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Abstract: Most macroeconomic studies predict a decline in final energy demand and the use of natural
gas in the heating sector in Europe. In the course of building retrofitting, gas-based heating systems
are predominantly replaced by electricity-based solutions. This influences the business models of
electricity and especially gas distribution network operators (DNOs), where grid charges tend to rise.
The resulting feedback effect could accelerate the decrease of demand and finally lead to the defection
of the gas grid—an effect that has been neglected in energy system analysis so far. We present a
multi-agent simulation with a rule-based gas and electricity DNO model and a building retrofit
optimization model to analyze these interdependencies during the transformation path, focusing
on the role of different technical, economic, and regulatory triggers. Our case studies for a real grid
area of a German city shows that an interplay of the gas and electricity DNO’s strategy, as well as the
building-, heating system-, grid-, and trigger-configuration, determine the decision on the extension,
continuation, or defection of the gas grid infrastructure. Finally, strategies for how to reduce the risk
of a gas grid defection, which are relevant for DNOs, policy makers, and creators of macro-economic
models, are discussed.

Keywords: multi-utility energy systems; energy system analysis; multi-agents; economic optimization;
distributed optimization; natural gas grid; electricity grid; strategic decision making; grid economics;
distribution grid planning; gas grid defection

1. Introduction

More than one third of the final energy consumption of European residential buildings is covered
by natural gas [1]. Heat generation accounts for 61% of gas demand on average for all 28 European
Union (EU) countries, with 46% being consumed in the residential building sector [2–6]. Scenarios
for future gas demand vary widely: Forecasts for China [7,8] or the USA [9–12] often predict a
medium-term increase in gas demand. Studies from Europe predict a stagnation or decline of the final
energy demand and use of fossil fuels [2]. Dependent on the predicted technology transformation path,
different building retrofit measures, like the reinforcement of the surface insulation or an exchange of
the heating system are chosen. On the one hand, British and Irish publications expect measures to
increase building efficiency, as well as carbon capture technologies and synthetic gases to decarbonize
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the energy system [13–15]. On the other hand, papers from Germany [16–19] predict a drop of the
share of natural gas heating systems by 25–100% until 2050, due to building efficiency measures and
the electrification of heating systems.

Independent of the chosen transformation path, it is likely that the gas demand will decrease,
whereas the electricity demand in the building sector will increase. This could lead to an expansion
and reinforcement of the electricity distribution grids [20] and may reduce the profitability of the
gas grids [21]. Depending on the strategy of the distribution network operator (DNO) and the
regulatory environment, this poses a particular risk: Maintaining a disproportionately long network
for a lower amount of energy supplied may lead to an increase in energy-related grid costs and thus
grid charges [22]. As a part of the energy costs, grid charges thus increase the operating costs of
gas-bound heating systems, which could accelerate the substitution of those plants. This could finally
lead to the defection of the gas grid, despite its predicted future role as a flexibility option [23].

Energy system analyses have already dealt with this topic on a macroeconomic level but have
mostly neglected grid-specific characteristics and feedback effects [10,15,19,24]. Current planning
approaches of electricity or gas networks, especially for distribution networks, mostly deal with
restructuring, network reinforcement or the integration of renewable feeders [25–28]. There are neither
studies that evaluate different gas DNO business models and investment strategies when customers
leave the grid, nor studies on the evaluation of possible feedback effects of the grid charge setting
on building retrofit decisions. In the context of the sizing and operation of photovoltaic-battery
(PV-battery) systems, interdependencies between investment decisions of grid- and plant-operators in
the electricity sector have been recently discussed [29]. The discussions often focus on grid defection,
especially in the United States [30,31]. In the face of the predicted decreasing gas demand, we apply
these considerations to gas and electricity distribution grids with a high degree of residential buildings,
focusing on heating applications. In this context, we address four main questions relevant for DNOs,
policy makers, and creators of macro-economic models of the energy system:

• How do electricity and natural gas grid charges impact the choice of type and size of heating
systems as well as the thickness of building surface insulation?

• How are the building retrofit decisions, including natural gas and electricity grid costs, influenced
by triggers such as carbon dioxide (CO2) pricing and shaped by the building stock?

• How strong is the interdependency between the investment strategy of the DNOs and building
retrofit decisions in scenarios where gas grid customers leave the grid?

• How does a change in the gas DNO strategy influence the choice of building renovation measures,
gas grid costs and the strategy’s profitability in scenarios with a decreasing demand?

This depicts our main innovation: We measure both the effects of single actors in the energy
system and the interdependence between them—on the one side, the influence of building energy
retrofit measures on gas and electricity demand, and on the other side, the impact of the DNO’s
investment strategy on grid charges. We show that a combination of different triggers leads to a
significant decrease in gas demand and reduces the gas DNO’s revenues and grid length. This finally
leads to gas grid defection in the case of an unfavorable combination of the gas DNO’s strategy with
the building and heating system configurations.

We have organized the paper in four sections: First, we conduct a literature review to analyze
factors that influence building owners’ retrofit decisions (Section 2.1), and justify our assumptions for
the DNO model (Section 2.2) and the multi-agent simulation (Section 2.3). Second, we introduce our
methodology and data in Section 3: The research approach (Section 3.1), grid and building and DNO
data (Section 3.2), the building model (Section 3.3), the DNO model (Section 3.4), and the multi-agent
simulation (Section 3.5). Furthermore, we validate our model (Section 3.6), describe the concept of the
case studies (Section 3.7), and analyze their limits and transferability (Section 3.8). After the analysis of
sensitivities of building retrofit decisions on energy price fluctuations with the single-level building
model (Section 4.1), we provide three main case studies for a real grid area of the German city of
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Bamberg, varying the building heating and system stock for each of them: An analysis of the role of
different triggers on the transformation path (Section 4.2); a measurement of the interdependencies
between grid costs and building retrofit decisions (Section 4.3); the determination of the impact of
different DNO strategic patterns (Section 4.4). Afterwards, conclusions, options, and risks for the
different stakeholders are discussed to motivate further research (Section 5). For a list of the acronyms
used, see Table A1 in the Appendix.

2. State of the Art

2.1. Retrofit Decisions of Building Owners

There is a trend in the literature predicting gas-based space heating and domestic hot water
generation systems to be substituted by electrical heat pumps [17,19,32]. With that the question arises:
What are the influencing factors in building retrofit decisions that trigger such a scenario?

The literature lists various optimization goals of building retrofit models, ranked by the number of
works found: Energy consumption, investment expenditures, life-cycle costs, operational expenditures,
comfort, total costs, and CO2 emissions. They focus on the following parts of the building, listed
according to their importance: Building envelope, building form and heating, and ventilation
and air conditioning systems [33]. Depending on the level of detail and the temporal granularity,
simplified analytical models, detailed building models or building performance surrogate models
are used [34,35]. Thereby, different approaches like scenario, operation, and planning models have
to be distinguished [36]. Most models are mathematical optimizations or artificial intelligence
approaches [33,35]. In the case of the building retrofit decisions, the initial building equipment option
significantly influences the associated building-specific measure costs for changing the heating system
(options like heating circuit, chimney, domestic hot water storage tank, oil or pellet storage or a gas
grid connection) [37]. Although this aspect is essential for the assessment in practice, there is a lack in
the literature.

We focus on the mapping of a building’s individual technical and economic factors within the
optimization procedure. Therefore, we use a simplified thermal model based on annual time steps for
the energetic calculation and implement an analytical optimization model based on a mixed integer
linear program, which minimizes the total costs for heating.

2.2. Business Model of a Distribution Network Operator in the Regulatory Environment

Recent works in the field of natural gas or electricity distribution grid planning deal with cost
or CO2 optimal grid reinforcement and restructuring in face of the integration of renewable energy
generation [26,28,38–41]. For that reason, target planning [25,39] or consecutive multi-stage planning
approaches [26,27] are used. Most often the DNO’s cash flow, and especially the regulatory mechanism,
is neglected. Our model integrates consecutive grid planning, considering the yearly cash flow under
regulatory constraints. In the following, we discuss the basics of our cash flow model with regard to
current literature.

In the EU, gas and electricity supply are vertically unbundled. Therefore, the grid infrastructure is
subject to a natural monopoly and the DNO’s business model is constrained by regulatory mechanisms
to guarantee a stable and cost-efficient supply [42]. Most regulatory systems are cost-based: The
revenues from grid charges income correspond to the marginal costs of grid operation plus a fixed
return on equity. Several basic approaches can be distinguished, such as the "revenue cap" method, in
which the revenues are constrained, or the "price cap" method, in which the upper limit of grid charges
is limited [43]. Purely cost-based approaches lead either to the build-up of cost inefficiencies or a
decline in the supply quality; therefore they are supplemented by incentive regulation systems [44,45].

As the characteristics of the incentive systems differ widely between countries [42], we base our
work on the basic approach for reasons of transferability. Thereby yearly costs are summed up and a
fixed interest rate on equity capital and tax is added. Finally, the costs are rolled up in form of grid
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charges on the grid user. Depending on the DNO strategy, we limit the cost base. This corresponds to
a wide range of regulatory regimes from minimum to maximum supply costs and efficiency. Table 1
shows the three modeled strategies, with an interpretation of the influence on the supply quality
and efficiency.

Table 1. Pursued distribution network operator (DNO) strategies in the face of cost-based and
incentive-based regulations.

DNO Strategy Explanation
Corresponding

Regulatory Mechanism
Supply

Quality Efficiency

Stable revenue cap
(SRC)

The DNO tries to keep the
absolute RC constant, which

constraints the investment ratio.
Revenue cap + -

Stable grid value
(SGV)

The DNO tries to keep the grid
age on a stable level, which

constraints the investment ratio,
respectively the RC.

Revenue cap 0 0

Stable grid charges
(SGC)

The DNO tries to keep the GC
on a stable level, which

constraints the investment ratio,
respectively the RC.

Price cap - +

Notes: +: positive effect; 0: stabilizing effect; -: negative effect on the development of supply quality and efficiency;
RC: the DNO’s revenue cap; GC: grid charges.

All costs of a DNO are summed up in the cost base, where two different types of expenditures are
distinguished: The operational (OPEX) and investment (CAPEX) expenditures [42]. Each of them is
divided into several cost components. As they often differ between countries, we apply a basic concept
based on [21,46,47] according to Table 2.

Table 2. Considered cost components of the revenue cap, their shares and dependencies.

