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Abstract: This investigation explored the performance of PEMFC for varying ambient conditions 

with the aid of an adaptive neuro-fuzzy inference system. The experimental data obtained from the 

laboratory were initially trained using both the input and output parameters. The model that was 

trained was then evaluated using an independent variable. The training and testing of the model 

were then utilized in the prediction of the cell-characteristic performance. The model exhibited a 

perfect correlation between the predicted and experimental data, and this stipulates that ANFIS can 

predict characteristic behavior of fuel cell performance with very high accuracy. 
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1. Introduction 

As the world continues to strive for alternative energy generation media in order to fight climate 

change, energy generation sources for electricity production must be critically reviewed [1–3]. Fossil 

product over the last few years has been the major source of energy generation worldwide [4–7]. The 

world today considers it a key contributor to carbon emissions into the atmosphere hence the urgent 

need to consider an alternative [8–10]. Renewable sources are, therefore, perceived as the best 

replacement for these fossil products [11,12]. Again, fossil product prices are unstable, and the worst 

part is their harmful effect on the environment. Several research activities today are geared towards 

the optimization of operational conditions of fuel cells [13]. 

Fuel cells produce direct current via a chemical reaction between fuel and an oxidant. The 

conversion method for the fuel cell into electricity is considered as being environmentally friendly 

and efficient. The ambient conditions surrounding the cell affect its efficiency. It, therefore, becomes 

very important that a method used to validate these operational parameters is developed [14,15]. 

These validation methods could be mathematical and numerical models. These models can be used 

in place of other experimental investigations in other to obtain results for fluid flow, heat transfer, 

and a chemical reaction. 

PEMFCs are one of the types of fuel cells known due to their low operating temperature range 

but high efficiency [16]. They are usually made up of a membrane electrode assembly which supports 

electrochemical reactions. A platinum catalyst on the membrane is what speeds up the chemical 

reaction and potential add up to the overall cost of the cell. PEM fuel cells have fast start up time 

compared to other types of fuel cells. Again, there are many options in terms of the type of fuel used 

as a reactant. All these merits are some of the practical reasons why PEM fuel cells are an alternative 

source of energy generation [17]. The other types of fuel cells are good but ideal for specific 

applications and tend to have their individual limitations. Solid oxide being operated at a higher rate 
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are ideal for power plants. Operating the cells at higher temperatures implies a higher cost of 

operation. Due to accelerated research activities, fuel cells today are being integrated into renewable 

sources, such as wind and solar energy systems, in order to improve the overall efficiency of the 

system. The hydrogen needed as fuel, as explained earlier, can be obtained via many processes [18]. 

Under laboratory conditions, these hydrogen gasses are stored in pressurized gas bottles or produced 

through an electrolytic process. The best operational conditions that would increase the performance 

of the cell are directly related to the overall cost of the cell. Several investigations have been conducted 

from the literature to mathematically predict the performance of fuel cells [19–21]. The main issue 

regarding these mathematical methods has to do with the accuracy of the results generated because 

the physical processes used are quite complex. For complex nonlinear conditions, simple 

computation techniques, like artificial neural network, are often used. Artificial neural networks are 

developed to be able to learn and generalize in order to generate predicted solutions [20]. From the 

literature, several investigations have been conducted using prediction statistically and correlation 

analysis in fuel cells. The relevance of using a predicting model is also dependent on the adoption of 

a good technique coupled with a strategy to accurately determine the operational conditions that will 

enhance the overall performance of the cell. The relationship between the experimental data and the 

predicted data is conducted via correlation analysis. These mathematical models are designed to 

reduce the cost in carrying out these experimental investigations and also to save time. Investigations 

can, therefore, be justifiable using these theoretical models compared with conceptualized models. 

Artificial neural networks are able to predict nonlinear systems, unlike that of the linear regression 

methods. The output results from artificial neural networks is dependent on the input parameters 

hence considered to work like the human brain. 

The application of an adaptive neuro-fuzzy inference system (ANFIS) could be traced to the 

1990s using Takagi–Sugeno fuzzy model [21,22]. This technique has been used in some fuel cell 

investigations producing very accurate results but not predominant specifically in proton exchange 

membrane fuel cell analysis. The technique is designed to be a combination of neural networks and 

theories for the operation of systems using fuzzy logic [17]. The results generated are highly 

dependent on each concept. As explained earlier, the physical architecture coupled with the 

information is managed by neural networks while the fuzzy logic is designed to function like the 

human brain and the management of uncertainties in the system. The feature of a set of data is learnt 

buy adaptive neuro-fuzzy inference system. The parameters for the system are then made to change 

to be the same as the error criterion for system for output generation. The training times and the 

computational power required tend to be less, hence ideal for the prediction of operational 

parameters for proton exchange membrane fuel cells [23–26]. 

