.8084 0.8342 0.9590 0.9447 0.8887 Western 0.8310 18
Ningxia 1 1 1 1 1 1 1 1 Western 1 1
Xinjiang 0.8592 0.8350 0.7813 0.9866 0.9011 0.8855 0.9064 0.8568 Western 0.8765 17

Mean 0.8851 0.8936 0.9060 0.9384 0.9101 0.9553 0.9679 0.9633 Overall 0.9275
No. of efficient regions 13 16 17 16 15 21 21 22
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4.2.1. Overall Environmental Efficiency Analysis

As can be seen from the Table 2, from 2010 to 2017, the overall environmental efficiency score of
road transport increased from 0.8851 to 0.9633, with an overall average score of 0.9275. The number
of regions with an environmental efficiency score of 1 rose from 13 to 22 between 2010 and 2017.
The environmental efficiency of road transport of seven regions remained unchanged from 2010 to 2017,
with a fixed score of 1, namely Anhui, Hunan, Guangdong, Sichuan, Guangxi, Hainan and Ningxia.
Among these regions with the best environmental efficiency, there are both economically developed
regions, such as Guangdong, and relatively underdeveloped regions, such as Guangxi and Ningxia.
This shows that a series of macroeconomic control policies adopted by the Chinese government has
achieved some success. Moreover, the results show that there is no direct correlation between the
development of regions and their environmental efficiency of road transport.

Suppose that the seven efficient regions rank first. Shanghai, Zhejiang and Fujian, which are
relatively developed regions, did not rank well among the 23 inefficient regions, ranking 12th, 13th
and 20th, respectively. The average environmental efficiency of the road transport of Shanxi, Yunnan,
Fujian, Heilongjiang and Jilin is relatively low; among these, Shanxi has the lowest score with an
average value of 0.6699, and it is the only region with a value less than 0.7. Meanwhile, the four
provinces of Yunnan, Fujian, Heilongjiang and Jilin also performed poorly, with efficiency values
below 0.8 (0.7795, 0.7887, 0.7473 and 0.7826). Hebei, Liaoning, Jiangxi, Henan, Chongqing, Guizhou,
and Gansu have experienced a transition from inefficiency to efficiency, and have remained efficient in
recent years.

On the whole, the environmental efficiency of road transport increases over time. With the
development of science and technology, the modern transport network system has been continuously
optimized and improved. Under the guidance and support of a series of relevant policies issued by the
state, the road transport industry will have bright development prospects.

4.2.2. Environmental Efficiency Analysis in Different Areas

Figure 1 shows the changing trend of environmental efficiency in the whole country, as well
as the eastern, central and western areas. The four curves in Figure 1 show an upward trend over
time, indicating that the environmental efficiency of road transport is improving from the perspective
of development trend, even though the efficiency fluctuates. For the eight years from 2010 to 2017,
the eastern area’s environmental efficiency curve is above the overall environmental efficiency curve,
while the central area’s environmental efficiency curve is below the overall environmental efficiency
curve. For the two years from 2010 to 2011, the curve of the western area is below the overall level.
For the three years from 2012 to 2014, the curve of the western area is above the overall level. For 2015
to 2017, the curve of the western area is slightly below the overall level. In 2014, the reduction of
environmental efficiency of road transport in eastern areas was large, while that in central and western
was small. In 2015, the environmental efficiency of the eastern and central areas increased significantly,
while that of the western area increased less than that of the eastern and central areas. The fluctuation
range of the environmental efficiency of road transport varies in different regions, and there are obvious
regional differences in environmental efficiency of road transport, with the most obvious gap being seen
for 2013. With the comprehensive development of the national transport industry, the gap between
regions is narrowing. In particular, the environmental efficiency difference between the three areas has
been greatly reduced since 2014.