Cost Component
Dependency Initial Share of Cost

Base ** (%)

Grid Length Grid Age Energy Gas DNO Electricity
DNO

CAPEX
αCAPEX

Calculatory return equity αEC + - 9.9 5.1

Calculatory trade tax αTax + - 1.3 0.7

Interest on borrowed capital αBC + - 6.6 3.9

Calculatory depreciations αDepr + - 15.0 10.3

OPEX
αOPEX

Operational costs αOC + + * + * 33.6 29.8

Loss costs αLC + 0.0 1.6

Upstream grid charges αUpGC + 19.0 34.1

Concession fees αConc + 14.7 14.7

Notes: OPEX: operational expenditure; CAPEX: investment expenditure; +: linear positive dependence; -: negative
linear dependence; *: not modeled in this paper; **: derived from real data of the whole grid area and the
corresponding DNO’s cost-base (Bamberg, 2017).

We divide the CAPEX into depreciations, interest on borrowed and equity capital, and tax,
calculated based on the rest book value of fixed assets. The assets are financed with an equity to debt
ratio of 40–60% [21]. The imputed depreciation period is determined according to Germany [47] and
the historical acquisition costs are used to adapt the simulation to the real grid area.

OPEX is divided into the following components: The operating costs include all non-capitalized
assets and costs for personnel, maintenance, and others, modeled linearly depending on the line length.
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Loss costs, upstream grid charges, and concession fees [48] are modeled linearly dependent on energy
supplied [21]. For the sake of simplicity, the dependence of operating costs on the asset age and the
energy supplied is not modeled.

2.3. Combined Planning and Operation of Building and Multi-Utility Grid Infrastructure

There are multi-energy-planning approaches focusing on operation or planning issues on the
transmission network level [26–28,38,39]. Others address the planning of distribution networks,
with a focus on energy conversion between the power and gas sectors [41,49] or planning under
uncertainty [40]. Some studies evaluate and plan multi-energy systems combining building and grid
infrastructure on the micro-grid or city-district level [50–52]. Moreover, authors cover planning issues
of interconnected heating, power, and gas grids [36,53,54]. Some of them consider the interface between
grid and building infrastructure [53]. Almost without exception, the approaches are concerned with
the construction, expansion, and restructuring of existing network structures or the integration of
renewable sources. Most often they use mathematical programs to find the optimal configuration for
the overall system or the one of a single actor [36,55,56]. There is a lack in literature when it comes
to the analysis of the impact of feedback effects and interdependencies between DNOs and building
retrofit decisions, and the role of possible political and regulatory triggers and tipping points within
the transformation path that could cause gas grid defection.

There are different suitable methodological approaches for the coupling of different energy carriers
or actors: Some integrate the subsystems into an overall optimization model [53], while others apply
bi-level optimization approaches [26] or a multi-agent simulation (MAS), which we use. With regard
to the theory of business dynamics [57], this method enables the evaluation of the structure and
dynamics within the complex system of balancing or reinforcing cause–effect relationships between
the interdependent actors. In a MAS, there is no overall system goal. The system behavior is only
determined by the decisions of the individual autonomous and independent agents [58–60]. In this
way, it is possible to investigate the behavior of each single actor and their interaction.

3. Materials and Methods

3.1. Research Approach

We postulate an interdependence between building owners’ and the electricity and gas network
operators’ investments. Due to different triggers, gas-based heating systems are substituted, which
leads to a decrease in demand and thus an increase in gas grid charges. The increase in electric heat
pumps has a reducing effect on electricity grid charges, which further accelerates this development.
A self-reinforcing mechanism starts, which can lead to a complete defection of the gas network. We
address this issue with a multi-agent simulation (MAS), where the distributed autonomous and
independent acting residential building agents interact with the natural gas and electricity grid, each
of which is operated by a DNO agent (Figure 1).

The buildings, and respectively their owners (BOs), are represented by a mixed integer linear
program (MILP). The BOs’ objective is to minimize the life-cycle costs of building retrofit measures
focusing on space heating as well as drinking hot water generation and considering investment and
operational expenditures. The degrees of freedom are the size and type of the heating system or the
solar thermal system and the surface insulation thickness.

The gas and the electricity network operators act independently, represented by a rule-based
model: Renewal, reinforcement, and closure measures are chosen considering the investment budget,
which is determined by the strategy of each DNO and constrained by the regulatory environment; load
and pipe flows simulations are carried out to ensure a supply within technical limits; total yearly grid
costs are summed up in a cash flow calculation and passed on to customers in the form of energy-based
grid charges.
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objectives, and the corresponding degrees of freedom.

3.2. Grid and Building Data and Software Tools

We base our investigation on real data of a residential area in the southern German city of
Bamberg (Figure 2a). The 129 buildings are supplied via a 2987 meter-long low voltage grid with an
average age of 29.3 years, and a 2432 meter-long low-pressure grid with an average age of 29.5 years
(Figure 2c). Both grids are connected to the upstream medium voltage, i.e., the pressure grid. The
corresponding connection points are the medium to low voltage (MV/LV) transformer and the medium
to low (MP/LP) pressure regulator station, which are modeled by a feeder. The buildings are assigned
to reference buildings (according to the institute of housing and environment (IWU) in the TABULA
project (typology approach for building stock energy assessment)) based on their energy consumption,
floor space, and type [61,62]. The average reference area of the buildings is 137 m2 and the average
specific heating demand is 208 kWh/(m2

·a), with 67% gas-bound, 20% electric and 13% oil-bound
heating systems (Figure 2b). The heating circuit temperatures and building equipment are mapped to
the buildings based on their renovation status and their initial heating system based on Open Street
Maps [63] and census data (spatial resolution: 100 × 100 m) [64].

The area is supplied by the city’s DNO, which is responsible for the electricity as well as the gas
supply. The electricity DNO has a revenue cap of approx. 20 M€ and the gas DNO has a revenue
cap of approx. 10 M€. Table 2 shows the percentage distribution of the cost components of the
revenue caps. Grid data were provided by the DNO: Line and asset data are from the geo-information
system and the internal asset database; georeferenced metering information (energy consumption) of
individual grid users is from the energy data management system; and the cost components of each
revenue cap are from the cost allocation sheet. All data were recorded in 2018 for the financial year
2017. The software-based models were created on a Python basis, using pandapower [65] for the load
flow calculations in the low voltage grid, Mesa [66] for the multi-agent simulation, NetWorkX [67]
for the graph analysis, and Pyomo [68,69] together with the commercial solvers CLPEX [70] and
Gurobi [71] for the optimization. For the pressure loss calculations, we have used the commercial
software STANET [72].
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3.3. Building Retrofit Optimization Model

The objective of the model is to minimize total expenditure cB
j (Equation (1)). This includes the

capital expenditures for a change of the heating system cBES
j , the improvement of the building envelope

cBE
j , the operational expenditures for maintenance cM

j , and energy procurement cEN
j . The expenditures

are calculated for the expected technical lifetime of the heating system T based on annual time steps t
for each building j of the area J . For a list of the acronyms used, see Table A2 in Appendix B.1.

mincB
j = cBE

j + cBES
j + cEN

j + cM
j (1)

For this purpose, the optimizer can choose the surface insulation thickness d out of the available
thicknessesD, represented by the decision variable bBE

d,j and the heating system k out of the available

systemsK , represented by bBES
k,j . A solar thermal plant s out of the available systems S can be added,

represented by bSTE
s,j .

We model the building surface in a single-zone model, calculate the design-relevant heat load
SBE
d,j based on DIN EN 12831 (German and European harmonized standard) [73], evaluate insulation

measures following [74], and choose parameters based on [37,75–81]; see Supplements A.1, A.2, and A.4.
The investment expenditures for the building envelope (BE) cBE

j depend on the insulation thickness of

the building surface area AE
j and the equivalent insulation thickness DD (Equation (2)). The optimizer

decides whether to retrofit the building surface and can choose thicknesses between 0 and 30 cm. The
cost parameters CBEvar

j and CBEfix
j are calculated individually for every building based on the area

ratios of the individual surface parts p and costs [75]: roof, facade, windows, floor, and door.

cBE
j =

∑
d∈D

AE
j ·

((
CBEvar
j ·DD

d

)
+ CBEfix

j

)
· bBE

d,j ;

with AE
j =

∑
p∈Pj

AEP
j,p; CBEfix

j =
∑
p∈P

CBEfix
j,p ·

AEP
j,p

AE
j

; CBEvar
j =

∑
p∈P

CBEvar
j,p ·

AEP
j,p

AE
j

 (2)
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The investment expenditures cBES
j for the building energy system (BES) are dependent on the

building heat load SBE
d,j , which includes transmission and ventilation losses. SBE

d,j is a function of

the building insulation thickness DD as well as the initial building and usage properties. CBESvar
k

represents the variable, CBESfix
k, j is the fixed parts of the expenditures, and CSTEvar

s as well as CSTEfix
s,j

are the expenditures of the solar thermal plant (STE) SSTE
s,j (Equation (3)). The solar thermal plant is

modeled based on [62,82,83] and covers a part of the demand for drinking hot water SDHW
j , dependent

on the choice of the heating system and the type of the solar thermal plant; see Supplement A.3. All
cost components are calculated individually for each building in a preprocessing procedure based on
the initial building equipment and the possible building equipment options (see Supplement A.5).

cBES
j =

∑
k∈K


∑
d∈D

(
SBE
d,j · b

BE
d,j

)
·CBESvar

k

+ CBESfix
k, j

 · bBES
k, j

+
∑
s∈S

((
SSTE
s,j ·C

STEvar
s

)
+ CSTEfix

s,j

)
· bSTE

s,j

(3)

The expenditures for energy procurement cEN
j are a function of the yearly energy demand

(Equation (4)). They are calculated based on the heat load SBE
d,j and the domestic hot water demand

SDHW
j , which is reduced by the solar thermal plant SSTE

s,j and SS
j . SS

j represents parts of the heat load
that are not affected by the renovation measures in our model: heat distribution losses, auxiliary
energy, radiation losses, and internal wins. The final energy demand is determined in consideration of
the yearly usage hours TN

j and the plant expenditure figure of the heating system EBES
k . The energy

price CEC
c,t=tInvest is calculated based on the year of investment t = tInvest and discounted with the

present-value factor PF. We consider the energy procurement price CProc
c,t , tax CTax

c,t , and grid charges
cGC

c,t=tInvest . The charges represent the dual variable, making the building owner investment decision
interrelated to the one of the DNOs for grid-bound systems.

cEN
j =

∑
k∈K

((∑
d∈D

(
SBE
d,j · b

BE
d,j

)
+ SS

j

)
· bBES

k, j +
∑
s∈S

(
SDHW
j −

(
SSTE
s,j · b

STE
s,j

))
· bBES

k,j

)
· TN

j

·EBES
k ·

∑
c∈C

(
BEC

c,k ·C
EC
c,t=tInvest · PF

)
with CEC

c,t=tInvest =

 CProc
c,t=tInvest + CTax

c,t=tInvest + cGC
c,t=tInvest , f or c = electricity∨ c = gas

CProc
c,t=tInvest + CTax

c,t=tInvest , f or c = pellet∨ c = oil

(4)

The yearly expenditures for maintenance cM
j are influenced by the heating system and solar

thermal plant type and size, modeled via a fixed yearly rate MBES
k . It dependent on the investment

expenditure of the heating system [76] and is discounted via the present value factor PF (Equation (5)).

cM
j =

∑
k∈K


∑
d∈D

(
SBE
d,j · b

BE
d,j

)
·CBESvar

k

+ CBESfix
k,j

 · bBES
k,j ·M

BES
k · PF

+
∑
s∈S

((
SSTE
s,j ·C

STEvar
s

)
+ CSTEfix

s,j

)
·MSTE

s · bSTE
s,j · PF

(5)

To linearize the nonlinear mixed integer program, we use an approach according to [84]. The
decision variables are constrained so that one renovation measure of the heating system has to be
performed. The construction of a solar thermal plant and the renovation of the building envelope are
possible options. For the constraints used, see formulas A1–A7 in Appendix B.2.
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3.4. Distribution Network Operator Model

Within the multi-agent simulation the gas as well as the electricity DNO agent perform several
steps (Figure 3).
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Figure 3. Simplified flow chart describing the action of the gas and power DNO (input variables in
rounded blue boxes, process steps in square box, method in bold red, and output in black letters).