In a nutshell, this investigation is aimed at exploring the best operational parameters that would 

yield the maximum performance from a proton exchange membrane fuel cell. The application of an 

adaptive neuro-fuzzy inference system in predicting the current and voltage obtained from an 

experimental investigation would be ascertained [27–30]. The accuracy of the results will be 

dependent on a comparison of the results between the root mean squared error (RMSE) criterion, the 

coefficient of correlation and the coefficient of determination. With the aid of multiple linear 

regression, as well as feed-forward back propagation neural network, a comparative study will be 

conducted to clearly show the accuracy of results generated using an adaptive neuro-fuzzy inference 

system. 

2. Experimental Analysis 

2.1. Fuel Cell Testing Procedure 

Fuel cells obtained from fuel cell store United States with an active area of 11.46 cm2 was used 

in this investigation. The bipolar plate channel designs were serpentine, and according to the 

manufacturer’s specifications, the membrane for these types of fuel cells had to be well humidified 

to reduce any form of resistance on the membrane. The operating parameters used in the 

investigation are depicted in Table 1. 
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Table 1. Testing of fuel cell operational parameters. 

Level of numerical design −1 +1 

Input variable level Minimum Maximum 

            �� pressure 1 bar 2.5 bar 

�� pressure 0.8 bar 2.3 bar 

�� flow rates 15 ml/min 150 ml/min 

�� flow rates 15 ml/min 150 ml/min 

Table 2 captures the materials used for the fuel cell components and the loading conditions for 

the catalyst (platinum). 

Table 2. Fuel cell material composition. 

Fuel Cell Component Material Characteristics 

Housing Acetyl Supplier: (Fuel Cell Store) 

Membrane electrode assembly Nafion 212 

Active area: 3.4 X 3.4 cm 

Catalyst loading 0.4 mg/cm2 Pt / c.0.55 g cm3 bulk 

Supplier: Fuel cell store 

Bipolar plate Graphite  

24 pores/cm 

Thickness: 0.65 mm 

Supplier: Fuel Cell Store 

Sealing Silicon 
Thickness: 0.8 mm 

Supplier: Fuel Cell Store 

2.2. Experimental Set‐Up 

The components used in the experiments are captured in Figure 1. Production of hydrogen for 

the fuel cell was carried out using a hydrogen generator from Peak Scientific, UK. The oxygen for the 

electrochemical reaction was also obtained from the air because our fuel cell is air-breathing. A fan 

helped speed up the circulation of air and mass transport. The hydrogen flow rate was also measured 

using a flow meter before making its way into the fuel cell. From the determination of the hydrogen 

flow rate, the next step was to pass the gas through a humidification chamber. This allows the dried 

hydrogen gas to pick up some water molecules for the humidification of the membrane. The 

experimental working environment had a relative humidity of 0.74. The airflow rate was determined 

from the data sheet of the fan used in the investigation. A potentiostat was utilized for the generation 

of the iv-curve for each operating condition. The open circuit voltage and the current were all 

deduced using a multi-meter. A thermocouple attached to the cell-supported the determination of 

cell operating temperature at varying conditions. The cell was operated between temperatures of 50 
oC and 60 oC. 
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Figure 1. Fuel cell experimental set up. 

2.3. Adaptive Neuro‐Fuzzy Inference System (ANFIS) 

The development of an adaptive neuro-fuzzy inference system can be traced to the 1990s. It was 

designed as software made of a combination of neural network and fuzzy logic. The input and output 

datasets are learned in artificial neural network for the generation of accurate results. Fuzzy logic 

interprets, organizes, and also adds an element of rationalization to data. There are four compositions 

of the fuzzy inference system, namely fuzzifier, fuzzy rules, defuzzifier, and inference engine. The 

output for a fuzzy inference system is known via the building of the fuzzy rules, the inputs being 

fuzzified with the aid of functions, building a rule strength and determining its consequence. A 

distribution for the output is generated via the combination of these consequences. The Sugeno and 

Mamdani are the well-known models of fuzzy inference system. The application of the fuzzy rules 

being connected to the fuzzy set and further defuzzified is classified under the Mamdani model. The 

Sugeno fuzzy inference system functions just like the Mamdani type. The only difference between 

the two is the fact that there is no output function added to the system for the Sugeno fuzzy inference 

system. Combining artificial neural network and fuzzy inference system uses the same learning 

techniques in neural network and also adopts the integration of fuzzy reasoning to add logic and the 

prior knowledge effect. Learning of the membership function for the fuzzy logic is done using 

artificial neural network. This technique supports the building of the input data for the model as 

fuzzy IF—THEN rules in the FIS. This process is conducted for the optimization of the parameters 

utilized in the development of the fuzzy inference system with an application to ensure the data are 

learned. An adaptive neuro-fuzzy inference system is designed to have two inputs and the number 

of layers being five, as depicted in Figure 1. The adaptive nodes and nodes are shown in the square 

and circles in Figure 2. 
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Figure 2. Structure of adaptive neuro-fuzzy inference system. 

