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Abstract: Although more and more reliability-oriented sensitivity analysis (ROSA) techniques are
now available, review and comparison articles of ROSA are absent. In civil engineering, many of the
latest indices have never been used to analyse structural reliability for very small failure probability.
This article aims to analyse and compare different sensitivity analysis (SA) techniques and discusses
their strengths and weaknesses. For this purpose, eight selected sensitivity indices are first described
and then applied in two different test cases. Four ROSA type indices are directly oriented on the
failure probability or reliability index beta, and four other indices (of a different type) are oriented on
the output of the limit state function. The case study and results correspond to cases under common
engineering assumptions, where only two independent input variables with Gaussian distribution of
the load action and the resistance are applied in the ultimate limit state. The last section of the article
is dedicated to the analysis of the different results. Large differences between first-order sensitivity
indices and very strong interaction effects obtained from ROSA are observed for very low values
of failure probability. The obtained numerical results show that ROSA methods lack a common
platform that clearly interprets the relationship of indices to their information value. This paper can
help orientate in the selection of which sensitivity measure to use.

Keywords: sensitivity analysis; uncertainty modelling; load action; resistance; limit states; stochastic
simulation; failure probability; structural reliability; correlations

1. Introduction

Evaluating the reliability of building structures is a problem whose final goal remains a
decision-making process [1]. In a probabilistic framework, the basic characteristic of engineering
reliability is the probability of failure Pf, which represents the key quantity of interest in decision-making
processes [2]. It is recommended by the best practices that such a report is supplemented with sensitivity
analysis (SA), which describes the effect of changes in model inputs on the measure of reliability [3].

A classical measure of change in Pf is the derivative ∂Pf/∂µxi with respect to the mean value µ of
input variable Xi [4–7]. A drawback of the derivative-based SA is that it cannot detect interactions
between input variables. Since only one µxi is varied at a time while others are fixed, it can be labelled
as the One-At-a-Time (OAT) method or local SA (at point µxi). The aforementioned drawback can
partially be overcome by using the factorial experiment, where SA is computed using two-level changes
of µxi for all Xi in combinations, which permit the computation of interaction effects [8]. However,
only absolute change of the distribution parameter µxi on Pf is investigated, not the relative influence
of the random variability of Xi on Pf. For structural reliability, it is better to prefer such SA types that
can compute the effects of the random variabilities of input variables and their interactions on Pf and
not just changes in distribution parameters.

Compared with the local SA, global SA [9] can measure the effect of input variables on the model
output in their entire distribution ranges and provide the interaction effect among different input
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variables. In the literature, many global SA techniques, such as the non-parametric techniques [10],
screening approaches [11], Sobol’s variance-based (ANOVA) methods [12,13] and moment-independent
methods [14,15], can be found, among which the variance-based method has gained the most attention.
Variance is an important component of reliability analysis, but is insufficient on its own for the
analysis of structural reliability; see, for e.g., [16]. A more general approach, which generalized
Sobol’s sensitivity indices, was introduced by Fort et al. [17]. These indices are generally applicable
(goal-oriented) because they can analyze various key quantities of interest, including Pf.

The selection of SA methods that focus on Pf or design quantiles is usually based on a stochastic
model with binary output failure/nonfailure, 1/0 [18], but it is not a necessity. In first-order reliability
method (FORM), Pf can be replaced by reliability index β [19], which is computed using the first two
moments of resistance, and load action and can be applied as an alternative measure of reliability; see
Figure 1. However, global SA of β has not yet been developed.
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Figure 1. Illustration of the reliability index β.

From a computational point of view, probabilistic sensitivity measures have been comprehensively
studied; however, from a decision-analytic point of view, they remain much less understood [20].
Their relationship to information value has not yet been particularly established. Linking the
information value, SA, and forecasting with scoring rules remains a subject of research [20]. For a
particular reliability task, it is necessary to look for means to select the most appropriate sensitivity
measure with common rationale for this selection.

In civil and construction engineering, the scientific community uses SA in structural mechanics [21,22],
geotechnics [23,24], landscape water management [25], building performance analysis [26], multi-criteria
decision making (MCDM) [27], sustainable development of the building sector [28] or sensitivity audits
to assess sustainability [29], but with a lower publication frequency than in basic sciences, such as
chemistry, economics or mathematics [30]. In structural reliability, research deals with limit states [31] or
the verification of partial safety factors of Eurocode standards [32] using various types of global SA based,
for example, on the variance of model outputs [33,34].

The term “sensitivity analysis” can be understood differently in civil engineering than in basic
sciences, where local and global SA types with random inputs are well established. For example, very
specific (non-stochastic) SA methods based on advanced non-linear models are sometimes used for
structures susceptible to buckling when the subject of interest is the stability (or potential energy) of
structures [35,36] or imperfection sensitivity [37,38], whereby the main objective of these methods is
to increase the stability limits of the structures through the variation of suitable design variables. In
stochastic systems, stability often means insensitivity or low sensitivity of the output characteristics
to the shapes of some input distributions [39]. In construction engineering, it is necessary to focus
more on cooperation and integration of SA development [3] with reliability analysis tools [31,40] and
decision-making processes [41,42].
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This paper compares several existing sensitivity measures in the context of structural reliability
in civil engineering. For this purpose, eight selected sensitivity indices are first described and then
applied in two different test cases.