First, the DNO reacts to the building owners’ decision by planning the grid closure, reactivation,
construction, and reinforcement measures necessary for grid operation within technical boundaries. In
the next step, the investment budget for renewal measures will be determined based on a cash flow
calculation, considering its strategy and costs structure and the energy supplied, as well as the grid
length and age. Individual measures are chosen with regard to an age-based renewal strategy [85]. In
the last step, the revenue cap and resulting grid charges are determined (Figure 3). Load flow [65] or
pressure loss calculations [72] are carried out to check technical limit values, whereby voltage drop
and load are checked for electricity grid, and pressure and flow velocity for the gas grid.

The revenue cap is split into CAPEX and OPEX and passed on to the grid users in form of grid
charges cGC

c,t (Equation (6)). These charges depend on the energy supplied for heating applications

in the gas grid eHeating
c=Gas,t or electricity grid eHeating

c=electricity,t and other demands EAnyOther
c,t . Both the energy

demand and the grid charges are the dual variables of the model [29]. For a list of the acronyms used
in the DNO model, see Table A3 in Appendix C.1.

∀tεT : αCAPEX
c,t + αOPEX

c,t − cGC
c,t ·

(
eHeating

c,t + EAnyOther
c,t

)
= 0;

with αCAPEX
c,t = αEC

c,t + αBC
c,t + αTax

c,t + α
Depr
c,t ;αOPEX

c,t = αOC
c,t + αLC

c,t + α
UpGC
c,t + αCone

c,t

(6)

We show the calculation systematics of the individual cost components of CAPEX based on
electricity lines (c = electricity). The approach can be transferred analogously to other grid assets of
electricity and gas networks. For all lines in operation L`, the return on equity (Equation (7)), the
interests on borrowed capital (Equation (8)), and the trade tax (Equation (9)) are calculated based on
the individual rest book value (factor) RBVF`,t, and the historical acquisition costs CI

`, as well as the
equity QEC

` or debt ratio QBC
` , the corresponding interest rates REC

` or RBC
` , or the trade tax rate RTax.

For lines in operation within the technical lifetime TTL, depreciations are calculated based on the initial
line age Tinit

` and considered via CDepr
`,t (Equation (10)). If a line is renewed or shut down before the

end of its lifetime, the resulting special depreciation is excluded from the revenue cap [47].

αEC
t = REC

` ·Q
EC
` ·

∑
`εL

L` ·CI
` ·RBVF`,t (7)

αBC
t = RBC

` ·Q
BC
` ·

∑
`εL

L` ·CI
` ·RBVF`,t (8)
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αTax
t = RTax

·REC
` ·Q

EC
` ·

∑
`εL

L` ·CI
` ·RBVF`,t (9)

α
Depr
t =

∑
`εL

CDepr
`,t ; with CDepr

`,t (t) =


L` ·CI

` ·
1

TTL
`

, f or t + Tinit
` < TTL

`

0, f or t + Tinit
` ≥ TTL

`

(10)

For the determination of OPEX, we proceed as follows (c = electricity): The operating costs are
modeled linearly dependent on the grid length based on CLRC (Equation (11)). Loss costs dependent
on the loss factor FLoss (Equation (12)), upstream grid costs (Equation (13)), and concession fees
(Equation (14)) are modeled based on the corresponding specific costs CLC, CUpGC

`
, and CConc, directly

proportional to the dual variable eHeating
t and thus to the energy supplied.

αOC
t = CLRC

·

∑
`εL

L` (11)

αLC
t =

(
CLC
· FLoss

)
·

(
eHeating
t + EAnyOther

t

)
(12)

α
UpGC
t = CUpGC

·

(
eHeating
t + EAnyOther

t

)
(13)

αConc
t = CConc

·

(
eHeating
t + EAnyOther

t

)
(14)

The DNO’s degree of freedom lies in the determination of grid measures. Thereby, we distinguish
between (a) measures necessary for grid operation and (b) measures to maintain the grid value:

(a) The grid length and energy supplied are predetermined by the building owners’ decisions in each
year. As the DNO has to guarantee a non-discriminatory supply to all customers [46], measures
have to be applied to fulfill the supply task within technical limits.

(b) The DNO has to ensure a reliable and cost efficient supply [46]: We choose an age-related renewal
strategy for the low voltage and the low pressure grid.

Once the measures necessary for network operation (a) have been carried out, all lines or pipes
are sorted by age and renewed from old to young (b) until the investment budget is reached. The
budget depends on the DNO strategy; see Figure A1 in Appendix C.2. The basic idea of all strategies is
to keep the respective target on a constant level by reducing or increasing investments according to (b).
Measures according to (a) reduce the investment budget, which, in extreme cases, leads to a change
in the respective target figure (RC, GC, grid age). To avoid exotic age distributions, the asset age is
limited to half and double the individual technical lifetime TTL [22].

3.5. Multi-Agent Simulation

All buildings and respectively the owners and all assets of the gas and electricity grid are modeled
as own agents. Technical and economic parameters are propagated to the DNO via a predefined
hierarchy. Vice versa measures are delegated to the respective asset (see Supplements B.1 and B.2).
The agent model determines how the individual grid agents are instantiated and initialized in a given
electricity or gas distribution network and regulates the activation sequence of the agents as well as
the communication between them. The agency is the total of all agents and includes all created grid
agent instances, building agents, and the scheduler modeled with the Python package MESA [66].
Our agency implements the MESA model class and imports the MESA scheduler class. New grid
agent objects that implement the MESA agent class are created via the agency class and added to
the scheduler.

Table 3 shows the implemented agent types according to [86–90]. Each agent has a different level
of complexity, which is reflected in their element-specific tasks in consideration of the individual design
goals [60,91]. All agents, even the nodes, lines, and pipes of the grid are reactive. They are triggered
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by stimuli (input) from their environment and generate actions (output) [60]. For example, if a gas
pipe does not receive a gas demand from its neighboring node (input), it triggers an event (output),
indicating that it can be closed. The main benefit of this modeling approach is the decomposition and
modularization of a complex and dynamic system or problem, in our context the interaction between
grid assets and buildings [86]. Furthermore, it reduces the effort needed to expand or modify parts of
the simulation system, e.g., change the individual agent specific design goals.

Table 3. Agent types in the multi-agent simulation. MV: medium voltage; MP: medium pressure.

Energy Carrier Agent Type Instances in Case-Study Intelligence of Agents
Corresponding to [58,60]

Electricity

Network operator 1 yes

Node 121 no

Line 250 no

Transformer 1 no

MV-feed-in 1 no

Gas

Network operator 1 yes

Node 99 yes

Pipe 195 yes

Pressure regulator 1 no

MP-feed-in 1 no

Electricity/Gas Building owner 129 yes

We have classified the MAS according to [92] and interpret the properties as follows (Table 4):

• “Accessibility“ describes the ability of an agent to access all other agents of the network;
• “Deterministic“ describes if the cause–effect relationship of actions of agents is known or not;
• “Episodic” describes whether the simulation time steps are interrelated;
• “Dynamic” describes the possibility of environmental changes beyond the control of an agent;
• “Discrete” describes if there is a predetermined number of perceptions and actions.

Table 4. Classification of agent and MAS considering [92].

Accessibility Deterministic Episodic Dynamic Discrete

Yes DNO Each Agent Whole MAS Whole MAS Whole MAS

No All others Whole MAS No Agent No Agent No Agent

The gas or electricity network is modeled as a graph in an undirected tree, in which the agents are
arranged hierarchically [93]. This corresponds to a radial grid structure. All agents are executed once
during a time step starting at the lowest element—the “Building owner”—and ending at the highest
element—the "Network operator". Thus, the information is propagated from the bottom up, meaning
that the network operator follows the investment decision of the building owner; see Figure 4.
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Figure 4. Simplified scheme of the scheduling procedure of the multi-agent simulation for the electricity
or the gas DNO (black: actors; red: communication between actors (information); blue: action of the
actors; green: simulation time steps).

The scheduling method follows a breadth first search (BFS) algorithm in the reverse direction [92].
Conventionally, the BFS traverses a graph from the top to the bottom layer after activating all nodes of a
layer, where the algorithm expands in width until it terminates when all nodes have been visited. As we
turn this mechanism around, our algorithm terminates after activating the DNO (see Supplement B.1).