According to Table 3, differences in the environmental efficiency of road transport can be found in
different areas. For 2010 to 2017, the overall average efficiency of road transport is 0.9275. The eastern
area with better economic development has the highest average level of environmental efficiency
of road transport (0.9582), followed by the western area (0.9251), with the central area having the
lowest average efficiency (0.8926). In addition, the western area has the largest efficiency improvement
range, with the environmental efficiency score increasing from 0.8482 in 2010 to 0.9598 in 2017; that is,
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an increase of 0.1166. The environmental efficiency of the central area increased from 0.8607 to 0.9450,
an increase of 0.0843. The eastern area figure changed from 0.9388 to 0.9815, increasing by 0.0427.
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Figure 1. Variation trend of environmental efficiency in different areas.

Table 3. Average environmental efficiency of road transport in different areas: 2010–2017.

Area 2010 2011 2012 2013 2014 2015 2016 2017 Mean

Overall 0.8852 0.8936 0.9060 0.9384 0.9101 0.9553 0.9679 0.9633 0.9275
East 0.9388 0.9319 0.9288 0.9805 0.9326 0.9846 0.9867 0.9815 0.9582

Central 0.8607 0.8533 0.8712 0.8779 0.8634 0.9236 0.9457 0.9450 0.8926
West 0.8482 0.8878 0.9123 0.9465 0.9274 0.9516 0.9671 0.9598 0.9251

Regional differences in road transport in China are mainly due to the heterogeneity of economic
development level and environment in the areas containing the regions. The eastern area is located
in the coastal area, with a developed business system, a strong ability to utilize foreign capital,
highly developed infrastructure, great demand for road transport, and many environmental regulations
that restrict undesirable output. Therefore, the environmental efficiency value of road transport in the
eastern area is relatively high, which is consistent with the empirical results. The central area is an
inland region with a large population and a relatively backward level of resources and technology.
Furthermore, central China has few environmental regulations and the harmful outputs generated
in the process of road transport are not treated promptly, which leads to the lowest environmental
efficiency of road transport in these three areas. The western area has a diverse topography, a small
population base, and a simple road transport system, so, correspondingly, lower levels of carbon
emission, safety accidents, noise pollution, and other adverse outputs compared with the central area.
Thus, the environmental efficiency score of road transport in the western area lies between those of the
eastern and central areas.

Although there are differences in the average environmental efficiency of the three areas,
the differences among them are narrowing. This trend shows that China has achieved some progress
in promoting economic development and protecting the ecological environment in the central and
western areas, but further improvement remains necessary.

4.2.3. Convergence Analysis at Area Level

Using Formula (4) above, we conducted σ convergence tests for the whole country and three
areas from 2010 to 2017. The results of σ convergence testing are shown in Figure 2. From the point of
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view of overall environmental efficiency, the standard deviation of environmental efficiency gradually
decreased from 2010 to 2013, showing the characteristics of convergence. However, the value of
σ rebounded in 2014 and then gradually declined after that, until the value of σ rebounded for a
second time in 2017, though the jump was less than that in 2014. Therefore, it can be concluded that
during the sample period, the gap in the environmental efficiency between different areas in China is
narrowing. That is, there is σ convergence of the national environmental efficiency of road transport.
Compared with the overall standard deviation curve, the variation trend of the western area is basically
the same as that of the whole country, and the value of σ from 2015 to 2017 is less than that of 2013.
Similarly, we can judge that σ convergence exists in the western area.
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Figure 2. σ convergence test of environmental efficiency of road transport.

The trend of change in the eastern and central areas is similar to that in the western area, but
the range of change is different. In particular, the standard deviation of the eastern and central areas
increased significantly in 2014, and then showed a downward trend, but it was still slightly greater than
that of 2013, which is different from the western area. It can be concluded that σ convergence existed in
the eastern and central areas at different stages. According to the above analysis, weak σ convergence
exists in the eastern and central areas. In addition, the standard deviations of environmental efficiency,
from the smallest to the largest, are those of the eastern area, western area, whole country and central
area. This phenomenon shows that, compared with the central and western area, the difference in
environmental efficiency of road transport between regions within the eastern area is the smallest,
and the difference among the central areas is the largest.