Four indices are oriented on the probability of failure or reliability index β, another four on
the distribution or some moments of the output from the ultimate limit state function Equation (2).
The reason for the inclusion of the second group of indices is their common use in the analysis of limit
states, despite being only sensitive to reliability; see, for e.g., [43,44]. Correlations present a typical
example; however, sensitivity techniques based on fuzzy probability analysis of constructions [45,46]
are no exception. These alternative types of SA are not directly focused on the probability of failure,
but they provide basic insight into the behaviour of computational models, their structures and their
reactions to changes in model inputs.

The presented article deals with four ROSA type SA and four other SA, which are empathetic to
reliability in civil engineering. Special attention is paid to small failure probabilities, which are relevant
for assessing the engineering reliability of structures using design reliability conditions.

2. Design Reliability Conditions

In limit state design, the resistance of a structure R must be greater than the load action F with
a predetermined probability [19]. Structural reliability can also be assessed by comparing the lower
quantile of R with the upper quantile of F [19], where the quantiles represent alternative key quantities
of interest. The decision-maker who develops or implements stochastic models is expected to provide a
forecast of structural reliability, which can be performed by estimating the failure probability, quantiles
or other computational statistics related to limit states of structure.

Let the reliability of building structures be a one-dimensional random variable Z, which is a
function of random variables.

Z = g(X) = g(X1, X2, . . . , XM). (1)

The reliability assessment of load-bearing structures is based on a semi-probabilistic approach
of standard [19], which falls into the category of FORM methods [47]. Structural reliability is often
expressed as a limit state function of random resistance R and random load action F:

Z = R− F ≥ 0, (2)

where R and F are statistically independent variables for which Gauss probability density functions
(pdfs) are assumed with mean values µR, µF and standard deviations σR, σF. If R and F have Gauss
pdfs, then Z has a Gauss pdf with mean value µZ and standard deviation σZ:

µZ = µR − µF, (3)

σZ =
√
σ2

R + σ2
F. (4)

The transformation of Z into a normalized Gaussian pdf of U with mean value µU = 0, and
standard deviation σU = 1 is written as

U =
Z− µZ

σZ
. (5)

The probability of failure (key quantity of interest) can be expressed as

Pf = P(Z < 0) = P
(
U < −

µZ

σZ

)
= P(U < −β) = ΦU(−β), (6)

where ΦU(•) is the cumulative distribution function of normalized Gaussian pdf and µZ/σZ is the
so-called reliability index β; see Equation (7) and Figure 1.
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It is assumed that β > 0. Standard [19] verifies reliability by comparing the obtained reliability
index β with the target reliability index βd.

β =
µZ

σZ
≥ βd, (7)

For instance, the reliability index has a target value of βd = 3.8 (Pfd = 7.2·10−5), provided that we
consider the ultimate limit state for common design situations within the reference period of 50 years;
see Table C2 in [19] or [48]. Equation (8) can be written to obtain σZ as

σZ =
√
σ2

R + σ2
F =

σ2
R + σ2

F√
σ2

R + σ2
F

=
σR√
σ2

R + σ2
F

σR +
σF√

σ2
R + σ2

F

σF = αRσR + αFσF, (8)

where αF, αR are values of sensitivity coefficients (weight factors) according to the FORM method,
which [19] introduces with constant values αF = 0.7, αR = 0.8. Substituting Equations (3) and (8) into
Equation (7), we can write

β =
µR − µF

αRσR + αFσF
≥ βd. (9)

Equation (9) is the design reliability condition with formally separated random variables that can
be expressed as

µF + αFβdσF ≤ µR − αRβdσR. (10)

where the left-hand side represents the design load Fd and the right-hand side the design resistance Rd;
see Figure 2. The basic reliability targets for design values in the ultimate limit state recommended
in [19] are based on the semi-probabilistic approach in Figure 2, with the target value of reliability
index βd = 3.80 for a 50 years reference period [48,49]. For βd = 3.8, Rd can be approximately computed
as 0.1 percentile [40]. Standard [19] enables the determination of design values Fd, Rd not only from a
Gauss pdf but also from a two- or three-parameter lognormal (for resistance) or Gumbel or Gama (for
load) pdfs. The probability of failure for non-Gaussian R and F can be estimated using Monte Carlo (or
quasi-Monte Carlo) methods.
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3. Selected Types of Sensitivity Analysis Methods

In reliability engineering, SA methods quantify the effects of input variables on the failure
probability, reliability index β or design quantiles. However, other statistical model-based inferences
sensitive to reliability are often used. In this chapter, we present selected formulae of selected types of
sensitivity measures in forms that are adapted to structural reliability analysis.

Cramér–von Mises indices [50]. Input random variables in Equation (1) are assumed to be statistically
independent. Let ΦZ be the distribution function of Z:

ΦZ(t) = P(Z ≤ t) = E(1Z≤t) for t ∈ R, (11)
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and Φi
Z is the conditional distribution function of Z conditionally on Xi:

Φi
Z(t) = P(Z ≤ t|Xi ) = E(1Z≤t|Xi ) for t ∈ R. (12)

The first-order Cramér–von Mises index Gi is based on measuring the distance between probability
ΦZ(t) and conditional probability Φi

Z(t) when an input is fixed [50].