3.6. Validation of the Building Model

We validated our results for different building types—a single family (SFH), a terraced (TH), and
a multi-family house (MFH), and age classes from approx. 1900–2009 (A–J) [61,62] within the literature.
For the energy calculation we compared with [62] and for the cost calculation with [94]. Figure 5a
shows the results of the yearly final energy demand normalized by the reference floor area (gas-based
solution): For buildings of the age classes A–H, we underestimated the energy demand by 5% on
average; for classes I–J, we overestimated by 6% on average. The differences are induced by internal and
drinking hot water generation losses, which we modeled according to [95]. We assume that the energy
calculation model and its parameterization is valid for the present study, as the deviations are below
the level caused by individual user behavior in terms of room temperature and ventilation [96,97].
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Figure 5. Comparison of the results of our model with the literature for building types: (a) for the
yearly specific final energy demand with Tabula-Webtool [62]; (b) for the investment expenditures and
yearly energy and maintenance expenditures with [94].
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Figure 5b compares the expenditures of the three buildings types for a gas- and an electricity-bound
solution (SFH-E, TH-E, MFH-E), which represent the majority of the building stock of case studies
4.2, 4.3, and 4.4. While the end energy demand of the six buildings after retrofitting is well matched
(mean deviation: 5.8%), the cost calculation shows deviations between −5 and 40%, which is caused by
the parameterization of the cost functions. We use parameters considering [75], where the authors
analyzed costs of building and heating system retrofit measures for 1117 buildings in Germany and
showed that there is a great variance in practice: The standard errors for thermal insulation systems
depicts 6.9% for CBEfix

j and 15% for CBEvar
j in full costs (facade). Another reason for the deviations

results from different assumptions regarding the reference floor and surface area of type buildings
and the consideration of the initial building equipment options, rather the costs of retrofitting (e.g.,
gas grid connection, oil tank or heating circuit temperature). We modeled these equipment options
by adjusting the parameters of the cost functions of the individual measures based on the individual
initial building equipment options in preprocessing.

3.7. Conception of the Case Studies

3.7.1. Case Study 1: Sensitivities of Building Retrofit Decisions

In this case study, we faced the question of how electricity and natural gas grid charges influence
the choice of building and heating retrofitting measures. For that reason, we analyzed the retrofit
decisions of 609 different building and heating system configurations for a variation of electricity and
gas prices. The results can be used to classify and compare our findings of the case studies (4.2, 4.3,
and 4.4) with the literature.

We varied energy prices by +23% and −12% for electricity and +25% and +50% for gas from the
initial point and combined them in nine price scenarios. The price changes correspond to a change of
grid charges in the electricity sector of −50% and +100% and in the gas sector of +100% and +200%.
These price change levels were used as the relationship between demand and grid costs is non-linear
and the expected development differs between gas and electricity. The investigation was based on the
German average prices for electricity—30.85 ct/kWh—and gas—6.34 ct/kWh—for a medium-sized
residential building (energy consumption electricity: 3500 kWh/a, gas: 5556–55,554 kWh/a) [79].

We focused on residential buildings (SFH, TH, MFH) and summarized the building age classes:
A–C are buildings constructed before the foundation of the Federal Republic of Germany in 1948;
D–F are from before the first thermal insulation ordinance (1949–1978); G–H are according to Thermal
Insulation Ordinances 1 and 2 (1979–1994); and I–J are according to Thermal Insulation Ordinance 3
and the First Energy Saving Ordinance (1995–2009) [61]. We considered the following heating systems:
Electrical air-water (AWHP) and ground-water heat pump (GWHP), electric direct heating (EDH),
gas (GCB) and oil (OCB) condensing boiler, pellet burner (PB) and solar thermal plants (STE), with
the different heating system temperatures 90/70, 70/50, 55/45, and 35/28 (◦C/◦C), corresponding to the
building equipment option. The whole building population (n = 609) was created by combining the
properties building type (n = 3), age (n = 10), heating system (n = 6), and heating circuit temperature
(n = 4), where technically impossible combinations were discarded.

3.7.2. Case Study 2: Analysis of Possible Triggers for a Decline in Gas Demand

In this case study, we answer the question of how building retrofit decisions and thus the natural
gas and electricity grid costs are influenced by technological and regulatory triggers and are shaped by
the individual initial building insulation status and heating type. Therefore, we distinguish eight types
of triggers:

• Taxation and levy systems: There is a wide spread of different taxation and levies and systems.
We focused on CO2 pricing, as the German government has passed a law in 2019 that sets a CO2

price of 25 €/t in 2021, rising to 65 €/t by 2026 [98].
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• Grid charge models: In Germany, DNOs can reduce the electricity grid charges for interruptible
grid users down to 20% of their regular value [99] (25% for the area under investigation).

• Regulatory energy efficiency constraints: In Germany, regulatory constraints for new
constructions and retrofittings are listed in the energy saving regulation [100], which will
be tightened in the future [101]. We set the initial final energy demand and CO2 emissions as an
upper bound in all simulations. Additionally, two scenarios were modeled, where we tightened
the limit and set the primary target equal to the useful energy demand, calculated based on [100]:

◦ In simulation 3, 100% of the buildings have to perform a surface insulation measure and
change their heating system to obtain the target.

◦ For simulations 8–10, we oblige only 66% of buildings to retrofit their envelope and heating
system. 34% can freely choose the kind of measure to reach the efficiency target of [100].
This represents a surface renovation ratio of approx. 2%, corresponding to a technical
lifetime of the surface of 50 years often used in literature [32].

• State market incentive and subsidy programs: We consider the situation in Germany: For
building envelope renovations, there is a state subsidy program, which on average subsidizes
about 30% of investment expenditures [102]. For heat pumps, there is a market incentive program
with an average subsidy rate of 40% [103].

• Technological development: The efficiency of heat pumps is highly dependent on the coefficient
of performance (COP), which is predicted to increase by about 25% in the next decade [104].

• Decentralized energy generation: In recent years, heat pumps have increasingly been combined
with photovoltaic plants and battery storage systems. We do not examine PV-battery systems in
our analysis, as we focus on the effects on gas grids.

• Initial building insulation status, heating type and date of investment: The initial building age
class and heating system largely determines the date of investment and the choice of the renovation
measure. As the age and the types of heating systems and buildings are heavily weighted in our
dataset, we analyze scenarios with a variation (100 seeds) of the date of investment (I), the initial
building age class (B), and the initial heating system (H). For that reason, we reconfigure the initial
gas and electricity grid when varying the initial heating systems.

First, we analyze the influence of each of these triggers in simulations 1–6 (see Table 5, marked
in grey). Second, we combine triggers, generating two sensitive but opposing scenarios with a high
probability of occurrence for Germany: Simulation 7 induces a high proportion of gas-based solutions
in the future system, while simulation 8 induces increased substitution of gas-based heating by other
systems. Third, we evaluate the influence of a variation of initial building age classes (B) and heating
system types (H) of the building stock in simulations 9–11 (marked in blue). These results are compared
with simulation 8, since the same combination of triggers is in use. We vary the date of investment
(I) for each building in 100 seeds in all simulations. Every building performs one retrofit during the
planning horizon from 2020 to 2050, which corresponds to a lifetime of the heating systems of about
31 years; see Supplements C.1 and C.2 for the parameterization.

In the case studies in 4.3. and 4.4, we set the triggers corresponding to “Combination 2” (simulation:
8) because of:

• Objective of the analysis: We focused on the evaluation of building owners’ and electricity and
gas DNO’s strategies in transformation paths with a decreasing gas demand.

• Probability of occurrence: In simulation 8, we have chosen each trigger corresponding to the
situation in Germany, as there will be CO2 pricing in the future. There are subsidization programs,
reduced electrical grid charges, and energy efficiency constraints.
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Table 5. Scenarios under investigation (in all simulations: DNO strategy: “stable grid value”; seeds per simulation: 100; grid charges of each year are communicated
from DNO to buildings (cGC

c,t = cGC
c,t ); HP: heat pump).

Simulation
Number

Simulation Name CO2 Pricing

Energy Efficiency
Constraint State Subsidization Improved Heat

Pump Efficiency
(β + 25%)

Reduced el. Grid
Charges (25% of
Regular Value)

Parameter Variation (100 Seeds)

Surface Heating Surface (30%) El. Heat
Pumps (40%)

Date of
Investment (I)

Building
Age-Class (B)

Heating
Types (H)

1 Base-Case 0 €/t no no 0% 0% 0% no yes no no

2 CO2-Pricing 65 €/t no no 0% 0% 0% no yes no no

3 Efficiency-Constraint 0 €/t 100% yes 0% 0% 0% no yes no no

4 Promotion 0 €/t no no yes yes 0% no yes no no

5 HP-Efficiency 0 €/t no no 0% 0% yes no yes no no

6 Reduced-GC 0 €/t no no 0% 0% 0% yes yes no no

7 Combination 1 65 €/t no no 0% 0% 0% yes yes no no

8 Combination 2 65 €/t 66% yes yes yes 0% yes yes no no

9 Combination 2 (I, B) 65 €/t 66% yes yes yes 0% yes yes yes no

10 Combination 2 (I, B, H) 65 €/t 66% yes yes yes 0% yes yes yes yes

11 Base-Case (I, B, H) 0 €/t no no 0% 0% 0% no yes yes yes
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3.7.3. Case Study 3: Interdependencies between the DNO’s Grid Charge Setting and Building Retrofit
Decisions in Face of Decreasing Gas Demand

In this analysis, we address the question of how interdependencies between the DNO’s investment
decisions and building owners’ retrofit decisions are shaped in scenarios with a decreasing gas demand.
For that reason, we interrupt the communication of grid charges from DNO to the building owners
during the multi-agent simulation, so that building owners decide based on the initial grid charges
cGC

c,t = cGC
c,t=0. The results are compared with those of the simulation in which the building owners

decide based on the grid charges of the year of building renovation cGC
c,t = cGC

c,t=tInvest ; see Table 6.

Table 6. Scenarios under investigation (in all simulations: DNO strategy: “stable grid value”; seeds
per simulation: 100; triggers are set corresponding to “Combination 2”; every building performs one
retrofit during the planning horizon).

Simulation
Number

Simulation Name
Grid Charges in Building Model

Parameter Variation
Natural Gas Electricity

8 Combination 2 (I) cGC
c,t = cGC

c,t Date of investment (I)
8c Combination 2 (I) (constant GC) cGC

c,t = cGC
c,t=0

10 Combination 2 (I, B, H) cGC
c,t = cGC

c,t Date of investment (I); Building
age class (B); Heating type (H)10c Combination 2 (I, B, H)

(constant GC)
cGC

c,t = cGC
c,t=0

We focus on the situation in the gas sector, where we consider the two dual variables, analyzing
their development during the planning horizon: The grid charges as a measurement of the sensitivity
of grid costs to the given supply task during the transformation path, and the yearly gas demand as
measurement for the sensitivity of building retrofit decisions to the costs of grid operation. Measuring
the feedback effects between the building owners as well as the electricity and gas DNO allows us to
answer the question whether grid costs are a trigger element that could accelerate the decline in gas
demand and influence the technology transformation path of heating systems.