Table 4 shows that the absolute convergence coefficient of environmental efficiency in the whole
country is−0.0995 and passes the significance test at the 1% level, which indicates that the interprovincial
environmental efficiency converges to a stable level in China. Moreover, the convergence coefficients
of the western, eastern and central areas are −0.1098, −0.1090 and −0.0876, respectively, and all of them
pass the significance test at the 1% level, showing that absolute convergence exists in the three areas.
That is, the provinces with low environmental efficiency of road transport will gradually catch up with
the provinces with high environmental efficiency and finally reach convergence. The western area
ranks first in efficiency convergence rate, followed by the eastern area, the whole country and the
central area, in that order.

Table 5 shows that the conditional convergence coefficients of the whole country, eastern area and
western area are −0.4849, −0.6403 and −0.4968, respectively; these are all significant at the 1% level.
In contrast, the convergence coefficient in the central area is −0.3466 and significant only at the 5%
level. These results mean that each area has its own steady level and converges to that level.
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Table 4. Absolute β convergence test of environmental efficiency of road transport.

Overall Eastern Central Western

β
−0.0995 *** −0.1090 *** −0.0876 *** −0.1098 ***

(0.0094) (0.0145) (0.0202) (0.0174)
α 0.0002 −0.0004 0.0055 −0.0003
F 113.0249 56.5442 18.8743 39.7246

Adjusted R-squared 0.7944 0.8474 0.6908 0.8114

Note: The value in parentheses is the standard error; *, **, ***, indicate significance at 10%, 5%, 1%.

Table 5. Conditional β convergence test of environmental efficiency of road transport.

Overall Eastern Central Western

β
−0.4849 *** −0.6403 *** −0.3466 ** −0.4968 ***

(0.0584) (0.0991) (0.1167) (0.0844)
α −0.0296 −0.0250 −0.0317 −0.0258
F 3.0748 4.4179 1.6160 4.5554

Adjusted R-squared 0.2295 0.3310 0.0821 0.3401

Note: The value in parentheses is the standard error; *, **, ***, indicate significance at 10%, 5%, 1%.

5. Implications and Conclusions

5.1. Implications

The environmental efficiency of the road transport sector is a topic worthy of study. Many studies
only consider carbon dioxide emission or traffic accidents as the only bad output when measuring
performance, and there is a lack of relevant research considering multiple undesirable outputs
simultaneously. In this paper, the DDF model is employed to measure the environmental efficiency of
road transport in mainland China from 2010 to 2017. Compared with previous literature, the main
contribution of this paper is to use CO2 emissions, noise and direct property losses caused by traffic
accidents as undesirable outputs when measuring the environmental efficiency of national and regional
road transport systems.

The empirical results of this paper reveal the efficiency of the road transport sector more accurately
than if only a single undesirable output was considered, so these results play an important role
in the formulation of national macro-economic policies. The results show that China’s overall
environmental efficiency of road transport is increasing over time, and by 2017, 22 of the 30 regions
had the optimal efficiency score. Only five regions maintained optimal efficiency scores in the study
period of 2010–2017. However, some regions’ environmental efficiency scores remain inefficient, and
historically, some efficient systems have become inefficient (e.g., Beijing in 2014 and 2017). This real and
potential inefficiency calls for policymakers to focus on policies to improve and maintain performance.
Furthermore, the score of environmental efficiency in developed regions is not necessarily high,
and that of underdeveloped regions is not necessarily low, facts which cannot be ignored by local
governments. While improving transport efficiency, governments should not ignore the production of
undesirable outputs, which certainly affect the environmental efficiency of road transport. Otherwise,
these harmful outputs may consume too many human resources, material resources and financial
resources, thereby degrading the performance of road transport.