Gi =

∫
R

E
[(

ΦZ(t) −Φi
Z(t)

)2
]

ΦZ(t)(1−ΦZ(t))
dΦZ(t). (13)

The second-order Cramér–von Mises index Gi can be expressed, on the basis of [50], as

Gi j =

∫
R

E
[(

ΦZ(t) −Φi j
Z(t)

)2]
ΦZ(t)(1−ΦZ(t))

dΦZ(t) −Gi −G j, (14)

where Φi j
Z is the conditional distribution function of Z conditionally on Xi, Xj, for i < j:

Φi j
Z(t) = P

(
Z ≤ t

∣∣∣Xi, X j
)
= E

(
1Z≤t

∣∣∣Xi, X j
)

for t ∈ R. (15)

Integration Equation (13) and Equation (14) respect t. Equation (13) is not oriented to one failure
probability value Pf, but, depending on t, integrates the averages of squared values from the differences
of all probabilities Equations (11) and (12) normalized by F(t)(1 − F(t)). The same applies to other
higher-order indices [50]. Indices Gi, Gij, etc., are based on Hoeffding decomposition; therefore, the
sum of all indices is equal to 1 [50]. It can be noted that Cramér–von Mises indices can be formulated
in copula theory framework [51].

Sensitivity indices subordinated to contrasts associated with probability [17] (in short, Contrast Pf indices).
These indices measure the distance between probability Pf and the conditional probability Pf|Xi using
the contrast function in Equation (16). The input random variables in Equation (1) are assumed to be
statistically independent.

ψ(θ) = E(ψ(Z,θ)) = E(1Z<0 − θ)
2. (16)

The first-order probability contrast index Ci is defined as Equation (17), where the contrast
min
θ
ψ(θ) is computed for probability estimator θ* = Argmin ψ(θ) = Pf.

Ci =
min
θ
ψ(θ) − E

(
minE
θ

(ψ(Z,θ)|Xi )
)

min
θ
ψ(θ)

. (17)

The second term in the numerator in Equation (17) is computed as the average value of the
conditional contrast functions whose probability estimator is Pf|Xi. The second-order probability
contrast index Cij can be expressed as

Ci j =
min
θ
ψ(θ) − E

(
minE
θ

(
ψ(Z,θ)

∣∣∣XiX j
))

min
θ
ψ(θ)

−Ci −C j, (18)

where i < j. Indices of the third and higher orders are computed similarly [17]. Sensitivity indices
subordinated to contrasts are based on decomposition; therefore, the sum of all indices must be
equal to one. Examples of the computation of indices using the Latin Hypercube Sampling method
(LHS) [52,53] in engineering applications are in [54,55].
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Sensitivity indices subordinated to contrasts associated with α-quantile [17]. The contrast function ψ
associated with α-quantile can be written with parameter θ as [17]:

ψ(θ) = E(ψ(Z,θ)) = E((Y − θ)(α− 1Y<θ)), (19)

where the input random variables in Equation (1) are assumed to be statistically independent. The
first-order quantile contrast index Qi is defined as

Qi =
min
θ
ψ(θ) − E

(
minE
θ

(ψ(Y,θ)|Xi )
)

min
θ
ψ(θ)

, (20)

where min
θ
ψ(θ) is the contrast computed for the estimator of α-quantile θ* = Argmin ψ(θ).

Qi j =
min
θ
ψ(θ) − E

(
minE
θ

(ψ(Y,θ)|Xi )
)

min
θ
ψ(θ)

−Qi −Q j. (21)

The second-order quantile contrast index Qij is defined as Equation (21), where i < j. Indices of
the third and higher orders are computed in a similar manner [17]. Sensitivity indices subordinated
to contrasts are based on decomposition; therefore, the sum of all indices must be equal to one. In
engineering applications, the random variable Y is, for example, the load action F or resistance R [56];
see Figure 1.

Borgonovo moment independent importance measure [14] (in short, Borgonovo indices). The sensitivity
indices described in [14] are defined by introducing a moment-independent uncertainty indicator that
looks at the entire input/output distribution and whose definition is well-posed also in the presence of
correlations among the input parameters.

Bi =
1
2

E
∫ ∣∣∣ϕZ(z) −ϕZ|Xi(z)

∣∣∣dz, (22)

where ϕZ(z) is the pdf of Z and ϕZ|Xi(z) is the conditional pdf of Z given that one of the parameters, Xi,
assumes a fixed value [14]. Fixing pairs Xi, Xj, leads to the second-order index Bij, where i < j. Fixing
triplets Xi, Xj, Xk leads to the third-order index Bijk, where i < j < k, etc. The sum of all indices is not
equal to one. As a general rule, 0 ≤ Bi ≤ Bij≤..≤ B1,2, . . . ,M ≤ 1 [14].

Reliability sensitivity index defined by Xiao et al. [57] (in short, Xiao indices). All the input variables
are independent of each other. The first-order index Si measures the individual effect of Xi on Pf.

Ki =
1

2P f
E
(∣∣∣P f − P f |Xi

∣∣∣), (23)

where |Pf – Pf|Xi| measures the absolute difference between the unconditional failure probability Pf
and the conditional failure probability Pf|Xi. The second-order interaction indices Kij, where i , j,
are asymmetrical:

Ki j =
1
2

E


∣∣∣∣∣∣∣P f |Xi

P f
−

P f |Xi , X j

P f
∣∣∣X j

∣∣∣∣∣∣∣
. (24)
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Kij may or may not be equal to Kji. Third-order and higher-order indices are not defined in [57].
Reliability sensitivity index defined by Ling et al. [58] (in short, Ling indices). The first-order index is

the same as in Equation (23) Li = Ki. Fixing pairs Xi, Xj, leads to the second-order index Lij, where i < j:

Li j =
1

2P f
E
(∣∣∣P f − P f |Xi , X j

∣∣∣). (25)

Fixing triplets Xi, Xj, Xk leads to the third-order index Lijk, where i < j < k, etc. The sum of all indices
defined by Ling et al. [58] is not equal to one. As a general rule [58], 0 ≤ Li ≤ Lij≤...≤ L1,2, . . . ,M≤ 1.

