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Abstract: The main interest of this paper is to analyze the mobility acceptance factors of an automated
shuttle bus last-mile service. There is limited research on the passengers’ perception of security
and safety of automated mobility, whereas prior research is mostly based on surveys interested in
attitudes towards self-driving vehicles, without being linked to the experience. We, on the other hand,
are interested in passengers’ feeling of security and safety, after taking a ride with an automated
shuttle in an open urban environment. For studying this, we conducted an automated shuttle bus
last-mile pilot during a four-month period in the city of Tallinn in late 2019. The method is a case study
focusing on one city with several tools for data collection applied (surveys, interviews, document
analysis). The pilot, open and free for everybody, attracted approximately 4000 passengers, out of
which 4% responded to the online feedback survey. For studying the operational capacity, we had
a panel interview with operators of the shuttle service, in addition to analyzing daily operational
log files. The results indicate that passengers’ perceived feeling of security and safety onboard was
remarkably high, after taking a ride (and lower without a ride, in a different control group). The bus
was operated only if operational capacity was secured, thus having significant downtime in service
due to environment, technology and traffic-related factors.

Keywords: automated mobility; sustainable transportation; urban mobility; last-mile; passenger’s
safety; passenger’s security; operational capacity

1. Introduction

In the context of urbanization, cities face challenges related to the growing number of cars on the
streets, which, in turn, causes traffic congestions and increases the overall emissions. Thus, cities are
showing increasing interest towards shared, automated and electric mobility. However, the adoption of
automated vehicles (AVs) can be challenging because of reasons related to passenger safety, passenger
security and operational capacity. Passenger safety is understood here as the passengers’ subjective
feeling of traffic safety onboard an automated bus. Passenger security is understood as the passengers’
subjective feeling of security onboard an automated bus. Operational capacity refers to the quality
of service of an automated bus influenced by the factors of environment, traffic and technology.
Although there are several studies measuring the attitudes towards transference from manual to
automated driving based on non-experimental surveys [1–5], there are very limited perception studies
that are based on the actual experiment of automated trials. Therefore, one of our key interests is
to investigate passengers’ perceived risk aversion regarding security and safety of automated urban
mobility. The second key interest of this study is to map out the main factors which can affect the
operations of an automated shuttle bus and how they were addressed. The occurrence of different
issues and how they were addressed can also influence the passenger experience, including their
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perceived safety and security. Thus, the overall contribution of this paper is to address the differences
between perceived safety and security concerns versus technological challenges of integrating such a
last-mile service with urban mobility.

This paper is based on a last-mile shared automated mobility pilot that was conducted on the
open urban roads in Tallinn, the capital of Estonia, in the second part of 2019. The pilot was open and
free for all interested passengers. The passengers were also offered the possibility to fill in an online
survey which was available in Estonian and English. The case study results were triangulated with
panel interviews of the Tallinn pilot shuttle bus operators in early 2020, daily operational log files
and with a control group of 55 students that answered the survey without actual automated driving
experience. Section 2 provides an overview of literature which focuses on AVs and introduces the
research gap. Section 3 describes the used methodology and introduces the automated shuttle bus
pilot in Tallinn. Section 4 brings out the main results. Section 5 summarizes the paper.

2. Literature Review and the Research Gap

This section starts with an overview of the possible impact of the technology of AVs. The reason
for such an overview is to picture the magnitude of change that could happen when AVs become widely
adopted. It also helps to better understand the importance of investigating user acceptance and how
the passengers perceive safety and security in relation to AVs. It is followed by the overview of research
which focuses on investigating user acceptability and the research gap that this paper investigates.

2.1. The Impact of AVs

During the last seven years (2013–2020), several academic publications and reports have been
published that focus on the impact of autonomous vehicles. An early study by Fagnant and
Kockelman [6] estimated that shared autonomous vehicles (SAVs) could diminish the vehicle fleet size
by ten times. In the later study of Fagnant and Kockelman [7] which was based on a simulation of
Austin, Texas, they estimated that one SAV could replace 10.77–11.53 cars, depending on how many
trips are shared between passengers. Similarly, an OECD [8] study found that the combination of
TaxiBots together with high-capacity public transportation would remove 9 out of 10 cars in mid-sized
cities in the case of the city of Lisbon. These studies have also analyzed the impact on emissions and total
travel kilometers. In the EU, approximately one-fifth of greenhouse gas emissions is produced by road
transport (https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-
gases/transport-emissions-of-greenhouse-gases-12). Reduction of emissions due to automation has
been estimated by several studies [6,9] but it will also depend on what kind of technology will be
used [8]. Studies have also estimated different impacts on the total amount of travel kilometers.
As Martinez and Viegas [9] argue, the actual impact depends on how the technology will be deployed.
In reality, it will depend on which transport modes are used and how fast they will be automated,
as well as what the combination of different transport modes will be and how many rides are shared [9].

Several publications have analyzed the impact of AVs and SAVs on other aspects of mobility.
It has been argued that autonomous vehicles will provide greater access to mobility for population
groups who currently are disadvantaged such as the elderly, youth and people without a driver’s
license, as well as change people’s mobility patterns [7,10,11].

Land use will heavily be impacted by autonomous transportation. It has been argued that
the introduction of autonomous vehicles could bring a second wave of suburbanization [12,13].
As Heinrich [13] argues, autonomous driving can compensate for longer travel distances as the
passenger(s) can be engaged with productive activities while commuting. This could be a tempting
choice by many as the land prices in suburban areas are much cheaper compared to the urban
centers [12]. In the cities, the districts could be organized around transport hubs in which public
transportation is provided by autonomous vehicles, which, in turn, will reduce the need for parking
spaces [13]. A study conducted by Zhang and Guhathakurta [14] estimates that with only 5% of the
trips served with SAVs, the parking land use in Atlanta could be reduced by 4.5%. A similar reduction
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was found with the case of Lisbon, where a 100% shared self-driving taxibot fleet could reduce parking
spaces by more than 90% [8].