There are apparently four adaptive nodes for the parameters denoted as ��, ��, ��, ��. 

Mathematical representation for the fuzzy IF—THEN rules is shown in Equation (1) and 

Equation (2). 

Rule 1: If � is �� and � is ��, then 

�� = ��� + ��� + �� (1) 

Rule 2: If � is �� and � is ��, then 

�� = ��� + ��� + �� (2) 

The consequent parameters are also captured as ��, ��, �� where � = 1, 2. From the structure of 

the adaptive neuro-fuzzy inference system, x and y can be found in layer 1 representing the input 

variables. They are then transformed to a membership figure with the aid of membership functions. 

The generalized bell functions are the common membership functions used in an adaptive neuro-

fuzzy inference system. The value representing the fuzzy membership, which also doubles as layer 1 

output, is captured as �� . This value denotes any �th node in layer �. Equation (3) and Equation (4) 

below represent the adaptive nodes undergoing varying operations. 

��,� = ���(�), � = 1, 2 (3) 

��,� = �����(�), � = 3, 4 (4) 

Equation (3) and Equation (4) denote the membership functions, often the generalized bell 

functions for the fuzzy dataset ��, ��, ��, ��. The connection between these datasets for the input x 

and y and the fuzzy set is also captured in Equation (3) and Equation (4). The parameters for the ith 

node for layer j are captured in the variables �� and ����. The µ function is captured in Equation 5.  
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Equations (6)–(9) represent the membership functions in mathematical connotations. 

Triangular: 
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An alteration of the consequent parameters for the membership functions results in the 

production of different membership functions and supports flexibility in the definition of 

membership functions. Layer 2 subsequently is made up of fixed nodes operating on multiplication 

rules. The product of input signals is developed for the generation of rules for firing strength. The 

operation is captured in Equation (10). 

   2, , 1,2
i ii i A BO x x i       (10) 

Layer 3 ensures the normalization of the firing strength obtained in the second layer. The ratio 

for the firing strength of the ith rule to the sum of rules in the model is determined at this point. An 

expression for the normalization techniques is captured mathematically in Equation (11). 

3,
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The output computations are obtained in the fourth layer. There is an adjustment of the 

consequent parameters until an optimized value is generated with the least error. The layer is 

composed of adaptive nodes that support the calculation of total output for the developed model. 

The output for layer 3, �����, is multiplied by a parameter set {��, ��, ��} to get the output of layer 4 

captured in Equation 12. 

 4,i i i i i i iO f p x q y r 
 

     (12) 

There is finally adding up of all the outputs in layer 4 for the final output of the adaptive neuro-

fuzzy inference model. A summation function operation can be found in layer 5 with one fixed node 

depicted in Equation (13). 

5,i i i
i

O f


  (13) 

2.4. Multiple Linear Regression (MLR) 

The cause–effect correlation between variables for a given dataset aimed at obtaining predicted 

equations can be executed with the aid of regression analysis. This statistical model can be utilized 
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as well to explain how many variables explanatorily define a variable that is dependent. Multiple 

linear regression predicts the linear correlation between independent and dependent variables. 

Multiple linear regression uses a linear equation depicted in Equation (14) for the observation of the 

data. The dependent variables are usually subject to change hence denoted by the coefficient in 

Equation (14). This occurs as a result of changes in the independent variable by a unit of one. In an 

instance where other variables are zero, the constant attached to Equation (14) would represent the 

dependent variable. 

0 1 1 2 2 ...i i i p ipy x x x           (14) 

where for any � = � observations, the variable that is dependent is denoted as ��  which in this case 

will be current and voltage whiles the variable that is independent is denoted as ��. The y—intercepts 

on the other hand is represented as �� and �� and this is the slope coefficients of the independent 

variable. Any error obtained as a result of the modeling method is also denoted as �. Evaluation of 

the degree of linearity is done using the coefficient of determination. The actual and predicted 

variable difference is accounted for using the error term. To check whether the application of multiple 

linear regression is ideal for a particular dataset, techniques such as linearity, extreme value coupled 

with normality is utilized. 