Sobol’s sensitivity indices [12,13] (in short, Sobol’s indices). Sobol’s first-order sensitivity indices can
be written in the form:

Si =
V(Z) − E(V(Z|Xi ))

V(Z)
=

V(E(Z|Xi ))

V(Z)
= corr2(Z, E(Z|Xi )), (26)

where corr is Pearson correlation coefficient. Fixing pairs Xi, Xj, leads to the second-order index Sij,
where i < j. Fixing triplets Xi, Xj, Xk leads to the third-order index Sijk, where i < j < k, etc.; see, for
example [9]. The sum of all indices is equal to one. It can be noted that Sobol’s indices present a special
case of sensitivity indices subordinated to contrasts in which the contrast function is associated with
variance ψ(θ) = E(Z − θ)2 [17].

Omission sensitivity factor [59] (in short, Madsen’s factor). The omission sensitivity factor Oi is
defined as the ratio between the conditional reliability index β|Xi = µxi and the reliability index β (7).

Oi =
β
∣∣∣∣(Xi = µXi

)
β

. (27)

Random variable Xi is fixed at its mean value µxi in the numerator in Equation (27), but the
possibility of fixing at the characteristic value [60] or median [3] is also indicated.

The indices described above can be divided into two groups. The first group (Sobol, Borgonovo
and Cramér–von Mises) focuses on the distribution or some moments of the output function Z, while
the second group (Xiao, Ling, Contrast, Madsen’s) considers Pf, β or quantiles as the quantity of interest
and thus can be referred to as reliability analysis indices. The first group can be classified as global SA,
while the second group can be classified as reliability-oriented sensitivity analysis (ROSA) [3], of which
Xiao, Ling and Contrast indices can terminologically [54,57,58] be classified as global ROSA. It can be
noted that Xiao, Ling and Contrast ROSA indices are typical examples of ambiguous “local–global”
indices [3]. On one hand, they can be considered as global since they are based on changes of Pf
with regard to the variability of the inputs over their entire distribution ranges and they provide the
interaction effect between different input variables. On the other hand, they can be considered as
local in the sense of regional SA since they are based on the frequency of failures from the random
realization in “region” of pairs of large load actions and small resistances.

Correlations. The last SA methods used are the analysis of the correlation between the input Xi
and output Z according to Pearson, Spearman and Kendal Tau.

4. Case Studies

Many new sensitivity indices have been developed, but their ability in applications has not yet
been reliably demonstrated. In this article, the properties of the selected sensitivity indices mentioned
in Chapter 3 are examined in a case study of the probabilistic analysis of the reliability of a steel bar
under axial tension; see Figure 3. A static time-independent study is considered.
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In general, the random load action F and resistance R are usually described using appropriate
types of distribution functions ΦF(y), ΦR(y) and corresponding pdfs ϕF(y), ϕR(y), where y denotes a
general point of the observed variable (force with the unit of Newton), through which both variables F
and R are expressed; see right part of Figure 3. It is assumed that F and R are statistically independent
of each other with mean values µF, µR and standard deviations σF, σR.

The probability of failure P f = P(Z < 0) = P(R < F) can be computed as the integral:

P f =

∞∫
−∞

ΦR(y)ϕF(y)dy. (28)

In the case studies, integration in Equation (28) is performed numerically by Simpson’s rule, using
more than ten thousand integration steps over the interval [µZ − 10σZ, µZ + 10σZ].

Reliability can be assessed by comparing the computed Pf in Equation (6) with the target value
of Pf, where target values for design cases are listed in standard EN1990 [19]. Target values of Pf in
Table 1 are taken from Table B2 in [19]. Table 1 lists the minimum values of Pf (the reliability index β)
for ultimate limit state and 50 years reference period. The description of subsequent classes RC1, RC2,
and RC3 with examples of building and civil engineering works are in [19,48].

Table 1. Recommended minimum values of β and related Pf.

Reliability Class β Pf

RC3 4.3 8.5·10−6

RC2 3.8 7.2·10−5

RC1 3.3 4.8·10−4

The aim of the presented study is the SA of the influence of input factors R, F on the output Pf using
different types of sensitivity indices and the subsequent comparison of obtained results. Resistance R
is the input random variable X1, and load action F is the input random variable X2.
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4.1. Computation of Sensitivity Indices

This section includes a description of numerical methods for computing the size of sensitivity
indices based on numerical integration methods in combination with sampling-based methods or
analytical computation. Sensitivity indices were computed for eight SA types.

Contrast Pf indices [17] (ROSA). The contrast function Equation (16) is minimum if θ* = Pf. By
substituting Pf into Equation (16), we can write first-order index in Equation (17) using min

θ
ψ(θ) = Pf

(1 − Pf), and similarly for Pf|Xi, we can write minE
θ

(ψ(Z,θ)|Xi ) = (Pf |Xi)(1 − (Pf |Xi)).