Clements and Kockelman [15] have estimated that when connected AVs will capture the majority
of the automotive market, their impact on the whole US economy would be 1.2 trillion dollars
annually, as such a development would affect numerous industries such as insurance, electronics,
freight movement, the car industry and others by destroying the current business models and creating
new ones. The car industry will especially be under heavy pressure if SAVs will dominate over
private AVs, as the sale of cars to private individuals, which is the current main business for car
manufacturers, will drop significantly. On the other hand, the increased mileage and active service
hours per SAV will shorten the life cycle of the vehicles, which, in turn, creates additional demand [8,9].
The deployment of AVs and SAVs also require large investments in infrastructure which has an
impact on the economy. This includes investments in charging stations and the electric grid [16].
Further investments are required in sensor technology, software, batteries, and electric motors [16].
AVs could also potentially provide efficiency gains. Ongel et al. [17] predict that adapting autonomous
electric vehicles in Singapore’s public transport system would reduce total cost of ownership per
passenger kilometer around 60% compared to the regular buses. We could also expect a decrease in
real estate development costs and more affordable urban housing as SAVs would eliminate the need to
invest in building garages for private cars [16]. Changes in land use and new service opportunities
provided by autonomous driving will also impact tourism. Cohen and Hopkins [18] bring out several
possible changes and challenges that AVs might bring in tourism such as pre-planned sightseeing
routes, targeted advertising in AVs and SAVs, loss of employment (couch and taxi drivers), decreased
encounters between locals and tourists, etc. Pre-planned routes can also decrease market competition
when AVs and SAVs will take people only to businesses that pay the fleet operators [18].

2.2. User Acceptance and Perception of Security and Safety

As the wide adoption of private AVs, SAVs and autonomous public transport would certainly have
an impact on the economy and society at large, user acceptance and passengers’ safety and security
perception become important topics to investigate. Several studies have been conducted to evaluate user
acceptability and willingness to purchase this technology. A cross-national study with 5000 respondents
from 109 countries conducted by Kyriakidis et al. [4] found out that while most of the people find
manual driving most enjoyable, a large proportion favored fully autonomous driving. Prior experience
seems to be the key reason. They found that frequent drivers are more willing to pay for autonomous
features [4]. In addition, people with prior experience with adaptive cruise control are more willing to
pay for AVs, more comfortable with driving without a steering wheel and more comfortable with data
transmission [4]. Similar results were given by the study of Zmud et al. which analyzed the answers
of a survey with 556 respondents [5]. They concluded that people whose current vehicle has highly
automated features showed higher intent to use self-driving vehicles. The study conducted by Pakusch
and Bossauer [19] focuses on fully automated public transport systems. The results of their study
are in line with previously mentioned studies—people who have prior experience with automated
transportation such as automated trams, trains, and metro are more willing to use autonomous transport
than people without such experience. In addition, the participants of their study preferred autonomous
rail-bound transportation over autonomous private cars, buses, taxis and carsharing.

The fact that a person has had prior experience with an SAV and has shown willingness to use it
in the future does not mean that the same person is also willing to use a privately-owned AV or vice
versa. However, the aforementioned studies do show that prior experience with the technology can
increase the willingness to use the technology in the future.

Safety is one of the key aspects in the adoption of any kind of autonomous vehicle. It has been
argued that the technology has the potential to significantly reduce the number of traffic accidents
that are caused by driver error [20]. Although the potential is there, concerns over the safety of the
technology must be acknowledged. The study by Kyriakidis et al. [4] found safety as one of the biggest
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concerns related to automated driving. According to the survey conducted by Zmud et al. [5], the main
reasons why the respondents were unlikely to ride with AVs were lack of trust in the technology
(40%) and safety (24%), while cost was only the third most relevant factor (20%). A technology which
is not perceived safe will not gain users. Safety itself can be looked at from several different angles.
For example, Hulse et al. [21] point out that people’s perception towards AVs depends on their road
user perspective: AVs were perceived more dangerous as passengers and less dangerous as pedestrians.
They add that this difference is possibly related to concerns about whose safety AVs will prioritize.
A study by Dong et al. [2], focusing on autonomous public transportation concluded that the willingness
of public transportation users to ride with an autonomous public transportation bus very much depends
on the presence and tasks of the bus operator onboard. They point out that an onboard operator is
especially crucial during the early stage of technology adoption, and there are also concerns that without
the operator, certain groups such as disabled people will not receive assistance during the use of the
service. It can be argued that such a concern points towards a general concern of safety onboard the bus.

One of the main worries with the previously mentioned studies is that the survey respondents
have not been introduced with a real, physically existing technology. Although the study of Pakusch
and Bossauer [19] was not introducing the autonomous technology to the participants, it was the only
study focusing on the previous experience with fully autonomous transportation. As is argued by Xu
et al. [22], participants in online surveys may not be able to visualize the operation and functionality
of AVs. During the literature review, we found only seven studies that included actual vehicles with
autonomous functionality. Six of these studies used automated shuttle buses without a steering wheel
and pedals which offered first and last-mile public transportation service [23–30]. The study of Xu et al.
used a rebuilt passenger car with steering wheel and pedals [22]. In most of these studies, the focus has
been to determine user acceptability before and after having a direct experience with the technology.
The study of Salonen and Haavisto [27] was based on the interviews conducted with people who just
had used an AV. The study of Madigan et al. was based on the questionnaire which was filled by people
who had at least once come across an operational AV, and the data was collected in the vicinity of two
AV pilots (Lausanne and La Rochelle) [23]. Researchers from ETH Zürich have conducted multiple
surveys as part of the Route 12 pilot in the Canton of Schaffhausen to investigate the public opinion
towards the pilot [28–30]. One pre-pilot survey was followed by two follow-up surveys. The study of
Harb et al. [11] is also worth mentioning. Although autonomous vehicles were not used, the researchers
of that study provided chauffeurs to the participating households to simulate a privately-owned AV.