2.5. Model Implementation  

An adaptive neuro-fuzzy inference system (ANFIS) was used in the estimation of voltage and 

current at varying reactant (hydrogen and oxygen) pressure and flow rate in proton exchange 

membrane fuel cell. Due to the convergence rate of the Sugeno approach being very fast, it was 

utilized in this investigation. Again, the accuracy of the Sugeno method is higher compared to the 

Mamdani technique. The optimal membership function was also deduced via the trial and error 

technique. The least root mean squared (RMS) error was selected after using the membership 

function. The minimum error method was selected considering other variables like the approach for 

generating the fuzzy inference system, composition function types, and membership functions 

number in the hidden layer and interference. The data generated from the experimental investigation 

were separated into training and testing datasets. These datasets were then utilized as input data in 

MATLAB, specifically in the neuro-fuzzy designer app. The size of the data and application 

influenced the structure ideal for the model. The model was then trained after the selection of the 

important parameters. This step was carried out to ensure the learning ability for the model was 

viable and also supported the determination of the structural parameters for an algorithm. An 

integration of gradient descent and the least square technique is the hybrid optimization algorithm. 

There is forward propagation of the output till it gets to the fourth layer. The least square technique 

is used for the determination of the consequent parameters. There is further back propagation of the 

errors attained and alteration of the premise parameters. They are further adjusted with the aid of 

the gradient descent algorithm. The error factor in the adaptive neuro-fuzzy inference system is 

depicted in Equation (15). 
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n

k k
k

E f f


   (15) 

The hybrid method uses other algorithms for each of the training parts. The local minima 

convergence is eliminated and this tends to enhance the model performance as well. The pattern for 

the test for the neuro-fuzzy app was assessed. 

3. Results and Discussion 

3.1. Results from Experiment 

Polarization curves are used to determine the performance of fuel cells at varying operational 

conditions. From the experimental data, an increase in the reactant pressure coupled with the flow 
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rate caused an increase in the power density generated for the cell under investigations. This can be 

attributed to the current generated from the fuel cell being high, as shown in Figure 3. 

 

Figure 3. Performance of proton exchange membrane fuel cell at lower pressure and flow rate of the 

reactant. 

Figures 4–6 captures the overall fuel cell performance at varying ambient and cell operating 

conditions. 

 

Figure 4. Fuel cell performance at varying low pressure and reactant flow rate. 
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Figure 5. Fuel cell performance at varying low pressure and reactant flow rate. 

 

Figure 6. Fuel cell performance at varying low pressure and reactant flow rate. 
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Table 3. Analysis of experimental data statistically. 

Data N Mean 
Standard 

Deviation 
Sum Minimum Median Maximum 

Hydrogen 

Pressure 
22 1.71591 0.48975 37.75 1 1.75 2.5 

Oxygen 

Pressure 
22 1.51591 0.4316 33.35 0.8 1.55 2.3 

Hydrogen flow 

rate 
22 85.56818 48.75187 1882.5 15 82.5 150 

Oxygen Flow 

Rate 
22 85.56818 44.07739 1882.5 15 82.5 150 

Current  22 0.50955 0.44897 11.21 0.065 0.339 1.464 

Voltage 22 0.62314 0.12953 13.709 0.357 0.6645 0.768 

Tables 4 and 5 explain the analysis of variance for the current and voltage (dependent variable) 

at varying flow rate and pressure (input parameters, independent variable). From the table, it can be 

observed that the independent variable (varying flow rate and pressure) has an enormous influence 

on the estimation of the dependent variable (current and voltage). From Tables 2 and 3, the F value 

is 2.06468 and 1.85269. 

Table 4. Analysis of variance for current. 

 DF Sum of Squares Mean Square F Value Prob > F 

Model 4 1.38408 0.34602 2.06468 0.13053 

Error 17 2.84904 0.16759   

Total 21 4.23312    

Table 5. Analysis of variance for voltage. 

 DF Sum of Squares Mean Square F Value Prob > F 

Model 4 0.10697 0.02674 1.85269 0.16532 

Error 17 0.24538 0.01443   

Total 21 0.35235    

Table 6 summarizes the multiple linear regression model for the current and the voltage. It can 

be observed that the adjusted R—square value for current is higher compared to voltage. The 

application of an adaptive neuro-fuzzy inference system will then address all non-linearities in the 

model. 

Table 6. Summary of regression analysis. 