Ci =
P f

(
1− P f

)
− E

((
P f |Xi

)(
1− P f |Xi

))
P f

(
1− P f

) . (29)

By substituting Pf (1 − Pf) and (Pf|Xi)(1 − (Pf|Xi)) into Equation (17), we can derive Equation (29)
for practical use. Ci measures, on average, the effect of fixing Xi on Pf. The estimate of Pf is computed
as the integral Equation (28). In the first loop, the estimate of Pf|Xi = P((Z|Xi) < 0) is computed by
numerical integration across z∈[µZ − 10σZ, µZ + 10σZ]. In the second loop, E[•] is computed by
numerical integration of the pdf of Xi with a small step ∆xi taken over [µXi − 10σXi, µXi + 10σXi]. Since
the second term in the numerator in Equation (18) is always equal to zero (Pf|X1,X2 is always equal to
zero or one), C12 = 1 − C1 − C2.

Xiao indices [57] (ROSA). Indices K1, K2 are estimated from Equation (23) using double-nested-loop
computation. In the outer loop, E[•] is computed by numerical integration of the pdf of Xi with a small
step ∆xi taken over [µXi − 10σXi, µXi + 10σXi]. Note: the estimate E[•] obtained using the LHS method
would be inaccurate because it requires an extremely high number of runs for small values of Pf. In the
nested loop, estimates of Pf and Pf|Xi are computed by integrating according to Equation (28). Indices
K12 and K21 defined in Equation (24) are computed in a similar manner.

Ling indices [58] (ROSA). By definition, L1 = K1, L2 = K2. The computation of L12 includes an
estimate of E[•], which is based on double numerical integration. In the outer loop, the pdf of X2 is
numerically integrated with a small step ∆x2 taken over [µX2 − 10σX2, µX2 + 10σX2]. In the inner loop,
the pdf of X1 is numerically integrated with a small step ∆x1 taken over [µX1 − 10σX1, µX1 + 10σX1].
During integration, the term Pf|X1,X2 can only have a value of 0 or 1.

Madsen factor [59] (ROSA). Indices O1, O2 are computed using one million LHS runs.
Cramér–von Mises indices [50]. Indices G1 and G2 are computed using Equation (13). Three nested

loops are applied. In the first (outer) loop, numerical integration is computed with a small step ∆t =

tl+1 − tl, where t = (tl+1 + tl)/2, t∈[µZ − 10σZ, µZ + 10σZ], l = 1, 2,..., 10000. To each ∆t belongs dΦ(t)≈P(tl
≤ Z ≤ tl+1) and Φ(t)≈P(Z ≤ (tl+1 + tl)/2). In the second loop, E[•] in the numerator in Equation (13)
is computed by numerical integration of the pdf of Xi with a small step ∆xi taken over [µXi−10σXi,
µXi+10σXi]. Note: The LHS estimation of E[•] would be numerically very challenging but is possible.
In the third (deep) loop, Φi(t)≈P(Z ≤ (tl+1 + tl)/2|Xi = ξi) is computed by numerical integration for fixed
ξi, where ξi is the middle of interval ∆xi from the second loop. The index G12 is computed on the basis
of Equation (14) in a similar manner.

Borgonovo indices [14]. Indices B1, B2 are estimated from Equation (13) using double-nested-loop
computation. In the outer loop, 0.5·E[•] is computed using one million runs of the LHS method. In
the nested loop, numerical integration |ϕZ(z) – ϕZ |Xi(z)| is taken over [µZ − 10σZ, µZ + 10σZ] using ten
thousand runs. B12 = 1 in all case studies.

Sobol’s indices [12,13]. Sobol’s sensitivity indices are included only for comparison; these indices
analyse the influence of the variance of R or F on the variance of Z, but not the influence on Pf. Sobol’s
indices are computed analytically as S1 = σ2

R/(σ2
R + σ2

F), S2 = σ2
F/(σ2

R + σ2
F), S12 = 0. It can be noted that

Sobol’s first-order indices are equal to the squares of the sensitivity coefficients (weight factors) in
Equation (8): S1 = α2

R, S2 = α2
F.
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Correlations. Correlation corr(X1, Z) and corr(X2, Z) are evaluated even though direct sensitivity to
Pf is not measured by correlation. Pearson, Spearman and Kendal Tau correlation coefficients between
input Xi and output Z are computed using one hundred thousand runs of the LHS method.

All E[•] are computed by numerical integration with the exception of Borgonovo indices and
correlation. It can be noted that E[•] in the formulae in chapter 3 can also be numerically computed using
Monte Carlo- (or quasi-Monte Carlo-) type simulation methods; however, the repeated computation of
small values of Pf requires extremely high numbers of simulation runs and is numerically challenging.

4.2. Case Study 1

The aim of SA is to assess the influence of R and F on Pf. Let R (resistance) and F (load action) be
statistically independent variables X1, X2 with Gauss pdfs, where µR = 412.54 kN, σR = 34.132 kN,
σF = 34.132 kN, and mean value µF is the parameter; see Figure 4. Let parameter µF change with the
step ∆µF = 10 kN and gradually attain the values 92.54 kN, 102.54 kN,..., 722.54 kN. The sensitivity
indices are plotted in dependence on Pf, where Pf = ΦU(−(412.54 − µF)/(20.5

·34.132)) is a function only
of parameter µF. If µF decreases, then Pf decreases.
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First-order indices are depicted in Figure 5 and the second-order indices are depicted on the left
part of Figure 6. Correlation coefficients corr(X1, Z) and corr(X2, Z) are added to Figure 5. Only indices
within the interval [0, 1] are depicted. Madsen’s factors are not plotted because they have a constant
value O1 = O2 = 1.415 for all Pf (µF).