3.7.4. Case Study 4: The Influence of DNO Strategy Patterns on Grid Economy in the Face of
Decreasing Gas Demand

In this study, we answer the question of how a change in the investment strategy of the gas DNO
influences the following: The choice of building retrofit measures (measured by gas demand), the gas
grid costs (measured by grid charges), and the profitability of the gas grid (measured by the revenue
cap, grid length and age) in scenarios with a decrease in gas demand. For that reason, we compare
three main strategies, whereby the DNO tries to keep grid charges (SGC), grid value (SGV), or the
revenue cap (SRC) on a stable level during the planning horizon (see Table 1 and Appendix C.2).

We focus on the situation in the gas sector and set the triggers according to “Combination 2”. In
simulations 8gc, 8gv, and 8rc the date of investment (I) of the buildings are varied and compared to
simulations 10gc, 10gv, and 10rc, where the initial building age types and heating system types (I, B, H)
are varied (Table 7). The results can be used to determine the effects of differently shaped regulatory
systems on the DNO business model and the efficiency and quality of the gas supply.
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Table 7. Scenarios under investigation (in all simulations: Seeds per simulation: 100; grid charges of
each year are communicated from gas and electricity DNO to buildings (cGC

c,t = cGC
c,t ); triggers are set

corresponding to “Combination 2”; every building performs one retrofit during the planning horizon).

# Simulation Name Parameter Variation Gas DNO Strategy Electricity DNO
Strategy

8gc Combination 2 (I) (SGC)

Date of investment (I)

Stable revenue cap (SRC)

Stable grid value
(SGV)

8gv Combination 2 (I) (SGV) Stable grid value (SGV)

8rc Combination 2 (I) (SRC) Stable grid charges (SGC)

10gc Combination 2 (I, B, H) (SGC) Date of investment (I);
Building age class (B);

Heating type (H)

Stable revenue cap (SRC)

10gv Combination 2 (I, B, H) (SGV) Stable grid value (SGV)

10rc Combination 2 (I, B, H) (SRC) Stable grid charges (SGC)

#: Simulation number.

3.8. Limits, Transferability, and Representativity of the Analysis

In order to guarantee transferability of the results, we used IWU-type buildings [61,62] in all
case studies. We varied the date of investment (I), the initial building age classes (B), and the heating
system (I) probabilistically in 100 seeds, which constitutes a representative sample size for the analysis
in case studies 4.2, 4.3, and 4.4. For that reason, we limited the solution space for the building
stock: The date of investment between 2020 and 2050 (n = 31); the building age classes between
1958 and 2015 (classes E–K, n = 7), and the possible initial heating systems to EDH, GCB, OCB, PB
and AWHP (n = 5), each combined with the corresponding technical building equipment. Taking
into account the number of buildings in the area (n = 129), this resulted in a number of possible
combinations (population size) of 3999 for simulations (I), 27,993 for simulations (I, B) and 139,965 for
simulations (I, B, H). For simulations (I), we estimated a representative sample size of about 94 seeds
(margin of error = 0.1, standard deviation = 0.5, confidence level = 95%, population size = 3999).

The assumptions for the costs within the building investment model represent a medium case
compared to the literature [75]. For the following reasons, the DNO model for gas and electricity
underestimates the cost base compared to reality:

• The grid charges for upstream grid levels (αUpGCG) are assumed to be constant during the planning
horizon in both the electricity and gas sectors. In reality, these charges would also change with
the demand.

• The operational costs for the electricity and gas grid are formulated as linearly dependent on the
grid length and independent on grid age. As they include components such as personnel costs
and rents for buildings, they are in reality stepped fixed costs related to the grid length, which
follow a change of the grid length delayed [22].

• Costs for line closure measures of house connections in the gas grid are currently valued at 0 € per
measure, as they can currently be allocated to the customer.

4. Results and Discussion

4.1. Case Study 1: Sensitivities of Building Retrofit Decisions

The results of the analysis of building retrofit decisions for the 609 type buildings in ten price
scenarios are expressed as shares of the total sample (Figure 6b) or mean values of a part of the sample
(Figure 6a). Figure 6a shows the specific final energy demand for single and multi-family buildings:
When electricity and gas energy procurement expenses are high, insulation measures are increasingly
chosen (20% of the buildings for G:9.48/E:38.07; 8.3% for G:6.34/E:27.24), primarily for older buildings
(71% are applied in age classes A–C for G:9.48/E:38.07). Since insulation measures are expensive
compared to other energy efficiency measures, they are chosen by only a small proportion of buildings
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when energy prices are high. Therefore, in reality they are mostly applied at the end of the technical
life of the respective part of the building envelope [32].
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Figure 6. Building retrofit optimization results for a planning horizon of 31 years (technical lifetime)
for nine gas and electricity price scenarios (G: ct/kWh/E: ct/kWh): (a) the mean specific end energy
demand (kWh/(a·m2)) for building age classes (A–J) and two selected building types single (SFH) and
multi-family houses (MFH); (b) the share of buildings using a certain energy carrier (gas, electricity,
pellets, or oil) and a solar thermal plant (STE) (the price scenario (G:6.34/E30.85) on the vertical axis
represents the initial distribution.).

Condensing boilers are increasingly being chosen in buildings of age classes A–C and D–F, where
decisions are sensitive to energy price variations (Figure 6b): With a rising gas price they are substituted
by oil-based systems or supplemented with solar thermal plants. Current regulations inhibit this trend
in Germany [105]. Due to their high initial energy efficiency, heat pumps are becoming more attractive
for G–H and I–J class buildings, often supported with solar thermal energy when electricity prices are
high. The attractiveness of heat pumps depends strongly on the parameterization of the annual COP:
We use the specifications of the Federal Office for Export Control for the market incentive program in
Germany [106] and adapt them for different heating circuit temperatures [107]. Lowering the heating
circuit temperature increases the efficiency of heat pumps, but is associated with costs, so it is not often
chosen (e.g., 15% of the buildings for G:6.34/E:27.24).

The results imply that fluctuations in energy prices influence the investment decision for heating
systems and surface renovations depending on the building age: With rising electricity and gas prices,
insulation measures and solar thermal systems are increasingly chosen. Gas burners are more sensitive
to energy price fluctuations than electric heat pumps because of their lower efficiency and their low
investment compared to operational expenses. The attractiveness of electrical heat pumps increases
with a rising building energy efficiency and annual COP. Conclusions can be drawn for the building
stock of case studies 4.2, 4.3, and 4.4: Gas and oil condensing boilers in combination with solar thermal
systems are increasingly being installed (77% of the buildings belong to building age class D–F, 17%
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to G–H, and 6% are younger, with 80% being terraced houses, 15% single family houses, and 5%
multi-family houses).

4.2. Case Study 2: Analysis of Possible Triggers for a Decline in Gas Demand

We split the analysis of the eight trigger scenarios and the building type variations into three
subsections: The building retrofit decision, the resulting energy demand, and the grid costs.

4.2.1. Investment Decisions of Building Owners

The results regarding the insulation measures (Figure 7b) support the findings from 4.1: The
optimizer does not select an insulation measure if the choice of the measure type is not constrained and
the energy saving constraints could only be achieved by a switch of the heating system (simulations 1,
2, 4–7). In this case, heat pumps come into play and substitute surface insulation measures (compare
simulations 3 and 8). To generate scenarios with a real surface renovation rate, it must be constrained
(simulations 3, 8–11).
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Figure 7. (a) Mean value of the shares of heating system types for each simulation in 2050 (129 buildings
and 100 seeds) compared to the initial value for a variation of the date of investment (I) and additionally
the building and heating types (I, B, H) (in addition: Solar thermal plants); (b) specific yearly heating
demand of 129 buildings for each simulation compared (boxes: median and 25%/75% percentiles of the
resulting distribution; whiskers: +/− 1.5 interquartile distance (IQD), grey line: initial values).

Figure 7a shows that inefficient electrical direct heating is mostly substituted by gas condensing
boilers (simulations 1–7). Due to the high initial connection rate to the gas grid (approx. 85%), the
grid charges and with that the operational expenditures of gas-based heating are comparatively low.
As gas grid connections are available in many buildings, the investment expenditures are also low
for gas burners. With a drop of initially installed gas-based solutions, their usage is significantly
reduced in target systems; compare simulation 8 and 10. A reduction of the heating circuit temperature,
which is necessary for most buildings in the investigated area when switching to an electrical heat
pump, is associated with higher costs compared to the solutions based on burners. The results for
“Combination 2” hardly differ with a variation of building age class (simulations 8 and 9).

4.2.2. Resulting Gas and Electricity Demand

Figure 8 illustrates the transformation path of the natural gas demand for the projected years:
8a for different triggers (1–6) and their combinations (7–8), 8b for the variation of building age and
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heating types. In this area, gas is only used for heating applications; therefore a substitution of gas
burners directly induces an increase (1, 2, 4–7) or decrease (8) in demand. Although in simulation 3 in
2050 approx. 90% of the heating systems are gas-based, we see a drop of about 55% in demand, which
is induced only by surface insulation measures and solar thermal plants (Figure 7b). A comparison of
simulations 8–10 shows that the initial building age and heating system configuration have a significant
influence on the future supply task. A lower initial house connection rate in the gas grid increases the
risk of a complete gas grid defection. While in simulation 8, the initial gas grid connection rate is 85%,
in simulation 10, it depicts on average 20%. This causes higher initial grid charges and an increase of
the specific investment expenditures for gas condensing boilers, which reduces their attractiveness in
simulation 10. This effect can also be seen when comparing the “Base-Case” scenarios (simulation
1, 11). With a decreasing gas grid connection rate, the development of gas grid charges is therefore
significantly more sensitive to endogenous economic, regulatory, and technical triggers. When looking
at the electricity demand, another picture can be drawn, since the heating applications cover only a
part of the supply task. For that reason, the substitution of electric direct heating systems causes a
decrease of 35–60% from 2020 to 2050; see Figure A2 in Appendix D.1.
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4.2.3. Impact on the Gas and Electricity Grid Charges

As the gas demand rises, the grid charges fall (1, 2, 4–7). As the demand falls, the effect reverses
(3, 8), but is more pronounced (Figure 9a) due to the non-linear relationship between the number of
customers and network length [21,22]. The decrease of gas demand over time is slower than the one of
the line length, leading to an increase in grid charges: In simulation 8 the initial grid length drops by
about 20% from 2020 to 2050 and the demand drops by about 70% (median). In simulation 10 the line
length drops by about 52% and the demand drops by about 90%. In both cases an unproportioned long
grid has to be operated, leading to a rise in energy-related OPEX, where the length-related CAPEX
remains at a stable level in the DNO strategy “stable grid value”.
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(b) a variation of building age and heating systems (values bigger than 10 are set to the corresponding
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the resulting distribution; whiskers: +/− 1.5 IQD).