From the broad geographical point of view, there are obvious differences in the road transport
industry. The environmental efficiency of road transport is highest in the eastern area, second-highest in
the western area and lowest in the central area. Considering the existing gaps, the western area should
strengthen its connection with the central and eastern areas and further develop resources to improve
environmental efficiency. The central area should attach importance to the negative effect of bad output
on environmental efficiency. Overall, all areas should learn from each other’s advantages, try their best
to avoid their own disadvantages, and cooperate to promote common development. Furthermore,
although there are differences in environmental efficiency among three areas, the differences are
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constantly narrowing over time, which means that the policies adopted by the central government
have played a role in narrowing the gap and should continue to be implemented.

From the overall perspective, the inter-provincial differences in environmental efficiency in China
are gradually narrowing with the passage of time. Moreover, absolute β convergence and conditional
β convergence exist in the whole country and three areas, reflecting that the growth rate of backward
regions is faster than that of developed regions, and each area is converging to its own stable level.

5.2. Conclusions

The purpose of this study was to assess the overall and regional environmental efficiency of
road transport from 2010 to 2017, and to analyze the development trend of the regional transport
level. Firstly, based on traditional DEA, the DDF model was constructed to include the consideration
of a variety of harmful outputs. Secondly, the DDF model and matlab2018 b were used to measure
the overall and regional environmental efficiency of road transport in China. Thirdly, a convergence
analysis of environmental efficiency was carried out to further test the development trend of overall
and regional environmental efficiency.

From 2010 to 2017, the overall environmental efficiency score of road transport increased from
0.8851 to 0.9633, with an overall average score of 0.9275. While the environmental efficiency improved
over the study period, the environmental efficiencies of road transport in some provinces are inefficient.
Moreover, the environmental efficiency gaps between the eastern, central and western areas have
narrowed over time, but still exist. The environmental efficiency of road transport in the eastern area is
highest, and is lowest in the central area. The inter-provincial differences in environmental efficiency
of road transport are gradually narrowing with the passage of time. The growth rate of environmental
efficiency in backward regions is faster than that of developed regions and the environmental efficiency
of each area is converging to its own stable level.

Based on the analysis results, suggestions are put forward for decision makers. Firstly, at the
national level, the country should attach importance to the technological innovation of road transport
and strengthen the environmental regulation to reduce noise and CO2 emissions. In addition, it is
necessary to carry out scientific and effective management of the road transport system to reduce the
number of traffic accidents. Secondly, at the geographical area level, the central area should pay more
attention to the negative effect of bad output on environmental efficiency and the western area should
strengthen its connection with the central and eastern areas. Three areas should learn from each other’s
advantages and cooperate to promote common development. Thirdly, at regional (provincial) level,
regional governments should attach importance to the innovation and management of road traffic and
learn from the advantages of other regions.

Road transport efficiency is also linked to the maintenance cost (i.e., mileage), along with the
additional cost caused by the negative externality of the road transport efficiency (e.g., environmental
issues, congestion, etc.) In future study, the environmental efficiency of road transport should be
studied by considering maintenance and external costs. Furthermore, threshold regression will be
carried out to study the relationship between environmental regulation intensity and environmental
efficiency of road transport and judge whether there is a threshold effect on the impact of environmental
regulation on performance. Accordingly, more theoretical and practical implications can be provided
for road transport development.
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Appendix A

Table A1. Table of Notation.

Symbols Descriptions Symbols Descriptions

DEA Data Envelopment Analysis OLS Ordinary Least Squares
DDF Directional distance function dB Decibel
SFA Stochastic Frontier Analysis PM2.5 Fine particulate matter
CE Carbon dioxide emission yd Desirable output

SBM Slack Based Measure yu Undesirable output
SDt Standard Deviation ε Random error

CCFi Carbon content factor EFi,t Road transport efficiency
COFi Hydrocarbon coefficient Ai Energy consumption
HEi Equivalent thermal gyd The direction vector of desirable output
GDP Gross Domestic Product gyu The direction vector of undesirable output
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