The study of Distler et al. [26] distinguishes acceptability and acceptance, of which the former
refers to a prospective judgement before using the technology and the latter describes a person’s
judgement after using it. The study gives a clear example of how the judgement towards the technology
can change after having a real experience with it. Participants of the Distler et al. [26] study significantly
decreased their performance expectancy and perceived usefulness after having a chance to use an
automated shuttle bus. The drop in perceived usefulness happened because the participants of the
study had the first-hand experience with how limited the autonomy of these shuttles actually are.
In the study by Xu et al. [22], trust, perceived usefulness and perceived ease of use increased among
participants after they had first-hand experience with the technology. Nordhoff et al. [25] found
that the participants of their study believed driverless shuttles to be useful and easy to use but not
compared to their current travel modes. Perceived usefulness was also found as an important factor
by Moták et al. [24]. Salonen and Haavisto [27] found that interviewees were acceptable towards
AVs if they operate on a useful route. Similarly, the results of Madigan et al.’s study shows that
the intention to use auto transportation is influenced by how well they believe it will perform in
comparison with the existing public transportation options [23]. The surveys related to the Route
12 pilot in Switzerland show that the population’s support towards automated shuttle bus pilots
slightly increased after the start of the pilot, but it was statistically insignificant [28–30]. In the second
survey, Wicki and Bernauer [30] also compared ride experience ratings between those participants of
the general population survey who had taken a ride with the bus on Route 12 and the passengers who
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filled the survey right after the ride. The ride experience was slightly lower among the respondents
of the general survey of whom 62.9% rated the experience with a grade “4” or “5” on a 5-point scale
(69.8% among the passengers). Compared to the general survey participants, the passengers were also
more eager to rate the experience with a grade “5” (41.7% vs. 25.3%).

The studies of Distler et al. [26], Xu et al. [22], Salonen and Haavisto [27], and Wicki and
Bernauer [28–30] have also investigated safety. The results of Xu et al.’s [22] study show that the
participants whose perception of safety was high were more likely to use AVs in the future. In the
study of Salonen and Haavisto [27], the participants expressed that the feeling of safety onboard the
bus was better than they expected but people still had concerns regarding the overall safety of AVs
in traffic. In the study of Distler et al. [26], the participants expressed that the actual experience with
an automated shuttle bus had a reassuring effect on security and, in general, they felt safe in the bus.
Their study also showed that both before and after riding with an AV, safety was one of the most
important needs for the passengers. The results of the three Swiss surveys show that among the general
population, the biggest concerns were related to software misuse [28–30]. Among the respondents of
the second general survey who had taken a ride with the automated shuttle bus, over two-thirds of
respondents rated safety as “good” or “very good” [30].

2.3. Research Gap

Our research adds to the previous discussions which have focused on automated shuttle buses in
the context of first and last-mile public transportation service. The study identifies the differences in
perception of safety and security between the passengers who recently experienced the technology and
those who have not. Although the report of Wicki and Bernauer [29] compares the biggest concerns
related to AVs throughout all three waves of surveys, they do not compare the perception of safety
between people who have and have not taken a ride with an automated shuttle bus. The study of
Salonen and Haavisto [27] does show that for many of the users, the experience with an automated
shuttle bus enhances the feeling of safety. However, the study does not look at the exact difference
before and after using the shuttle bus. The study of Distler et al. [26] shows that the importance of
security as a basic human need did increase after the experience, although the participants expressed
that the experience had a reassuring effect. Furthermore, it was also expressed that there were even too
many security measures.

One can argue that the more safety precautions are implemented, the safer the passengers feel.
In addition to comparing the perception of safety and security between the recent passengers and the
control group that had not taken a ride with an AV bus, the current article also looks at the safety
precautions as we link the perception of security and safety with how the pilot was set up. For that,
we map out the main factors that can influence the everyday operations of automated shuttle buses
and investigate how the issues were dealt with. This has not been done in the previous studies.
However, we believe that the AV experience of the passengers can be influenced by factors such as
the environment where the bus is driving or technical factors. For example, if the operation of the
automated shuttle bus is interrupted by rain or some technical issue then it can negatively impact the
experience compared to a situation where the bus is driving in perfect conditions.

3. Case Study

3.1. Methods

The main research method used in this paper is the case study method as we are focusing on one
specific city with several tools for data collection applied (surveys, interviews, document analysis).
Compared to other methods, the case study allows us to do in-depth analysis of one pilot site—the
City of Tallinn. According to Yin [31], a case study investigates a contemporary phenomenon within
its real-life context especially when the boundaries between phenomenon and context are not clearly
evident. The case selection for this project is, on one hand, dependent on a potential to set up an
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open-street automated shuttle bus last-mile service pilot, and on the other hand, is dependent on a
potential to gather primary data to study the link between user experience and automated mobility and
various operational capacity factors influencing this. The collected data is both quantitative (especially
survey questions on numeric scales) and qualitative (non-numeric responses in surveys, exclusively
within a panel interview and log document analysis). Considering the theoretical framework and
availability and access to primary data, the mixed methods approach is proposed that combines the
following data:

• Passenger survey feedback analysis
• No-pilot control group survey feedback
• Daily communication log with shuttle operators
• Panel interview data of automated bus operators

3.2. Passenger Safety and Security

In the Sohjoa Baltic project, safety and security are reasoned in the following context [32]:

• “With autonomous driving still in its infancy, road safety is a topic followed closely by public,
politics and researchers. When automated vehicles operate among others, and in normal traffic
conditions, i.e., with other vehicles either autonomous or not, the probability of collisions and the
impact of accidents is increased compared to operation in a closed environment. Due to differences
in operating environments in between the pilot cities, variations in user experience is expected.
The behavior of an automated vehicle can differ from a human driver, generating confusion and
creating an uncomfortable or unsafe feeling about the ride, even if the accident rate does not
increase or is even reduced. Passenger safety is understood here as the passengers’ subjective
feeling of traffic safety onboard an automated bus. The automated shuttle buses used in this study
are designed in such a way that any traffic risk, triggered by sensor input, automatically results
in sudden braking. Thus, the passengers’ perception about safety can be altered by such hard
braking, while also increasing the risk of falling for passengers standing in the bus or bumping
into the interior parts of the bus. Road safety experience was surveyed by asking each passenger
to respond with a grade from 1 to 7 about the safety onboard.

• Personal security on an autonomous vehicle is still largely an unknown factor. In our study, it is
defined as the passengers’ subjective feeling of security traveling with other passengers without
the presence of a human driver, since the enclosed shared environment of an autonomous vehicle
without a dedicated driver or supervisor might provide challenges to the personal security of the
passengers. Experienced threats or perceived risks of safety both have a negative impact on the
overall user experience and acceptance. Possible risks for personal security are, for instance, other
passengers, people outside the vehicle, or cyber threats. The factors affecting the security were not
surveyed. All the pilot projects were organized with a safety operator onboard, which may affect
the perceived personal security. The topic was included in the survey nevertheless to provide a
baseline for further pilots without a safety operator onboard, and to identify other possible issues
related to security. The personal security was evaluated by respondents on a scale from 1 to 7.”

3.3. Pilot Design

The first long-term open traffic pilot in Tallinn, Estonia, with the SAE 3 level automated shuttle
started its operations on 28 August 2019 around Kadriorg Park. The preparation process for this
started already in October 2017 with the route selection. Three possible routes were found which
could demonstrate a last-mile use case and had a low traffic intensity. Taking into consideration the
possible changes in traffic arrangements that needed to be done, road conditions and the impact
of the service, Kadriorg Park was selected as the best option. Later preparation activities included
preparing changes in traffic arrangement on the selected route, public procurement process to rent an
automated electric bus, and recruitment and training of shuttle-service operators. The rented bus is
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manufactured by the French company Navya and was delivered by the Danish company Holo who is
the contract partner to the Tallinn Transport Department. According to the SAE International, this pilot
was on SAE level “3—Conditional Driving Automation” where the driving task was fully automated
with human fallback—operators had to respond promptly. The operators were students from Tallinn
University of Technology who passed the two-week training organized by Holo. The operators were
responsible for the safety of the bus and passengers as they took over control whenever it was necessary.
The operators also explained to the passengers how the technology works. Other minor responsibilities
included cleaning the bus, upgrading the software and sending data reports to the manufacturer.
Before the start of operations, the bus had to pass an exam which was organized by the Estonian Road
Administration to ensure the safety of the bus and its capability to drive in open traffic. In general,
the bus was scheduled to run regularly from Tuesday to Sunday between 10.00–16.00 (till 18.00 on
Thursday, Saturday and Sunday), and carried passengers free of charge. The bus seated up to eight
passengers at a time with seatbelts fastened.

The bus served as a last-mile extension of the Kadriorg tram line connecting it with the Estonian
Art Museum which is located 700m away from the tram stop. The bus drove in a circle around
the Kadriorg Park and had four stops: Katharinenthal cafeteria located close to the Kadriorg tram
stop, Kadriorg Art Museum, Estonian Art Museum, and Miiamilla Children’s Museum (Figure 1).
In addition to several museums, the park is also a location for a small luna park and a tennis club.
Several residential houses and a kindergarten are located at the Mäekalda street (south-west from
the Estonian Art Museum). Most of the car traffic in the area is related to the Estonian Art Museum,
residents who live at Mäekalda street, tennis club guests and people working in the Office of the
President. Due to the pilot, traffic flow was changed on the Mäekalda and Koidula streets from two-way
traffic to one-way traffic. The real-time position of the bus was available via the Letsholo app (available
via Google Play or Apple App Store). Approximately 100 people were using the service during the
operational days with 3877 users in total, although there were several issues that influenced the stability
of operation resulting in a significant downtime in order to mitigate the risks. The operations were
paused on 21.12.2019 due to seasonal conditions. Although the Tallinn pilot is planned to be reopened
from 1.06 to 31.08.20 (Navya bus and some operators are ready for this during the time of writing this
paper; provided COVID-19 restrictions will be over by June), key results can be drawn from the first
operational period with a potential to update the survey results later.
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Key Characteristics:

• Path length (km): 1.7 km
• Average speed (km/h): 7 km/h
• Travel time (min): 15
• Number of stops: 4
• Total number of users: 3877

3.4. Perception Survey

During the Tallinn pilot, passenger feedback was gathered via an anonymous online survey that
was co-developed within the Sohjoa Baltic (www.sohjoabaltic.eu) project and used also in other pilot
sites (in the European cities of Kongsberg, Helsinki and Gdansk). The aim was to provide a quick and
easy to fill survey in order to increase the response rate. This is why only a number of questions were
asked with limited depth. The survey form was designed in two parts: thematic questions regarding
the general acceptance of the automated buses and demographic data about the passengers. The survey
was run in two languages (Estonian and English).