In the electricity sector, this effect would be even more pronounced, since the line length cannot be
reduced as the demand for heating applications decreases. However, the heating demand represents
only a part of the supply task in the electricity sector, so that the decline in demand is not as distinct
as it is for gas. As a result, the effect on electricity charges is less pronounced; see Figure A3 in
Appendix D.1.

With a lower house connection density, the increase of gas grid charges is more pronounced
(Figure 9b), while the trigger combination 2 induces a rise in the median of grid charges of about 227%
for the initial building age and heating system configuration until 2050 (8). The rise grows up to a
median of 500% when varying the building and heating system configuration (10). The lower the
house connection rate in the gas grid, the more sensitive the substitution of gas-bound heating systems
is to grid costs and thus to grid charges.

4.3. Case Study 3: Interdependencies between the DNO’s Grid Charge Setting and Building Retrofit Decisions
in Face of Decreasing Gas Demand

We compared simulations where the gas and electricity grid charges are set to their initial value
cGC

c,t = cGC
c,t=0 during the whole planning horizon with those in which they are set to the value of the

corresponding year cGC
c,t = cGC

c,t=t. Hence, building owners decide based on the year of renovation
tInvest. Figure 10 shows the gas and electricity demand for the initial building and heating system
configuration (I) and its variation (I, B, H) in projected years: There is a drop in electricity demand in
all scenarios (8, 8c, 10, 10c), which is more pronounced when building owners have to decide based
on cGC

c,t=0 (8c, 10c), compared to (8, 10), where they decide based on cGC
c,t=tInvest (Figure 10b). This is

counterintuitive, as the electricity grid charges increase over the planning horizon. However, in case
of cGC

c,t = cGC
c,t=0 building owners decide based on the initial gas grid charges, thus the total costs of

gas-based systems are relatively low, accelerating the substitution of electricity-based solutions by
gas-based ones (8c, 10c). This result indicates that gas grid charges are a trigger element even for the
electricity-based heating solutions.
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(a) natural gas and (b) electricity. (Dots: individual seeds; boxes: median and 25%/75% percentiles of
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Figure 10a shows that the gas demand decreases for the initial building and heating system
configuration (8, 8c), which is even more pronounced in case of cGC

c,t = cGC
c,tInvest (8). Simulations 10 and

10c represent the results for the variation of the initial building and heating system configuration: Gas
demand rises in the case of cGC

c,t = cGC
c,t=0 (10c) and decreases in the case of cGC

c,t = cGC
c,tInvest (10), since the

initial gas grid charges are relatively low and the total costs of gas-based solutions are more sensitive to
energy price fluctuations than electric heat pumps. This finally depicts the gas grid charges as a tipping
element, which triggers the decrease of gas demand during the planning horizon, finally leading to
gas grid defection in some seeds in simulation 10. Opposite effects occur in simulation 10c, where
gas-based solutions substitute oil- or electricity-based ones, leading to an increasing gas demand for
the majority of seeds.

The resulting grid charge development for gas (Figure 11a) and electricity (Figure 11b) underlines
the findings of Figure 10: Electricity grid charges rise in every simulation, which is even more
pronounced in the case of cGC

c,t = cGC
c,t=0 (Figure 11b). An increase in gas grid charges occurs in

simulations 8, 8c, and 10. A decrease can be seen for several seeds in simulation 10c, due to the increase
in gas demand in this scenario (Figure 11a).

The results show that gas grid charges are the dominant variable in the system: On the one
hand, the supply task in the gas sector reacts more sensitively to the investment decisions of building
owners than the supply task in the electricity sector. On the other hand, life-cycle costs of gas-based
heating systems react more sensitively to energy price fluctuations than systems based on electric heat
pumps. The development of the gas grid charges finally influences both the electricity and the natural
gas sector.
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4.4. Case Study 4: The Influence of DNO Strategy Patterns on Grid Economy in Face of Decreasing Gas Demand

In the comparison of the three DNO strategies, we focus on the situation in gas grids, vary the gas
DNO strategy, use the same strategy for the electricity DNO in all simulations and discuss the results
for the natural gas sector. The effects on the electricity demand, the corresponding grid charges and
the electricity DNO’s revenue cap are low; see the corresponding results in Appendix D.2 (electricity
demand in Figure A5; grid charges in Figure A6; revenue cap in Figure A7).

Figure 12 shows the decrease in gas demand for the initial building and heating system
configuration (I) in 12a and its variation (I, B, H) in 12b. The gas grid costs drop slower than
the corresponding demand, leading to an increase in grid charges (Figure 12c,d). Thereby, the rate
of change of grid charges depends on the DNO’s strategy and on the increase from the SGC via the
SGV to the SRC strategy. The difference in grid charges finally leads to more investment in gas-based
solutions for the SGC compared to the SRC strategy. We see this effect as the drop in gas demand is
more pronounced for simulation 8rc compared with 8gc (a difference of the median of approximately
5% in 2050 in Figure 12a,b). For a variation of initial building and heating configuration (10gc, 10gv,
10rc) this can lead to a complete defection of the gas grid (Figure 12b); whereby the probability of
occurrence for this scenario is higher in the long term when the DNO acts according to the SRC or SGV
compared to the SGC strategy.
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Figure 12. Relative gas demand with a comparison of different gas DNO strategies with (a) a variation
of the date of investment (I); (b) a variation of date of investment, building age type, and heating
system type (I, B, H). Relative gas grid charges with a comparison of different gas DNO strategies with
(c) a variation of the date of investment (I); (d) a variation of date of investment, building age type, and
heating system type (I, B, H) (values bigger than 20 are set to the corresponding median: (simulation
#/number of seeds bigger than boundary), (#16/8), (#10/12), (#17/15)). (Dots: individual seeds; boxes:
median and 25%/75% percentiles of the resulting distribution; whiskers: +/− 1.5 IQD).

When comparing the gas grid charges of the initial building and heating configuration (I) in
Figure 12c and its variation (I, B, H) in Figure 12d, it becomes clear that an interplay of an unfavorable
DNO strategy (SRC) and a low initial house connection density to the gas grid can lead to a sharp
increase in grid charges in 2050: We see a factor of 6.19 (median) in simulation 10rc, compared to 2.55
in simulation 8rc. In both cases, a change in strategy has a strong impact on network charges, which in
turn can save the DNO’s business model in the long run: For the SGC strategy, the median is 2.32 in
simulation 10gc and 1.51 in simulation 8gc (2050).

In the following, we discuss the consequences for the DNO’s business model based on Figure 13.
Induced by the declining customer number, demand and grid length, we see a drop in revenues in all
scenarios (Figure 13a), which is more pronounced for the SGC than for the SGV and SRC strategies.
The decline goes along with a shift in CAPEX and OPEX caused by an interplay of the gas DNO’s and
building owners’ decisions: The OPEX is a function of the energy supplied (Figure 12) and the grid
length (Figure 13b). It therefore depends mostly on the building owner’s investment decision. The
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CAPEX is a function of the grid length and age. It therefore depends mainly on the DNO’s investment
strategy and primarily determines the differences in revenue caps (Figure 13a). For CAPEX and OPEX
see Figure A8 in Appendix D.2.
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Figure 13. Relative values in projected years with a comparison of different gas DNO strategies for
(a) revenue cap of the gas DNO; (b) gas grid length; and (c) length-weighted average grid age of the
gas grid. (Dots: individual seeds; boxes: median and 25%/75% percentiles of the resulting distribution;
whiskers: +/− 1.5 IQD).

The change of grid length induced by line closure and new house connection measures is
determined by the building owners’ investment decision. The remaining degree of freedom of
the DNO decision is the determination of the renewal ratio, i.e., the choice of individual renewal
measures. Lowering this ratio, as in the SGC strategy, leads to an increase of (length-weighted) grid
age (Figure 13c). Increasing this ratio as in the SRC strategy induces the opposite effect: The DNO
tries to keep its cost base at the starting level, and revenue shortfalls due to the loss of customers are
compensated with an increase in the renewal ratio. As a result, the grid charges are relatively high
in the SRC strategy and customers are increasingly replacing their gas-fired heating systems. In this
way, more and more house connections and supply pipes are being shut down, which reduces the grid
length (Figure 13b). Furthermore, the SRC strategy increases the risk of stranded investments, as the
high revenue cap values are induced by CAPEX and thus the fixed assets. The relative OPEX of the
SRC strategy in 2050 (0.33) is lower than in the SGC strategy (0.53).

As the decrease of grid length over time is slower than the decrease of the gas demand, the
energy-related OPEX rises independently of the DNO strategy. This finally leads to a rise in grid
charges in all strategies (Figure 12). In the SGC strategy, it is possible to a certain extent to compensate
for the disproportionately rising costs in relation to the grid length by lowering the CAPEX, whereas
the SRC strategy in particular allows these costs to rise. The results prove the feedback of the DNO
strategy to the building owner’s decision:

• SRC: Due to the rise in grid charges, gas-bound systems are increasingly being substituted,
resulting in a risk of a self-reinforcing effect, which in turn leads to an increased decline in the
energy demand as well as network length. This could finally trigger the closure of the entire
gas network.

• SGC: The initial disadvantage concerning the lower cost base for the DNO resulting from a
disproportionate decline in the CAPEX becomes less pronounced during the planning horizon, as
the grid length and supplied energy and with that the OPEX are higher compared to the SRC
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strategy. In the long run, this strategy can help secure the business model and reduce the risk of a
complete shutdown, as a comparison of network lengths shows.

5. Conclusions

Our simulation provides two main innovations in modeling: We integrate a cash flow calculation
and a grid planning model into one DNO model. This enables us to assess the implications of different
DNO strategic patterns on grid measures and grid charges.

The results of the case studies with the joint MAS simulation give some new insights into
the interrelated system between building owners’ and the DNO’s investment decisions: Some
configurations of endogenous economic, regulatory, and technical triggers induces the substitution of
gas-bound heating systems mostly with electric heat pumps. Due to the sensitivity of building owners’
investment decisions to gas price fluctuations and the sensitivity of gas grid charges on gas demand, a
self-reinforcing feedback loop starts and accelerates the defection of the gas grid (Figure 14). A change
in the gas DNO’s strategy can reduce but not stop this feedback. These implications are relevant for
DNOs, policy makers, and building owners.
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Figure 14. Found cause–effect relationships: A self-reinforcing feedback loop between the building
owners’ retrofit decisions with regard to gas-based heating systems and the gas DNO’s grid charge
setting, which is initially induced by endogenous economic, technical, and regulatory triggers. (R:
positive reinforcing loop; link polarities (X→Y): +: when X increases, Y increases; -: when X increases,
Y decreases (and vice versa), see [57]).