Current  Voltage  

Variable Value Std. Error Variable Value Std. Error 

Constant 1.5481 0.48767 Constant 0.33199 0.14312 

Hydrogen Pressure −0.36593 0.18367 Hydrogen Pressure 0.09843 0.0539 

Oxygen Pressure −0.14583 0.20849 Oxygen Pressure 0.04059 0.06119 

Hydrogen flow rate −0.00336 0.00185 Hydrogen flow rate 9.722E-4 5.42E-4 

Oxygen Flow Rate 0.00114 0.00204 Oxygen Flow Rate −2.62E-4 5.989E-4 

Adjusted R2 0.1686 Adjusted R2 0.1397 

3.3. Adaptive Neuro‐Fuzzy Inference System Results 

The investigation used an adaptive neuro-fuzzy inference system to develop a correlation 

between the flow rate and pressure on current and voltage in a proton exchange membrane fuel cell 
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experiment [31–33]. The experimental data were first trained and later tested [34–39]. The 

membership function for the model was used via trial and error technique. The hybrid learning 

algorithm was further used for the training of the process. Figure 7 captures the four input parameters 

and two membership functions for the input and output. The fuzzy rules are captured in the neutrons 

in layer 3. Neutrons also captured in layer 3 are the rules and conditions. The model developed had 

the fuzzy—IF-THEN rules for the membership functions below. The model was trained for a hundred 

iterations. Table 7 captures the model specification using the adaptive neuro-fuzzy inference system. 

 

Figure 7. Adaptive neuro-fuzzy inference system structure. 

Table 7. Model specification using the adaptive neuro-fuzzy inference system. 

Variable 
Current Voltage  

Value Value  

Number of nodes 55 193 

Number of linear parameters 80 405 

Number of nonlinear parameters 16 24 

Total number of parameters 96 429 

Number of training data pairs 18 19 

Number of checking data pairs 0 0 

Number of fuzzy rules 16 16 

The experimental data plotted against the predicted for voltage and current using the adaptive 

neuro-fuzzy inference system captured in Figures 8 and 9 show the results for the training and testing 

for the current. 
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Figure 8. Results for measured and predicted current for training. 

 

Figure 9. Results for measured and predicted current for testing. 

Figures 10 and 11 also show the training and testing results obtained for voltage. 
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Figure 10. Results for measured and predicted voltage for training. 

 

Figure 11. Results for measured and predicted voltage for testing. 

The performance of the adaptive neuro-fuzzy inference system in the estimation of the current 

and voltage from the fuel cell experiment is evaluated. Table 8 captures the performance of the 

adaptive neuro-fuzzy inference model. Table 8 clearly shows that the RMSE value for the output 

parameters predicted were less than 1, indicating accurate results. In spite of the training for the 

current performing better compared to other models, there were no observable differences identified. 

The learning conducted for the current was more accurate compared to the other output parameters. 

The prediction for the voltage also exhibited very good results. In summary, the predicted values for 

the dependent variables were in good agreement with the actual (experimental) results perfectly. 

Taking R2 into consideration, the model prediction for the current was slightly better compared to 

the voltage for both the training and the testing. 
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Table 8. Performance of ANFIS models. 

 Training Time (s) RMSE R2 

 Training Testing  Training Testing Training Testing 

Current  8.04 8.32 0.028235 0.42473 0.99193 0.9998 

voltage 9.92 8.620 0.006513 0.078608 0.99069 0.99958 

4. Conclusions 

This investigation explored the application of an adaptive neuro-fuzzy inference system as a 

prediction technique for fuel cell experimental data obtained under laboratory conditions. The 

adaptive neuro-fuzzy inference system is made up of both fuzzy inference and artificial neural 

network. This technique has been utilized in a number of research activities in applied science for 

predicting output variables knowing the independent variables. This research was aimed at 

predicting current and voltage based on experimental data from proton exchange membrane fuel cell 

at different operational conditions. The model was adopted after it was deduced that using the 

multiple linear regression led to the creation of non-linearities in the predicted results. Hydrogen 

flow rate and pressure were used as the independent variable. The experimental data were then 

trained and tested. The outcome of the results generated showed excellent results hence the potential 

for the application of adaptive neuro-fuzzy inference system in fuel cell statistical analysis and 

prediction. It was further deduced that due to the cost of producing hydrogen, a good balance 

between the pressure and flow rate would significantly reduce the cost of operation for the fuel cell. 

Furthermore, losses (pumping power, mass concentration losses, and activation losses) in the PEM 

fuel cell are reduced significantly if the flowrates between the fuel and oxidant are carefully selected 

based on the application, as captured in this investigation. 
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