This survey was available in Google Forms and distributed to participants via business card-size
paper flyers (Figure 2) with an online link (taltech.ee/robotbus) and also a QR-code that directed
the passengers to the survey in two languages. The survey invitations with general QR-codes were
distributed exclusively to passengers after taking the ride. Technically, we cannot rule out the risk that
some participants filled in the survey twice or distributed this invitation to non-participants. However,
when comparing with other forms of collecting the same survey data (the city of Gdansk collected the
same surveys on paper and the city of Helsinki asked participants to fill in the survey during the ride
on a tablet), these results are similar—thus, there seems to be no systematic data entry error (see also
www.sohjoabaltic.eu for comparative results which will be added by late Summer of 2020).
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The main analysis method of the survey was descriptive statistics, although a few correlation
tests were also to be performed in order to analyze whether there are any statistically significant
socio-demographic differences in the overall feedback to the experience. This survey does not represent
the entire population as the sampling was not representing the passengers that voluntarily took the
automated shuttle bus ride—this came from the pilot design with the goal to offer free and open service
for everybody. There were no incentives for taking part in this survey.

The survey was designed within the Sohjoa Baltic project consortium, led by Metropolia University
of Applied Sciences with the involvement of Chalmers University of Technology, Tallinn University
of Technology (involving authors of this paper), mobility analytics company Flou and four Baltic
Sea Region cities—Kongsberg (Norway), Gdansk (Poland), Tallinn (Estonia) and Helsinki (Finland).
The goal was to design a simple fill-in survey that can be used across different pilot sites. The simplicity
was an important factor to increase the take-up rates. The consortium first developed a board list of
questions that were later ranked jointly against importance. During this period, guided by research and
mobility experts, only the most important questions remained. In total, there were three rounds of joint
workshops where the sequence, wording and scaling of questions were also discussed. For example,
it was agreed to use the Likert scale with odd numbers for numeric questions (on the scale of 1–5 and
1–7 where 3 or 5 is neutral), as the consortium considered the safety and security more sensitive—these
were on the scale 1–7, whereas the overall experience was on the scale 1–5. Most questions allowed
respondents to choose only one answer; only “When would you use this service?” allowed more than
one answer. The main topics and questions were:

Traffic Safety: to study passengers’ subjective feeling of safety (e.g., risk of accidents) in a real-life
urban environment, after taking a ride with an automated bus. In general, compared to the previous
2017 pilot in Tallinn in a closed environment, the theoretical risk of collision is higher when this pilot is
conducted in the open street environment (compared to no-traffic pilot). The survey question studying
this link was: “How do you feel about general traffic safety onboard? Please mark on a scale of 1 (very unsafe)
to 7 (very safe).”

Personal security: to study passengers’ perceived feeling of security when the pilot is conducted
in a real-life environment, after taking a ride with an automated bus. There was also a security
risk related to the design of the robotbus as it is very sensitive to outside risks, received via sensors.
Each potential outside risk triggers a sudden brake which can cause indoor accidents—this is the main
reason why speed is capped. The survey question studying this link was: “How do you feel about your
personal security onboard? Please mark on a scale of 1 (very unsafe) to 7 (very safe).”

Operator onboard: to study the willingness to participate in a pilot without operator onboard.
In order to mitigate the risks, the bus always had an operator onboard who introduced the pilot’s goals
to the passengers and replied to various questions. In addition, the operator took over the control
manually if it was needed. The survey question representing this interest was: “Would you also use the
service with no operator onboard? Options: Yes, definitely; Yes, but not now; Maybe; No, never.”

Automated last-mile use cases: to study the demand for automated last-mile shuttle service with
predefined use cases. A multiple-choice survey question was: “When would you use this service? Options:
In bad weather; When carrying heavy items; Daily commute; As a link to transport hubs/other Public Transport
options; In closed large areas (e.g., campuses, industrial parks, airports, hospitals); Never; Other.”

Safety for children: to study the perceived feeling of safety and security when the service is offered
to vulnerable groups, e.g., school children. This question was designed as a potential control question
to the perceived feeling of security and safety—all combined indicating trust towards automated
mobility. The survey question was: “Would it be feasible for children to use this vehicle to travel to/from
school? Options: Yes; Yes, but only if attended; No; Don’t know.”

Overall experience: to study the combined personal experience of the pilot. From the quantitative
analysis perspective, this question was chosen to run various correlation tests between various
socio-demographic groups as it represents the combined subjective experience. The survey question
was: “How would you describe your experience? Please mark on a scale of 1 (very bad) to 5 (very good).”
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Frequency of use: to study the frequency demand for automated last-mile shuttle service.
When the use case question above was mainly interested in the variety of demand for the last-mile
service, this question was posed to study more narrow demand for the frequency of use. The survey
question was: “If this service had been available as part of your daily commute, how often would you use it?
Options: Daily; Weekly; Less often; Never.”

General suggestion: to provide an option for passengers to give general feedback to the pilot,
along with open questions regarding the future development expectations, both for planning next
stage pilots and also for obtaining an indication in terms of perceived risks. The survey question
was: “What wishes do you have about the future development on autonomous minibuses? Other feedback is
also welcome!”

This was followed by socio-economic questions (sex, age, education, occupation, public
transport usage).

Control group data was gathered during one smart city course among Tallinn University of
Technology public administration bachelor-level students in late 2019 with a focus to study attitudes of
Estonian students towards automated driving without actual driving experience. The service was
introduced to the control group in the format of a lecture including introduction to the project goals and
specific design of the route and pilot. Therefore, the questions were rephrased in order to investigate
the perceived attitude towards automated driving in the control group. Students responded to this
theoretical survey in December 2019 as part of their coursework. The results can be biased and do not
represent the entire population as the survey was not voluntary nor fully anonymous. The following
questions were asked:

• How would you feel about general traffic safety onboard?
• How would you feel about your personal security onboard?
• Would you also use the service with no operator onboard?
• When would you use this service?
• Would it be feasible for children to use this vehicle to travel to/from school?
• How would you (theoretically) describe your experience?
• If this service had been available as part of your daily commute, how often would you use it ?
• What wishes do you have about the future development on autonomous minibuses? Other feedback is also

welcome!