5.1. Implications for Building Owners

Due to the existing gas network and the building and heating system configuration, gas-fired
heating systems are predominantly used in the investigated area, while insulation measures and
electric heat pumps appear unattractive. The development is changing when the solution space
is limited or steered by triggers: Most single triggers, like CO2 pricing, an increased heat pump
efficiency, government subsidies, or a reduction of electricity grid charges have a minor influence on
the decision. The application of an energy-efficiency constraint shows large effects. Dependent on
the design of the energy-efficiency constraint, electrical heat pumps, solar thermal plants, and surface
insulation measures comes into play. Ambitious CO2-efficiency targets are associated with high costs;
see Figure A4 in Appendix D.1.

The results indicate gas grid charges as a trigger element for retrofit decisions: For some building
and heating configurations, the development of gas grid charges triggers an increase instead of a
decrease in gas demand. In the worst case, this could lead to complete grid defection. Under the
current political CO2 emission targets and the CO2 footprint of the natural gas supply, a financial
risk for building owners arises when choosing a gas-based heating system: Future CO2 prices and



Sustainability 2020, 12, 5315 27 of 44

grid charges are difficult to predict and the energy-related costs can rise sharply during the life-cycle.
Furthermore, it is possible that fossil-fired plants will be banned during their lifetime [105]. Our model
does not cover these economic risks, due to from incomplete information. The building owner can
reduce the risk by making him or herself less dependent on energy supply through improved building
insulation measures, self-generating systems or efficient heating systems, such as heat pumps. These
desolidarization efforts can already be observed in practice and are part of studies [29] that are so far
mostly focused on the situation in the electricity grid.

5.2. Implications for Natural Gas and Electricity Distribution Grid Opteraters

The results show that the disordered structure inherent to grid-based infrastructure leads to an
increase in length-related grid costs, i.e., grid charges in scenarios with a strong decrease in gas demand.
A change of the DNO’s strategy can only counteract this effect to a limited extent. The short-term
more profitable gas DNO strategy (SRC) increases the risk of a closure of the entire gas network in
the long-term due to the feedback effect via grid charges. A strategy (SGC) that is less profitable for
the DNO, but more in the public interest, contributes to the long-term maintenance of the gas grid
infrastructure. A decision on the future of the gas grid infrastructure taken at macroeconomic level
could reduce these economic risks.

We see the postulated feedback loop not only between the gas DNO and the buildings. There is
also an interdependency between the gas and electricity DNO’s revenue caps, due to the competition
between gas burners and electrical heat pumps. In this context, the gas-based heating systems act
as a trigger element for the tilting effects on the DNO’s cost base. For that reason, the DNO could
incentivize building owners to install gas-based systems in the future. In addition to the adaptation of
the investment and operation strategy, this could help maintain the gas grids for some areas.

5.3. Implications for Policy Makers

We have shown that the use of single triggers, such as regulatory constraints, levy systems or
state subsidy programs, mostly favors individual types of measures or systems but contributes little
to the overall goal of CO2 reduction. This effect can be mitigated by designing state measures
for technology neutrally, without a pronounced steering effect for specific building envelope
measures or heating systems. The formulation of reduction targets for primary energy demand
or CO2 as well as the introduction of levy and subsidy systems, such as CO2-pricing, represent
technology-neutral alternatives.

In scenarios with a decreasing gas demand, the DNO strategy can contribute to maintaining the
gas grid infrastructure. According to the actual incentive regulation system in Germany, DNOs apply
the SRC or the SGV strategy with which they increase their business risk through grid defection in the
long-term in such scenarios. This poses a risk to society, since gas networks are seen as a flexibility
option for volatile electricity production [23]. From a macrosocial point of view, the question arises
whether gas networks are necessary in the future energy system. If not, a stepwise shutdown with
regulatory support could guarantee a stable supply within the transformation; if so, appropriate
business incentives for gas DNOs could reduce the risk of grid defection [21,22].

5.4. Further Research

Until now, the role of a change in gas grid costs due to decreasing demand or titling effects has
not been sufficiently considered in energy system analyses [16–19]. The increase of grid charges is
mainly induced by the non-linear dependency between grid length and customer number or demand.
Models are available to consider this aspect in energy system analysis [22].

If more and more customers leave the gas grid in the future, the risk of stranded investments on
the DNO side will increase. Knowledge about the future development of the building stock could help
qualify this risk. The investment theory offers numerous methods for the valuation of investments
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under uncertainty and the quantification of this risk [108]. They could be adapted to gas grids to
consider age, importance, and risk when choosing renewal measures.

The results also imply an interdependence between gas DNO and electricity DNO. For society,
the question arises whether a joint cost-base for the electricity and gas grids, can help to reduce the
long-term risk of gas grid defection. This instrument would provide the basis for a cross-sectoral
infrastructure charge, which could help maintain the gas grid as a flexibility option.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/13/5315/s1,
Section A.1: Thermal Building Model—Calculation of the Building Heat Load, Section A.2: Thermal Building
Model—Domestic Hot Water Generation and Additional Heat Losses and Wins, Section A.3: Solar Thermal Model,
Section A.4: Building Surface Model—Calculation of Specific Building Surface Investment Expenditures and Heat
Transmission Coefficients, Section A.5: Preprocessing Procedure for the Calculation of the Building Individual
Investment Expenditures for the Heating System, Section B.1: Architecture of the Gas and Electricity Network
Operator Model, Section B.2: Grid Measures of the Gas and Electricity DNO, Section C.1: Building, heating
system and solar thermal parameters, Section C.2: Parameters of the Single Seeds: Date of Investment, Building
Age Classes, Heating System Types & Surface Insulation Constraint, Figure S1: Scheme of data prorogation in
regard to the energy demand and economic parameters implemented for natural gas and electricity grid, Table S1:
Parameters of the available solar thermal plants, Table S2: Specific investment expenditures per building part
based on [75], Table S3: Considered cost drivers for the heating system, Table S4: Available building heating
systems, Table S5: Heat transmission coefficients of the energy efficiency constraint for each building part [100],
Table S6: Building properties of the used building types and corresponding energy efficiency constraint, Table S7:
Initial building heating system types base on [95,107,109], Table S8: Surface areas of building types [61,62], Table S9:
U-Values of building types [61,62], Table S10: Heating circuit temperatures for the corresponding building age
classes and heating systems, Table S11: Date of investment of all buildings in the data set, Table S12: Building age
class of all buildings in the data set, Table S13: Heating system type of all buildings in the data set, Table S14:
Surface insulation constraint (66% of buildings).

Author Contributions: Conceptualization, D.T. and T.M.K.; data curation, P.H.; Formal analysis, M.B.; funding
acquisition, T.M.K. and M.B.; investigation, D.T. and P.H.; methodology, D.T.; software, P.H.; supervision, M.B.;
visualization, D.T.; writing—original draft, D.T.; writing—review and editing, T.M.K. and M.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to thank the Stadtwerke Bamberg energy and water supply company, Bamberg,
Germany, for providing us the data of loads, grids, and costs components that form the basis for this work.

Conflicts of Interest: D.T. is an employee of the Stadtwerke Bamberg GmbH. The authors declare no conflict
of interest.

Appendix A Nomenclature

Table A1. List of acronyms.

Acronym Name Acronym Name

AWHP Air water heat pump MAS Multi-agent simulation

BES Building energy system MFH More family house

BE Building envelope MILP Mixed integer linear program

B Building age class MP Medium pressure

BO Building owner MV Medium voltage

CAPEX CAPEX OCB Oil condensing boiler

CO2 Carbon dioxide OPEX OPEX

COP Coefficient of performance (heat pumps) OSM Open street maps

DHW Domestic hot water PB Pellet burner

DNO Distribution network operator PF Present value factor

E Energy RFA Reference floor area

EDH Electrical direct heating RBV Rest book value

http://www.mdpi.com/2071-1050/12/13/5315/s1
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Table A1. Cont.

Acronym Name Acronym Name

EU European Union RC Revenues cap

GC Grid charges STE Solar thermal plant

GCB Gas condensing boiler SFH Single family house

GWHP Ground water heat pump SGC Stable grid charges

H Type of heating systems SGV Stable grid value

I Date of investment SRC Stable revenue cap

IQD Inter quantile distance STE Solar thermal energy plant

IWU Institute Housing and Environment TH Terraced house

LP Low pressure WO Deprecations (or write-offs)

LV Low voltage

Appendix B Building Retrofit Model

Appendix B.1 Nomenclature

Table A2. Nomenclature of formula symbols.

Parameter Description [unit] Value Source

Components of the expenditures

cB
j Total expenditures for heating within the technical lifetime of the heating system [€]

cBE
j Investment expenditures for the building insulation retrofit [€]

cBES
j Investment expenditures for the change of the heating system and technical building equipment [€]

cEN
j Expenditures for energy procurement over the technical lifetime of the heating system [€]

cM
j Expenditures for maintenance over the technical lifetime of the heating system [€]

Parameters

AE
j Building surface area [m2] Corresponding values are shown in Table S6 in

the supplementary materials, based on
[61,62,100]TN

j Yearly usage hours of the heating system [h]

SBE
d,j

Design-relevant building heat load (for heating system) (thermal
ventilation and transmission losses) [kW]

Thermal models are shown in parts A1, A2, A3
in the supplementary materials, based on

[62,73,74,76,82,83,95]

SS
j

Heat load for: Radiation losses, internal wins, heat distribution
losses, auxiliary energy [kW]

SSTE
s,j Heat load thermal solar plant [kW]

SDHW
j Heat load for domestic hot water generation [kW]

MBES
k

Specific yearly expenditures for maintenance of the heating in
percent of investment expenditure [-]

MSTE
s

Specific yearly expenditures for maintenance for the solar
thermal plant in percent of investment expenditure [-]

EBES
k Plant expenditure figure of the heating systems

BEC
c,k Energy carrier of the heating system (Binary decision parameter)

CBEvar
j

Specific variable investment expenditures for a building surface
retrofit [€/(m2

·cm)]
Calculation is shown in A4 in the supplement
materials; the corresponding values are shown

in Tables S5, S6, S8, S9 in the supplementary
materials, based on [61,62,75,100]CBEfix

j
Specific fix investment expenditures for a building surface

retrofit [€/m2]

DD
d Insulation thickness [cm] 0–30
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Table A2. Cont.

