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Abstract: The world population will reach 9.8 billion by 2050, with increased urbanization. Cycling is
one of the fastest developing sustainable transport solutions. With the spread of public bike sharing
(PBS) systems, it is very important to understand the differences between systems. This article focuses
on the clustering of different bike sharing systems around the world. The lack of a comprehensive
database about PBS systems in the world does not allow comparing or evaluating them. Therefore,
the first step was to gather data about existing systems. The existing systems could be categorized by
grouping criterions, and then typical models can be defined. Our assumption was that 90% of the
systems could be classified into four clusters. We used clustering techniques and statistical analysis
to create these clusters. However, our estimation proved to be too optimistic, therefore, we only used
four distinct clusters (public, private, mixed, other) and the results were acceptable. The analysis of
the different clusters and the identification of their common features is the next step of this line of
research; however, some general characteristics of the proposed clusters are described. The result is a
general method that could identify the type of a PBS system.
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1. Introduction

According to the UN forecast, the world population in mid-2017 was about 7.6 billion people,
and by 2050 it is predicted to reach 9.8 billion. Along with this, urbanization is expected to increase [1,2].
Cycling is one of the fastest developing sustainable transport solutions [3–6]. Modernized and urban
lifestyles have faded away physical activity of everyday life and this has resulted in a threat to
population health caused by sedentary lifestyles [7]. It is estimated that physical inactivity causes
21–25% of breast and colon cancer and even greater proportions are estimated for diabetes (27%) and
ischemic heart disease (30%) [8].

Public bike sharing (PBS) systems, also known as “Public-Use Bicycles”, “Bicycle Transit,”
“Bikesharing”, or “Smart Bikes,” can be defined as a short-term urban bicycle rental schemes that allow
bicycles to be picked up at any self-service bicycle station and returned to any other bicycle station,
consisting in point-to-point trips [9]. Basically, people use bicycles on an “as-needed” basis, without
the responsibility of the bicycle ownership [10]. Nowadays, different type of PBS systems start to
spread all around the world, which can be operated without the docking stations, hence called dockless
systems [11,12]. With the spread of public bike sharing systems, it is very important to understand the
differences between systems [10,13–16]. Without understanding the differences neither the impact of
these systems can be calculated, nor is high-quality decision support possible.

We developed a complete framework during a doctoral research for analyzing, comparing,
and categorizing public bike sharing systems, as such a comprehensive system is still missing from the
literature [17]. The first level of our framework is to collect data about existing systems and perform a
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cluster analysis. Then, a SWOT (strengths, weaknesses, opportunities, and threats) analysis for each
cluster is compiled based on the examined systems. The third step is to create a benchmark tool,
which supports the evaluation of systems. At the fourth level, impact analysis and impact assessment
are carried out [18–21].

The present article deals with the clustering of different bike sharing systems around the world
(i.e., it concerns the first level of our framework). The lack of a comprehensive database about PBS
systems in the world does not allow for a simple comparison or evaluation of the systems [22].
Furthermore, the original goal of the creation of a PBS system is quite often unclear [23]. Without
knowing the initial goal, the success of the system cannot be evaluated. A systematic literature review
and scientometric analysis was conducted by Si et al. [17] from most of the bike-sharing-related
articles between 2010 and 2018 from which it is clear that the researchers main focus was not on
business models.

Several articles analyze the value creation of a bike sharing system [10,24–26], although all of them
start from the assumption that there are several distinct business models for bike sharing. DeMaio [16]
introduced several examples of model provision in his article, but there was no clear definition of the
different models. Other articles [24,25,27–29] are using the business model canvas [30] approach or at
least some of its elements, but these are not provide an easy to use categorization.

Our initial idea was to apply an unsupervised machine learning algorithm to a dataset,
which should lead us to findings related to business models. This approach was applied in other
industries like the Spanish scientific journals [31] or electric mobility [32] successfully. The cluster
analysis methodology was not up to now applied in the field of PBS business models, but we collected
a large dataset, which can be used to this purpose.

The goal of the clustering process is to create groups (clusters of objects) of the dataset, in a way
that: (i) the objects in a given cluster are similar as much as possible; and (ii) the objects belonging
to different clusters are highly different [33].The cluster analysis usually applied in the domain of
spatial studies related to public bike sharing (e.g., [34–37]). In this field, the studies mostly focus on
the distribution of bikes or stations.

Our main assumption is that a large proportion (i.e., 90%) of the public bike sharing systems
around the world could be classified into one of the four clusters. These clusters are formulated based
on the type of the owner and the type of the operator. A SWOT analysis based on this categorization
could help PBS project promoters and owners to develop higher-quality systems. The clustering
methodology proposed by the authors contributes, among others, to reducing a large number of
primary data to several basic categories that can be treated as subjects for further analysis in the public
bike sharing domain.