3.5. Operators Issue Reporting and Panel Interview Data

In order to analyze the risk mitigation via operational capacity of the pilot, operators’ daily
communication channel that covers the operational progress was analyzed. This channel was
operational from late August to late December in the format of a Skype chat. In general, most
operational challenges, issues and decisions went through this log, e.g., where and how to store the
bus, how to provide maintenance and electricity, weekly update on the daily working shifts of the
operators and various ad hoc issues ranging from leaves interrupting the automated mode to traffic
accident descriptions and its technical consequences. This log file, when imported to a Word document,
is approximately 215 pages and 47,000 words.

In order to perform document analysis, a qualitative research software based on text-coding and
analysis was applied using the ATLAS.ti software in order to map the operational capacity factors of
automated vehicles in three dimensions. The purpose of ATLAS.ti qualitative data analysis software
is to systematically analyze complex phenomena hidden in unstructured data (text, multimedia,
geospatial). The program provides tools that let the user locate, code, and annotate findings in
primary data material, to weigh and evaluate their importance, and to visualize the often-complex
relations between them. ATLAS.ti consolidates large volumes of documents and keeps track of notes,
annotations, codes and memos that require close study and analysis of primary material consisting of
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text, images, audio, video, and geo data. In addition, it provides analytical and visualization tools
designed to open new interpretative views on the material.

We came up with code words to find out main issues related to technology, traffic and environment
and their frequency. The code words were based on the area where the bus was driving (park), technical
aspects of the bus and the discussions in the Skype chat. Table 1 illustrates the used code words under
each topic and their frequency. The frequency of the code words gives only a partial overview of the
main issues. For example, the words “Signal” and “GPS/GNSS” have a low frequency, the fact that
there were issues with GNSS signal paused the operations for several weeks (see Section 4.3).

Table 1. The coding strategy of the log file.

Topic Used Code Words (Frequency)

Technical Technical, Signal (3), GPS/GNSS (3), Mechanical (1), Battery (45), Computer (4),
Software (5), Door/s (79), Tire/s (8), Wheel/s (2)

Traffic Car (48), Parking (30), Congestion (2), Pedestrian, People/Person (96), Sign (8),
Bicycle (1)

Environment Rain (16), Temperature (3), Leaves (42), Trees (2), Branches (5), Snow (5), Squirrel (1)

In addition to the document analysis, we invited all four operators to a face-to-face panel interview
that took place in the beginning of February 2020. The panel interview with joint discussions and
responses from operators took approximately 1.5 h and it was recorded. The aim of the panel interview
was to gather additional feedback from operators that participated in all rides, regarding the technology,
traffic and environmental operational capacity factors. The openly structured questions were the
following, translated from Estonian:

• Please describe your operational experience on the Navya shuttle bus and its technology (sensors, software
etc.)

• How long did you operate issue-free?
• What were the most common issues during the operation?
• What caused these issues (environment, technology, traffic)?
• What were the main weather conditions that influenced the operation? (Specific questions on the impact of

precipitation, wind, temperature, extreme weather condition etc.)
• How many issues directly or indirectly influenced the weather? (on the scale from 1–10)?
• Could you describe the split between routine and dynamic factors?

4. Results

In total, 152 passengers answered the survey out of the 3877 people that took the ride between late
August to late December with a response rate of 4%. 55.3% of the respondents were women and 44.7%
were men. 35.5% of the respondents were between the ages of 31–45, making it the most dominant age
group. The least represented group was >61 as only 10.5% of the respondents were part of this age
group. A large majority, 62.5% of respondents, reported that they were employed. 14.5% of respondents
were students, 12.5% self-employed or other, and 9.9% were retired or unemployed. The survey was
dominated by people with higher education as 64.5% reported that they had a university degree. 20.4%
of respondents had a secondary education or vocational degree (see Figure 3).
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  Figure 3. Socio-economic data of respondents: age (a); education (b); occupation (c) and gender (d).

4.1. Automated Driving Experience and Implemented Safety and Security Precautions

When operated, the risks were reduced by always having an operator onboard and also by careful
design of a pilot including low-intensity traffic and mandatory seatbelts. Specifically, the mobility
risks were mitigated by relatively low average speed (7 km/h) with maximum speed capped at around
15 km/h for a 1700 m route with four stops (average time was 15 min for a full ride). The pilot ran in
low-intensity traffic with no traffic lights, with relatively simple junctions, and avoided service during
the weekly peak times (the service was not operated during the weekdays between 8:00–10:00 and
16:00–18:00). Most importantly, an operator was always ready to take over the manual control.

The importance of safety precautions also came out in the panel interview with operators
that indicated a rather high amount of downtime. For example, during three weeks in October,
approximately 50% of the time, the service was not operational in order to prioritize the safety and
security of passengers (see also Figure 4).
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In this mitigated risk situation, the general feedback from 152 passengers taking the ride was
remarkably positive with no extremely negative scores, see Table 2. In order to analyze potential
socio-economic factors influencing the overall feedback, we also performed a regression analysis
based on generalized linear regression coefficients, see Table 3. As a result, none of the variables have
statistically significant effect on the overall experience score, making correlation analysis not central to
this study.

Table 2. Mean scores on safety, security and overall experience.

Mean Median Scale

Traffic safety 6.06 6 1 (very unsafe) to 7 (very safe)
Personal security 6.33 7 1 (very unsafe) to 7 (very safe)

Overall experience 4.79 5 1 (very bad) to 5 (very good)

Table 3. Regression analysis.