Parameter Description [unit] Value Source

CBESvar
k Specific variable expenditures for the heating system [€/kW]

Calculation is shown in A5 in the supplement
materials; the corresponding values are shown

in Tables S3, S4, S7, S9 in the supplementary
materials, based on

[37,61,62,75–78,95,106,107,109]

CBESfix
k, j Specific fix expenditures for the heating system [€]

CSTEvar
s Specific variable expenditures for the solar thermal plant [€/kW]

CSTEfix
s Specific fix expenditures for the solar thermal plant [€]

CEC
c,t Specific yearly energy related expenditures (tax + procurement + grid charges) [€/kWh]

CProc
c,t

Specific energy procurement costs

Electricity [€/kWh] 7.61 [79]

Natural gas [€/kWh] 3.13 [79]

Oil [€/L] 0.506 [80,110,111]

Pellet [€/kg] 0.0173 [81,112]

CTax
c,t Energy related taxes and duties

Electricity [€/kWh] 16.02 [79]

Natural gas [€/kWh] 1.64 [79]

Oil [€/L] 0.169 [80,110,111]

Pellet [€/kg] 0.0173 [81,112]

EMEC
c,t

Specific CO2-emissions per energy
carrier [kg/kWh]

Electricity (linear decrease
to 0.103 in 2050) 0.462 [113,114]

Natural gas 0.202

[115]Oil 0.294

Pellet 0.023

HVc Heating value

Natural gas [kWh/m3] 11.42 [116]

Oil [kWh/liter] 11.27 [116]

Pellet [kWh/kg] 5.27 [117]

FP
c Primary energy factor

Electricity 1.8

[76]
Natural gas 1.1

Oil 1.1

Pellets 0.2

QHinit
j Initial yearly end energy demand of a building

EMinit
j Initial yearly CO2 emissions of a building

QPEnEV
j Upper bound for the yearly primary energy demand considering the energy efficiency constraint

STEnEV
j Upper bound for the heat load considering the energy efficiency constraint

PF Present-value factor 31

Variables

bBE
d,j Building surface retrofit d in house j (Binary decision variable)

bBES
k, j Heating system k in house j (Binary decision variable)

bSTE
s,j Solar thermal plant s in house j (Binary decision variable)

eHeating
c,t Energy for heating applications in year t in gas or electricity grid [kWh/a]

cGC
c,t Grid charges gas or electricity in year t [€/kWh]

Indices and sets

d ∈ D An insulation thickness standard d of all standardsD

p ∈ P Surface part p of all building surface parts P

q ∈ Qp A sub-part q of all sub-parts Q of a building envelope part p

k ∈ K A heating system type k of all heating system typesK

c ε C An energy carrier c of all carriers C

s ∈ S A solar thermal plant s of all available types and sizes S

j ε J A building j of all buildings J connected to the grid
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Table A2. Cont.

Parameter Description [unit] Value Source

Parameters of the supplements (derivations and tables)

CBHS
k Investment expenditures for heating surfaces and pipe system (per RFA) [€/m2]

Hj Transmission heat loss [W/K]

HT
j Transmission heat loss [W/K] (Transmission)

HV
j Transmission heat loss [W/K] (Ventilation)

UT
j Heat transmission coefficient [W/(m2

·K)]

∆UTB
j Heat transmission coefficient for thermal bridges [W/(m2

·K)]

U0
j Initial heat transmission coefficient [W/(m2

·K)]

UESP
j,p Heat transmission coefficient of a building surface part [W/(m2

·K)]

ϑOut Outdoor temperature [◦C]

ϑIn Indoor temperature [◦C]

∆Tnom Design relevant temperature difference outdoor versus indoor [◦C]

AE
j Building surface area [m2]

AEP
j,p Area of a building surface component [m2]

AESP
q Area of a sub-part of a building surface component [m2]

FSTEred
s Reduction factor of the solar thermal plant [–] (reduction of the energy demand for DHW generation)

ASTE Area of the solar thermal plant [m2]

STEyield Yearly average solar yield [kWh/(m2
·a)]

VDHW
jk,s Capacity of the domestic hot water tank [liter]

Appendix B.2 Constraints of the Building Retrofit Model

We constrained the number of measures per category in each simulation, considering A1, A2, and
A3. The optimizer can choose a building surface insulation measure:

∀j ∈ J :
∑
d∈D

bBE
d,j ≤ 1 (A1)

The optimizer has to replace the heating system:

∀j ∈ J :
∑
k∈K

bBES
k,j = 1 (A2)

The optimizer can choose a solar thermal plant:

∀j ∈ J :
∑
s∈S

bSTE
s,j ≤ 1 (A3)

In each simulation we set the initial yearly CO2 emissions (A4) and the end energy demand (A5)
as upper bounds:

∀j ∈ J :
∑
k∈K

((∑
d∈D

(
SBE
d,j · b

BE
d,j

)
+ SS

j

)
· bBES

k,j +
∑
s∈S

(
SDHW
j −

(
SSTE
s,j · b

STE
s,j

))
· bBES

k,j

)
· TN

j

·EBES
k ·

∑
c∈C

(
BEC

c,k · F
P
k · EMEC

c

)
≤ EMinit

j

(A4)
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j ∈ J :
∑
k∈K

((∑
d∈D

(
SBE
d,j · b

BE
d,j

)
+ SS

j

)
· bBES

k,j +
∑
s∈S

(
SDHW
j −

(
SSTE
s,j · b

STE
s,j

))
· bBES

k,j

)
· TN

j · E
BES
k


≤ QHinit

j

(A5)

In our case-studies in simulations 3, 8–10 we constrained the yearly primary energy demand to
the corresponding demand QPEnEV

j , calculated based on the energy-efficiency targets of [100] (for the

QPEnEV
j values see Supplement C, Table S6). The optimizer can freely choose the type of measure.

∀j ∈ J :
∑
k∈K

((∑
d∈D

(
SBE
d,j · b

BE
d,j

)
+ SS

j

)
· bBES

k,j +
∑
s∈S

(
SDHW
j −

(
SSTE
s,j · b

STE
s,j

))
· bBES

k,j

)
· TN

j

·EBES
k · FP

c

 ≤ QPEnEV
j

(A6)

We also added a restriction to oblige building owners to insulate their building envelope in order
to reach the energy-efficiency goals according to [100]. (In simulation 3 this was applied for 100% of
the buildings, while in simulations 8–10 it was applied for 66% of the building)

∀j ∈ J :
∑
k∈K

∑
d∈D

(
SBE
d,j · b

BE
d,j

) ≤ STEnEV
j (A7)

Appendix C Gas and Electricity Network Operator Model

Appendix C.1 Nomenclature

Table A3. Nomenclature of formula symbols.

Parameter Description [unit]
Value

Source
Gas Electricity

Cost components of the revenue cap

αCAPEX
c,t Capital expenditures gas or electricity [€]

αOPEX
c,t Operational expenditures gas or electricity [€]

αEC
c,t Calculated return on equity gas or electricity [€]

αBC
c,t Interest on borrowed capital gas or electricity [€]

αTax
c Calculated trade tax gas or electricity [€]

α
Depr
c,t Calculated interest on borrowed capital gas or electricity [€]

αOC
c,t Operational costs gas or electricity [€]

αLC
c,t Loss costs gas or electricity [€]

α
UpGC
c,t Upstream grid charges gas or electricity [€]

αConc
c,t Concession fees gas or electricity [€]

Parameters

R EC
`

Interest rate equity capital of line ` 0.0691 * 0.0691 *

Q EC
`

Amount of equity capital of line ` 0.40 0.40 [21]

R BC
`

Interest rate borrowed capital of line ` 0.035 * 0.035 *

Q BC
`

Amount of borrowed capital of line ` 0.60 0.60 [21]

RTax Trade tax rate 0.14 * 0.14 *

TTL Technical lifetime of a line [a] 40 45 [99,118]
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Table A3. Cont.

Parameter Description [unit] Value
Source

Gas Electricity

TPlanning Planning horizon [a] 31 31

CUpGCG
t

Specific costs of upstream grid charges [€/kWh] 0.0030 * 0.025 *

CConc
t Specific costs for concession fees [€/kWh] 0.0023 * 0.011 *

CLC Specific lost costs [€/kWh] 0.0080 * 0.044 *

FLoss Loss factor 0.00 * 0.026 *

CLRC Specific operational costs [€/m] 5.0 * 7.9 *

EAnyOther
c,t

Any other energy in year t in gas or electricity grid
[kWh/a] (calculated based on the RFA) 0 * [kWh/ (m2

·a)] 25 * [kWh/(m2
·a)]

Variables

T Init
` Line age at the begin of planning horizon [a] *

C I
` Historical acquisition expenditures for line ` [€/m] *

L` Line length of line ` [m] *

AMeanInit Length-weighted average age of the grid [a]

RBVF`,c Rest book value factor of line ` in year t as a function of the binary decision variables

cGC
c,t Grid charges gas or electricity in year t [€/kWh]

eHeating
c,t Energy for heating applications in year t in gas or electricity grid [kWh/a]

Indices and sets

j ε J A building j of all buildings J connected to the grid

` ε L A line ` of all lines L in the grid

c ε T A year t within the planning horizon T

c ε C An energy carrier c of all carriers C

Investment expenditure for new construction of grid assets

CT
Investment expenditures

transformer substation MV/LV
[€]

0.25 MVA 67,000 *

0.4 MVA 74,000 *

0.63 MVA 83,000 *

CEL Investment expenditures
electrical lines [€/m]

NAYY 4x50 SE 114 *

NAYY 4x120 SE 114 *

NAYY 4x150 SE 114 *

CP Investment expenditures pressure regulator station [€] 20,000 *

CGP Investment expenditures gas
pipes [€/m]

40 ST 63 *

80 ST 163 *

100 ST 209 *

150 ST 287 *

200 ST 360 *

25 PE 100 SDR 11 40 *

50 PE 100 SDR 11 79 *

90 PE 100 SDR 17 200 *

* Values are chosen on the basis of local conditions in Bamberg or the DNO (Germany 2019).
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Appendix C.2 Flowcharts of the Investment Strategies
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Figure A1. Flowchart for a time step of gas DNO strategies: (a) stable grid charges; (b) stable grid
value; and (c) stable revenue cap (the stable grid value strategy (b) is analogously applied in the
electricity DNO).
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Figure A3. Relative electricity grid charges in projected years for (a) different triggers and their
combinations (b) a variation of building age and heating systems. (Dots: individual seeds; boxes:
median and 25%/75% percentiles of the resulting distribution; whiskers: +/− 1.5 IQD).
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Figure A5. Relative electricity demand in projected years with a comparison of different gas DNO
strategies with (a) a variation of the date of investment (I); (b) a variation of date of investment, building
age type, and heating system type (I, B, H). (Electricity DNO strategy in all simulations: “stable grid
value”). (Dots: individual seeds; boxes: median and 25%/75% percentiles of the resulting distribution;
whiskers: +/− 1.5 IQD).
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