2. Methodology

Our research followed the steps described in Figure 1.
The first step was data collection, which was followed by the initial dataset analysis. Then, the first

cluster analysis based on expert opinion was conducted. The statistical tests and regression analysis
were applied in order to select the parameters for the second cluster analysis. In the end, both internal
and external cluster validation techniques were applied. During the analysis of the results, we compared
three scenarios to each other, where different parameters were considered:

• The entire dataset (all collected 64 parameters),
• Selected parameters based on multinomial regression,
• Only operator and owner parameters.
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Figure 1. Flow-chart for the cluster analysis.

2.1. Data Collection, Database

The original idea was to collect 80 parameters on 125 systems around the world. The collection of
this data was based on open web databases and the webpages of the different bike sharing systems.
We assumed that the data of the bike sharing system website are up-to-date and accurate. Our starting
point was the collection of systems by Meddin [38]; this database contained 2124 active systems at the
beginning of 2019. We selected the 125 systems based on the following criteria:

• 50 systems from Europe, 50 systems from Asia, 5 systems from Australia and New Zealand,
and 20 systems from the Americas,

• 3/4 should be docked systems, while the remaining 1/4 is dockless.

After a 6-month-long collection period, we had to reduce the dataset to 64 systems and
64 parameters. We made the decision that to exclude the dockless systems (n = 31) from the
analysis and only focus on docked bike sharing. There were several systems (n = 30) where—despite
all efforts—we did not reach the minimum viable information. These systems were excluded from the
analysis so as to not distort the results. Out of the originally desired 80 parameters, we had to exclude
some due to the lack of available data. For example, we intended to gather information about the goals
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of the different systems, although it was not possible since very few system declare their initial goal,
as Ricci pointed out earlier [23].

The final database was grouped around the following main topics:

• Location of the systems (Continent, Country, City, etc.),
• Contextual data (climate, start year of operation, size of the city, size of the service area, population,

income, topology of the city, etc.),
• Data about the system (owner, operator, number of bikes, number of stations, etc.),
• Fare system (access fee, usage fee, deposit etc.),
• Data related to the system operations (when it is closed, how a bike can be hired, etc.),
• Derived data (bike density, station density, etc.).

2.2. Dataset Analysis

The first step was to visualize the dataset in a two-dimensional space. As the dataset itself contains
several parameters, a principal component analysis (PCA) algorithm was used to reduce the number
of dimensions. The algorithm presents the results in a scattered plot diagram, which gives us an easily
understandable visual representation of the dataset [33].

There are several methods to calculate the distance between each pair of observations. Gower
distance [39] is one of the few measures that are capable of handling both categorical and continuous
variables, therefore this method was used for our calculation. The dissimilarity between two variables
is the weighted mean of the contributions of each variable. This automatically implies that a particular
standardization process is applied to each variable.

The daisy function from the cluster package [40] is suitable for calculating Gower distances in R.
The result of computation of these distances is known as a dissimilarity matrix. The Gower distance
can be described with the following Equation (1).

di j =

∑p
k=1 ωk ∗ δ

(k)
i j ∗ d(k)i j∑p

k=1 ωk ∗ δ
(k)
i j

(1)

where di j is a weighted mean, ωk is the weight, δ(k)i j is the 0–1 weight, which becomes zero when the
variable x[, k] is missing in either or both rows (i and j) or when the variable is asymmetric binary
and both values are zero and in all other situations it is 1, and d(k)i j − kth variable contribution to the
total distance

We analyzed the entire dataset from the cluster tendency point of view. During the visual
assessment of clustering tendency (VAT approach), we used the following steps:

1. Compute the dissimilarity matrix for the data set using Gower distance.
2. Reorder the dissimilarity matrix so that similar objects get close to one another, which results in

an ordered dissimilarity matrix.
3. The ordered dissimilarity matrix is converted into an image for visual inspection.

The color level is proportional to the value of the dissimilarity between observations.
The observations in the same cluster are displayed in a consecutive order [41].

After the visual inspection, we also used the statistical method called Hopkins statistic to evaluate
clusterability. This method measures the probability if a dataset was generated by a uniform distribution,
so it tests the spatial randomness of the data. The calculations are the following:

• Get a random sample from the original real dataset.
• Compute a distance from each point to each nearest neighbor of the original real dataset.
• Generate a random dataset based on uniform distribution with the same variation as the original

real dataset.
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• Compute a distance from each point to each nearest neighbor of the random dataset.
• Calculate the Hopkins statistics (H) as the mean nearest neighbor distance in the random

dataset divided by the sum of the mean nearest neighbor distance in the original real and the
random dataset.

The formula of Hopkins statistics can be defined as below (2):

H =

∑n
i=1 yi∑n

i=1 xi +
∑n

i=1 yi
(2)

where H is the Hopkins statistics, yi is the nearest neighbor distance in the random dataset, xi is the
nearest neighbor distance in the real dataset, and n is number of sample points in the dataset.