Factor Estimate Std. Error t Value Pr(>|t|)

Intercept 4.84 0.27 17.72 0

Education

Primary education −0.13 0.24 −0.53 0.6

Secondary education 0.19 0.25 0.76 0.45

University degree −0.04 0.25 −0.15 0.88

Age

>60 −0.12 0.33 −0.35 0.72

18–30 −0.01 0.26 −0.03 0.98

31–45 −0.16 0.28 −0.6 0.55

46–60 −0.05 0.28 −0.19 0.85

Gender Male 0 0.09 −0.01 0.99

Occupation

Other 0.04 0.21 0.19 0.85

Self-employed 0.07 0.41 0.17 0.86

Student 0.13 0.17 0.74 0.46

Unemployed/retired 0.14 0.2 0.73 0.47

How often public
transit used

Less often 0.06 0.11 0.56 0.58

Never 0.18 0.34 0.53 0.59

Weekly −0.11 0.11 −1.04 0.3

Carefully managed risks also indicated that people are more willing to use the minibus without
an operator onboard, either already now or in the future (most people responded “yes, definitely” or
“yes, but not now” to the question “Would you use it without an operator onboard?”). This also is
represented in the question regarding feasibility for the use of kids—the vast majority of respondents
would allow children to use the service to travel to/from school, either alone or attended (Figure 5).

There were no clear differences regarding the preferred use cases of the automated shuttle
service—demand for last-mile, bad weather, heavy items and closed areas was relatively equally
represented, with no-use case option (“never”) not selected. On the other hand, respondents would
prefer to use this service for the daily or weekly commute—indicating actual need for the last-mile
service between the tram stop and the National Art Museum (most responses, see Figure 6).
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Figure 5. Use without operator (a) and feasibility for children (b).
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  Figure 6. Demand for the automated bus service: commuting frequency (a) and preferred use cases (b).

4.2. Automated Driving User Experience in Terms of Safety and Security

Passengers taking the ride gave strong positive feedback to the general safety and security onboard
questions, see also Table 2. On the other hand, when asked the same questions from the control group
(55 respondents) in a more theoretical way, without being linked to the actual driving experience
(“How would you feel about general traffic safety onboard?” and “How would you feel about your
personal security onboard?”), this gave significantly lower average scores (4.8 and 5.0, respectively).
Thus, we can conclude that the group that took the ride perceived safety and security significantly
differently compared to the group with no driving experience (see Table 4). However, these differences
cannot be claimed to be statistically significantly different as they represent different populations. In the
group taking the ride, most people were employed, had university education and were most often in
the age group of 31–45—see also Figure 3 above. This survey was done in two languages—Estonian
(87 responses) and English (65 responses) and was both fully voluntary and anonymous. However,
the “no pilot” group consisted of Estonian students of whom over 90% were females in the age group
of 18–30. The survey was also not fully anonymous nor voluntary.

Table 4. Mean scores on safety and security (pilot/control group).

Pilot Group Control Group Scale

Traffic safety 6.06 4.82 1 (very unsafe) to 7 (very safe)
Personal security 6.33 5.07 1 (very unsafe) to 7 (very safe)

Number of respondents 152 55
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4.3. Key Factors Influencing the Daily Operations of an Automated Shuttle Bus

Based on the panel interview and the daily communication channel analysis, we can say that
the most common issues that hindered the bus operation were related to traffic and environment or
were technical in nature. Due to that, the automated shuttle bus had significantly more issues with
downtime than expected, as explained earlier.

Firstly, several technical issues were experienced during the pilot. The biggest technical issue was
related to GPS connection, which, for some time, made it impossible to operate the bus autonomously.
There was also a mechanical issue with doors which prevented them to open and close properly.
Although the error was not related to sensors, cameras or the GPS which help to make the vehicle
autonomous—according to the operators, this decreased passengers’ trust towards the technology as it
was a visible error. There were also problems with charging the battery as the museum’s electric panel
often switched off due to overload. Additionally, the air conditioning did not work properly which
made it more complicated to work in low temperatures in November and December. The main reason
for several technology-related errors was that the technical support was provided from a distance
(from Denmark and/or France). For example, there was an issue with doors not working properly
and it took one operator four days to understand how to open and close these doors. In addition,
the distant problem-detection decision tree assumed that most challenges are related to issues with
software, although the problem with doors was actually a mechanical one.

Secondly, traffic also influenced the operational capacity. Despite low-intensity traffic, several
traffic-related issues were brought up by bus operators. For example, the bus did not understand that
it is in a traffic jam and started to “beep” as it thought there was an obstacle in front. In addition,
everyday operations were influenced by cars parked on the road (often not legally) and cars driving
against the rules in the opposite direction on a one-way street. As the bus was operational around one
popular park, there were also issues with pedestrians who either crossed the road in the wrong place or,
on purpose, tested whether the bus would stop or not, if suddenly interacted with. The operation was
ceased for weeks due to one traffic accident with a heavy goods vehicle which ignored the automated
bus and hit it at a slow speed.

Lastly, several environmental factors affected the operations. According to operators, weather had
a significant impact on the operation. During the operations from the end of August till December 21st,
the main issues linked to weather conditions were related to rain, leaves, and temperature. All these
issues also occurred due to seasonal changes. Rain, falling and already fallen leaves were the main
weather-related issues in September and October. While falling and already fallen leaves caused the
bus to have an emergency stop 10–15 times per circle, the combination of leaves with heavy rain
made it impossible for the bus to drive smoothly. During such times, the operation was paused and
continued when the rain stopped. In December, temperature started to become an issue because of
two reasons. When the bus was not operating, it was stored in the outside tent located at the parking
lot of the Estonian Art Museum as there was no warm garage in the vicinity that could be used. After
each day of operation, the bus was left in the tent with its battery charging for the next morning.
As battery charging needed at least more than 5 degrees Celsius temperature, the tent was equipped
with additional radiators to keep the temperature above that threshold. Extreme temperatures made it
also necessary to turn on the heating or air conditioning which decreased the daily operating hours
because of the increased power consumption. In addition to the weather, other environmental factors
played a role. For example, the bus stopped due to birds that flew in front of the sensors as the bus
recognized them as obstacles. The bus also stopped due to outgrown tree branches, especially during
the heavy wind. The biggest environmental issue was the seasonal change. After the leaves completely
fell from the trees, the bus did not recognize the environment as it did not match with the pre-mapped
route and the pilot had to be paused till the Navya technicians solved the problem.
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4.4. Open Feedback and Suggestions for Future Pilots