Changing Pf (µF) influences only indices C1, C2, C12, indices K1, K2, K12, K21 and indices L1, L2,
L12; see Figure 5 and the left part of Figure 6. For the other five types of SA, it was observed that
two variables that have a different influence on the output have the same indices. This demonstrates
properties of sensitivity indices that will prove useful in the interpretation of the result.

Ling and Xiao indices are the only indices with asymmetric plots and decrease with increasing
Pf. Xiao asymmetrical interaction indices are identical: K12 = K21. Contrast-based sensitivity indices
have values of C1 = C2 = C12 = 0.33 for Pf = 0.5, but, otherwise, decrease with absolute distance from
Pf = 0.5. Approaching Pf→ 0 or Pf→ 1 leads to C1 = C2→ 0 and C12→ 1. Change in mean value µF
has no influence on the values of Sobol’s indices, which are functions of only the variance and therefore
remain constant S1 = S2 = 0.5, S12 = 0. Kendall’s tau coefficient is approximately equal to 0.5 for all Pf
(µF). Spearman’s and Pearson coefficients confirm the dependence between the inputs R, F and the
output Z. Borgonovo and Cramér–von Mises first-order indices have approximately the same value
B1 = 0.306, G1 = 0.286, while the second-order indices are B12 = 1.0 and G12 = 1.0 − G1 − G2 = 0.428.

For common design situations, building constructions are considered reliable if Pf < 7.2·10−5 (RC2
in Table 1). For this case study, it occurs approximately for µF < 0.55·µR. Detail of the plots of sensitivity
indices for Pf < 1·10−4 are depicted on the right part of Figure 6.
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4.3. Case Study 2

Let R (resistance) and F (load action) be statistically independent variables X1, X2 with Gauss pdfs,
where µR = 412.54 kN, σR = 34.132 kN and mean value µF is the parameter, while variation coefficient
of F is constant vF = vR = 34.132/412.54 = 0.0827 and thus σF = vF·µF; see Figure 7. Let parameter µF
change with the step ∆µF = 12.89 kN and gradually attain values of 0.06 kN, 12.95 kN,..., 902.36 kN.
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they have a value greater than one. The curves meet the expectation that small Pf (due to small µF and
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The parametric change of Pf (µF) influences the values of all indices. All first-order indices
of variable X1 (R) are axially symmetrical to indices X2 (F) along the vertical axis Pf = 0.5 with the
exception of Ling and Xiao indices. Xiao asymmetrical interaction indices are K12 , K21 with the
exception of Pf = 0.5 where K12 = K21. The plots of Borgonovo and Cramér–von Mises first-order
indices are similar; the second-order indices are B12 = 1.0 and G12 = 1.0 − G1 − G12. The plots of
Kendall’s tau coefficient and plots of Sobol’s indices are similar. The plots of Spearman’s and Pearson
coefficients are also similar. On the left side of the graphs, contrast Pf indices reach their extreme at
point Pf = 3.216·10−10, C1 = 0.06, C12 = 0.94, but no extreme on C2. On the right side of the graphs, the
extreme is at point Pf = 1 − 3.216·10−10, C2 = 0.06, C12 = 0.94, but no extreme on C1. Ling and Xiao
indices have an extreme at Pf = 3.216·10−10, K2 = L2 = 0.82, K12 = 0.94; other extremes of Ling and Xiao
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indices are difficult to identify numerically (compared to other indices) because they quickly attain
relatively small or large values for large or small Pf.

For standard design case Pf = 7.2·10−5 we obtain K1 = L1 = 0.97, K2 = L2 = 0.76, K12 = 0.91,
K12 = 0.994, L12 = 0.99993. A detail of the plot of sensitivity indices for Pf < 1·10−4 is depicted on the
right part of Figure 9. For instance, for Pf = 7.2·10−5, we obtain O1 = 1.88, O2 = 1.18, or for Pf = 8.5·10−6,
we obtain O1 = 1.99, O2 = 1.16.
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5. Observation, Discussion and Questions

Reliability-oriented sensitivity indices (Xiao, Ling, Contrast and Madsen’s) are computed together
with the global indices (Sobol, Borgonovo and Cramér–von Mises). The effects of R and F on structural
reliability are first analysed separately for each of the eight selected sensitivity indices.

Contrast Pf indices have relatively small values of first-order indices and high values of
second-order indices for small Pf. The numerical results of reliability engineering tasks [54,55]
with five input random variables have shown that the smaller Pf is, the smaller the values of first-order
indices and the higher the values of higher-order indices. Change in the mean value or standard
deviation of the dominant variables had a clear effect on Pf, confirming the rationality of the contrast
indices applied in [54]. The sum of all indices is equal to one, which makes it easier to compare SA
results for different Pf associated with different reliabilities, for e.g., different design conditions, different
stages of the structural life or different loading conditions. For very small values of Pf, Equation (29)
can be written approximately as:

Ci ≈
P f − E

((
P f |Xi

))
P f

, (30)

and similarly

Ci j ≈
P f − E

((
P f |Xi , X j

))
P f

−Ci −C j. (31)

The clear addressability to Pf is evident from Equation (30) and Equation (31). If the binary
random variable 1Z<0 is considered, Equation (30) can then be written as:

Ci ≈
E(1Z<0) − E(E(1Z<0|Xi ))

E(1Z<0)
= corr2(1Z<0, E(1Z<0|Xi )), (32)
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where corr is Pearson correlation coefficient. SA based on contrast functions yields the same
(symmetrical) results for unreliability (Pf) and reliability (1 − Pf) because Ci in Equation (29) is
computed from the values of the contrast functions Pf (1 − Pf) and (Pf|Xi)(1 − (Pf|Xi)). If 1Z<0 is rare, the
evaluation of Equation (32) using Monte Carlo type methods requires an extreme number of samples.