In the case of the open feedback questions of the pilot survey, positive comments dominated.
In total, 61 people gave additional comments (frequency of 40%). Most of the suggestions and
comments dealt with the size of the bus, smoothness of the ride, capability of the bus to overcome
obstacles, the wish for more pilots, and feedback about bus operators. Several people pointed out that
the bus is too small. This refers to the fact that the bus was operational in one of the main parks in
Tallinn which is also a popular tourist destination. In crowded areas like Kadriorg Park, it would be
reasonable to provide the last-mile service with at least two buses. Survey respondents also wished for
more such pilots in areas where last-mile service would be needed and for popularization reasons.
Survey respondents also wished that the bus could better detect and pass obstacles, evaluate the
surrounding environment, drive more smoothly and without bumpy breaks which can happen due
to unexpected obstacles, and read traffic signs. These issues are mostly related to the technological
limitations. It might also refer to the fact that people have high expectations towards the technology
and expect close to zero errors. People also pointed towards the issues with connectivity which
happened during the pilot as the bus used GNSS as one of the tools for navigation. Several positive
comments were left about the bus operators. Respondents were happy to get additional bus-related
information from the operators. One respondent pointed out that an operator was very useful while
the bus had technical issues. It shows that during the early piloting and adoption of the technology, bus
operators are important. Another respondent wished for this bus to have similar speed to manually
driven buses.

5. Discussion and Conclusions

The current paper is an addition to the research which investigates mobility acceptance towards
AVs. The key contribution of this paper is to point out that it is not so much perceived safety and
security concerns but rather technological challenges of integrating such a last-mile service with urban
mobility. Compared to most other studies that are based on online surveys and give no possibility for
respondents to actually experience the technology, the current study investigates user acceptance after
they had taken a ride with an automated shuttle bus. A total of 152 people out of 3877 passengers
answered the survey. Passengers taking the ride with an automated minibus provided positive
feedback on security and safety and overall experience. In the regression analysis of the overall
feedback and socio-demographic factors, we did not find any statistically significant differences—this
could be due to the biased data towards good experience grades. To ensure traffic and passenger safety,
the bus did not offer service for passengers if major issues or risks were identified. This resulted in
significant downtime of the service. Thus, we can say that the service was offered only during close to
perfect conditions.

The results were compared with a control group that consisted of 55 students who did not take a
ride with the shuttle. Passengers taking the ride gave more positive feedback to the general safety and
security onboard questions compared to the control group. These results are also in line with several
other studies that have shown that the ride with an automated shuttle bus had a reassuring effect on
safety [26] or that the experience enhances the feeling of safety [27]. Based on these results, we can
argue that the feedback from passengers to an automated driving experience is also related to the
risk management during the pilots as the bus was operational only when the conditions were close to
perfect and allowed a smooth drive.

We can say that the most common issues that hindered the bus operation were related to traffic
and environment or were technical in nature, thus making this dimension important for future mobility
risk management. Importantly, the technical issues were considered as the biggest ones. The issues
were related to the technology that makes the shuttle autonomous but were also more trivial such as
issues with doors. Although it is understandable that the development of sensors, radars and other
technologies, which makes a vehicle autonomous, is the priority for these companies, cutting corners
from mechanical reliability can have negative implications from the user acceptability side.
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The study has several limitations related to how the pilot was conducted and how the survey was
designed. This survey does not represent the entire population as the sampling was not representing the
passengers that voluntarily took the automated shuttle bus ride—this came from the pilot design with a
goal to offer free and open service for everybody. For future research, an interesting contribution would
be to invite participants based on sampling tools—only the ones invited from the general population
could participate in the survey. In addition, the control group could be also sampled from the same
pool. To our knowledge, this kind of randomized approach is lacking in the literature. The survey
could benefit from a higher response rate, e.g., by having a paper-based alternative. Paper-based
responses could increase the response rate among elderly people who, in the current survey, were an
underrepresented group. Although the bus was driving in open traffic, the pilot was carried out in
the area which has a much lower traffic intensity compared to most other parts of the city. The speed
was also limited to 15 km/h. It is also important to point out that for safety precautions, the operation
was paused if during severe rain, the bus started to make emergency brakes. These factors could have
improved the feeling of safety among the passengers. One of the main limitations of the survey was the
fact that the respondents were not chosen based on a random sample. All respondents were passengers
who chose to respond to the survey themselves. This limits the generalization of the results to a wider
population. For example, the majority of respondents were people with higher education. We can
assume that these people are also keener towards using and testing new technologies compared to the
rest of the population. Although, according to the operators, the bus mostly served elderly people,
they were underrepresented in the survey. The reason for this was probably the fact that the survey
took place online. The survey also did not provide much in-depth information about respondents’
mobility patterns or socio-economic or health status.

For further research, focus should be directed towards socio-economic groups that so far have
been underrepresented in different studies. These include people with different disabilities, elderly
people or children. Such research would provide valuable insight about the needs that every such
group has in using autonomous technology. For example, people with different disabilities might
feel more uncomfortable if there is no driver/operator in the vehicle, as they might need help in
using transportation. Therefore, the question for AV manufacturers, public transport authorities and
operators is which obstacles can be solved and how they can be solved.
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