The sum of all Ling or Xiao indices is not equal to one. For small Pf, the values of the first-order
indices are relatively high; moreover, the second-order index is always greater than the first-order
index, which complicates the comparison of the influence on Pf. The advantage of computing Ling
indices is that the computation of the higher-order indices does not depend on the computation
(accuracy) of lower-order indices; therefore, their computation may be performed parallelly on multiple
processor cores.

Cramér–von Mises indices have the sum of all indices equal to one. However, there is no
addressability of indices to the Pf level because Equations (13) and (14) are integrated over all dΦZ(t),
i.e., over all t (which means over all Pf). This is also the reason that, at intervals relevant to reliability,
index values are not extremely high or low. The advantage is that a zero value of the Cramér-von
Mises index clearly means that the input is not important. Triple-nested-loop computation makes
these indices very numerically challenging. Nevertheless, numerous effective approaches to reduce
this computational complexity already exist; see, for e.g., [61].

Borgonovo first-order indices yield reasonable values in intervals relevant to reliability, similar
to Cramér–von Mises indices. The advantage of these indices is the transparency and the clear
interpretation of the influence of input uncertainty on the entire output distribution regardless of the
specific moment of the output (moment independence). Moreover, the indices can be computed even
in the presence of correlation between input variables. The computational complexity of indices is not
high. The disadvantage is that the sum of all indices is not equal to one and the indices are not directly
addressable to Pf.

Sobol’s indices are functions of only the variance, which, although important, is not enough for
SA of reliability. The computation of Sobol’s indices is based on the double-nested-loop computation
and can be numerically very challenging for engineering tasks. However, if we consider the binary
random variable 1Z<0 as the quantity of interest, Sobol’s indices can be an interesting reliability-oriented
sensitivity technique [62].

Madsen’s factor can be applied as a computationally undemanding (simple) SA in engineering
tasks, but with a number of limitations. Madsen’s factor can only be applied for Pf < 0.5.
The disadvantage of Madsen’s factor is that factor Oi can have values significantly greater than
1. For example, in Case study 2, for Pf = 6.14·10−32 we obtain O1 = 32. A model with one random
variable would theoretically lead to O1 = ∞. A significant computational problem can occur in
non-linear problems when fixing to the mean value Xi leads to the limit case of a given physical
phenomenon. For example, the amplitude of the axial curvature of a slender bar subjected to buckling
has a mean value equal to zero, which means a perfectly straight bar [63]. The resistance of such
a perfectly straight (unrealistic) bar is always higher than the resistance of a bar with any non-zero
imperfection [64], and thus the mean value of zero is not suitable for fixing in reliability analysis or SA.
The modification of Equation (27) to the form E(β|Xi)/β can be discussed, but with the proviso that fixing
Xi must not lead to negative values of β. So far there is no global SA based on β, and it is questionable
whether the first two statistical moments are sufficient to describe the influence on reliability.

The correlation coefficients are not directly addressable to Pf but can be used as sensitivity indicators
if the output (Z) is monotonically dependent on the input variables R and F. Correlation points to
dependence, but the opposite is not true. The advantage of correlation coefficients is their availability
in computer software and they are relatively computationally inexpensive in simulation approaches.

ROSA-type indices have a different explanatory power than those of other types. Similar results
cannot be expected from these two types (ROSA vs. non-ROSA) of indices as an input variable could
be influential on Pf but not on the distribution of Z and conversely. Nevertheless, there is relatively
good agreement between contrast Cramér–von Mises indices, Borgonovo indices and Pf indices in the
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interval of approximately Pf ε (0.1, 0.9). However, common building structures are designed with a
reliability of Pf < 4.8·10−4; see Table 1. For such small Pf, only Cramér–von Mises indices and Borgonovo
indices have similar values. The values of the other sensitivity indices are considerably different.

It can be concluded from all the obtained numerical results that if σF < σR (σF > σR), the sensitivity
of Pf to R is higher (lower) than the sensitivity of Pf to F. It was confirmed that only ROSA-type indices
are suitable for probability-based reliability assessment. The results of Case study 1 showed that
change in µF together with σF = const. changes only the values of contrast Pf indices and Ling and
Xiao indices, the other indices remain unchanged. Furthermore, change in σF together with µF = const.
changes the values of all indices, except of course B12 = 1 and S12 = 0. The results of Case study 2
showed that changes in σF and µF with the condition vF = σF/µF = const. causes changes in the values
of all indices; therefore, none of these indices is a pure indicator of the influence of vF on Pf.

It can be noted that resistance is generally a random variable that is a product of random variables
such as yield strength (material characteristic), cross-sectional area (geometric characteristic), etc.
Material and geometric characteristics usually do not have perfect Gauss pdf due to small skewness
and kurtosis observed in histograms from real experiments [65,66]. The dead load can be roughly
approximated using Gauss pdf, but other load types (wind, snow, traffic, long-term load action) have
pdfs significantly different from Gauss pdf. For more complex structures, numerous load conditions
and tens to hundreds of random variables with different pdfs can be expected. Furthermore, input
random variables may have mutual correlations, which are implemented in beams [67] in more detail
than in systems where each beam is represented by a smaller number of random variables independent
of another beam; see for e.g., [68].

The question is, to what extent can different types of sensitivity indices oriented to Pf be influenced
by the skewness and kurtosis values of the input variables or by correlations between them, and what
is its importance for the analysis of reliability? For instance, the values of Sobol’s indices change when
the kurtosis changes, but not when the skewness changes [34]. Of the SA types presented here, only
Borgonovo indices [14] have the ability to have correlations between input variables. This ability must
also be sought in other indices suitable for structural reliability analysis.

A generally accepted measure of reliability is Pf; therefore, Pf should be the overall objective of
SA. However, the concept of Eurocodes [19] assesses reliability according to the limit states using the
so-called semi-probabilistic method, which compares the design values (quantiles) of resistance and
load. Because probabilistic reliability analysis would be too expensive in common engineering practice,
design values are usually computed deterministically according to design standards. These design
values can be verified using the lower quantity of resistance (for e.g., 0.1 percentile) and upper quantity
of load, where resistance and load are functions of other random variables; see Figure 2. Another
useful property of SA could be that sensitivity indices oriented to Pf and design quantiles form pairs
based on the same theoretical basis. For example, global SA subordinated to contrasts can be associated
with both Pf and quantities Rd and Fd; see Figure 2. However, the question is whether there is a link
between indices Equations (17), (18) and (20), (21) when the contrast functions Equations (16) and (19)
are different. Preliminary studies show that partial similarity can be expected between the total indices.

6. Conclusions

The presented case studies have shown that the numerical results of reliability-oriented sensitivity
analysis (ROSA) are inconsistent. ROSA was evaluated using Contrast, Xiao, Ling and Madsen’s
indices. For structural reliability, the key quantity of interest is failure probability Pf, which is lower
than 4.8·10−4.

Contrast Pf indices have relatively small values of first-order indices and high values of
second-order indices for small Pf. Ling or Xiao indices have relatively high values of first-order
indices, but also high values of second-order indices for small Pf. For instance, in the first case study, if
Pf→ 0 then C1 = 0, C2 = 0, C12 = 1 and L1 = 1, L2 = 1, L12 = 1. In civil engineering, Pf is generally very
small, and extreme values of sensitivity indices estimated by ROSA can be expected. The advantage of
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contrast Pf indices is that the sum of all indices is equal to one. The sum of all Ling or Xiao indices is
not equal to one. The Madsen factor values were significantly greater than 1 and therefore cannot be
compared in size with Contrast, Xiao and Ling indices. Madsen’s factor does not reflect change in the
mean value of input variables, although this change causes a change in Pf.

In contrast, Xiao, Ling and Madsen’s indices have correctly identified the order of importance
of input random variables to Pf; however, this observation only applies to the presented case studies
and cannot be generalized. In the case studies, it is not possible to determine, even approximately, the
percentage by which the dominant variable is more influential than the others, so this conclusion is
true for each type of SA. Structural reliability lacks a common platform of SA that provides a clear
interpretation of the size of sensitivity indices and defines their information value.

The other indices (Sobol, Borgonovo and Cramér–von Mises) and correlation coefficients are
not directly addressable to Pf and therefore are not generally suitable for the analysis of reliability.
As expected, these (out of ROSA type) sensitivity indices do not reflect the change in mean value of
input variables, although this change causes a change in Pf. This means that the two variables that
have a different influence on the reliability may have the same indices. In relation to the reliability of
structures, the information value of these indices is not unambiguous. In the case of ROSA, Xiao and
Ling indices, no two different Pf values exist for which the same sets of sensitivity indices exist, but
contrast Pf indices have the same or similar values for unreliability (Pf) and reliability (1 − Pf).

There are many engineering reliability assessments in which non-ROSA indices are applied,
although the connection with reliability is mentioned. The reason for these applications may be the
simplicity of evaluating indices as well as the experience that known indices have at least partial
sensitivity for reliability, which, along with other experience, is sufficient for basic decision-making.
With the development of ROSA, a gradual transition to new types of reliability-oriented indices can
be expected.

In connection with sustainable reliability, it is possible to discuss which type of ROSA should be
applied and which key quantities of interest ROSA should be oriented to in particular. The Eurocode
standards for structural design assess reliability using a so-called semi-probabilistic approach, which is
based on design quantiles. The question remains whether Pf can be adequately replaced by design
quantities, reliability index β or other model-based inferences so that the information value of SA
results in relation to reliability is approximately maintained. Design quantiles are an important part
of reliability analysis, and SA of the design quantiles may be required to provide results consistent
with Pf.

In general, ROSA directly addressable to Pf may be preferred rather than focusing on the reliability
index β or quantiles. Indices with the sum of one and a clear addressability to Pf present one SA,
an advantage that facilitates the comparison of the results of different probability models. Contrast
functions are a more general tool for estimating various parameters associated with probability
distributions, and thus the partial consistency of requirements could perhaps be sought on the basis of
contrasts. These and other tasks need to be addressed in order to make SA of structural reliability a
useful and practical tool.
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