The null hypothesis is that the original real dataset is uniformly distributed (i.e., there are no
meaningful clusters). The alternative hypothesis is that the dataset is not uniformly distributed.
(i.e., there can be find meaningful clusters). If the Hopkins statistics is close to 1, we can reject the null
hypothesis and conclude that there is significant clusterability. A higher than 75% value indicates a
clusterability at the 90% confidence level.

2.3. Clustering Based on Expert Opinion

Our main hypothesis was that most of the PBS systems can be clustered based on the owner type
and the operator type. Therefore, during data collection, we used two owner categories: Public and
Private, while in the type of operator we created 4 categories: Advertising company, Private Company,
Service provider, and Public. Based on these types, we created 4 clusters, which can be seen in Table 1.
This categorization was based on the expert opinion of the two authors.

Table 1. Clustering logic based on the operator and the owner.

Cluster Number Owner Operator Comment

1 Public Advertising company

An advertising company provides services to a
public institution, the income for the

advertising company might not be realized
from the direct user fees, but from some

advertising spaces around the city

3 Public Service provider

A service provider operates a system on behalf
of the public institution, the income for these

service providers can be an
availability payment.

4 Public Public
A public institution operates the system or sets
up a public company for operation, the income

is directly from the user fees.

2 Private Private company
The owner of the system is the same private

company as the operator, the incomes are from
the user fees and from the advertisements.

2.4. Univariate Statistical Tests

In order to determine which of the 64 parameters should be included in a multivariate regression
model, some preselection is required [42]. As the dependent variables are both categorical and
continuous, while the independent variable is categorical, we had to use two types of statistical tests.
We used the SPSS statistical software for these tests.

We used the Pearson’s chi-square test to discover whether there is a relationship between
two categorical variables. As all the variables were measured at an ordinal or nominal level
(i.e., were categorical data) and both variables consist of at least two independent groups, the test was
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applicable. The null hypothesis was that Variable 1 (Cluster) is dependent from Variable 2 (all other
categorical variables) [43].

We used the one-way ANOVA test to determine if there is a statistical difference between the
means of independent groups and the population. The independent variable (cluster in our case)
divides the dataset into mutually exclusive groups. We used this test where the dependent variables
were continuous. The null hypothesis was that all group means are equal, while the alternative
hypothesis was that at least one of the group means is not equal to the others. As the one-way ANOVA
is an omnibus test, we do not know which of the groups are different [44].

We selected a higher significance level for both tests not to eliminate the possible candidates from
the multivariate regression analysis as it was suggested by Bursac et al. (2008). If the p-value was less
than our chosen significance level (α = 0.25), we rejected the null hypothesis, and concluded that there
is an association between our two variables, therefore we selected the dependent variable for further
tests [42].

2.5. Multinomial Regression

We used multinomial logistic regression to predict the nominal dependent variable (cluster of the
PBS system) based on the preselected independent variables (both categorical and continuous ones).
This also allows to have interaction between the independent variables to predict the dependent one.
We used the SPSS statistical software for this.

The applicability of this method is based on the following assumptions:

• The dependent variable is a nominal one and should be mutually exclusive.
• There are two or more independent nominal or continuous variables.
• There should be no multicollinearity.
• There need to be a relationship between any continuous independent variable and the logit

transformation of the dependent one.
• There should be no outliers.

We checked the entire dataset for the first 3 assumptions. The multicollinearity assumption was
continuously tested for each different model and the rest was automatically tested in SPSS. As the
software is not capable of running any automated model selection processes due to categorical variable,
we decided to use the backward method and computed each step manually. First, we eliminated those
independent parameters where we believed that the relationship to the dependent one would only be
statistical, but there is no real reason to be related (e.g., start of operation, country etc.). Then, we added
all remaining parameters to the model. We selected the variables with multicollinearity and eliminated
one of them based on the significance. We reduced the model until we got a statistically significant one.

2.6. Cluster Analysis for Selected Parameters

We used a clustering method for creating associated groups from the dataset. We used the same
method with different parameter sets. We decided to use a k-medoids algorithm, which belongs to the
k-means clustering approaches. The most commonly used method is the partitioning around medoids
(PAM) algorithm [45]. The PAM algorithm is based on the search of k representative medoids in the
dataset and then it clusters the remaining dataset around them. As it does not use the means of the
cluster, this method is less sensitive to outliers. The method consists of two phases: The build phase
and the swap phase. In the build phase, the first step is the selection of k medoids. The second step is
the calculation of the dissimilarity matrix, while the third step is the assignment of each observation
into the closest medoids (therefore cluster), based on the calculated distance. In the swap phase,
the fourth step is to check if swapping the current medoid of the cluster to any other object in the given
cluster is reducing the average dissimilarity. If this happens, the cluster medoid should be changed to
the new object and we must go back to the third step and start over again. If none of the medoids
change in the fourth step the procedure stops.
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We used the R software [46] and the factoextra package [47] to compute the clustering. We used
Gower distance to calculate the dissimilarity of the variables.

2.7. Internal Cluster Validation

In order to determine how good the clustering is, we applied internal cluster validation statistics,
which uses the internal information of each cluster without external data. All the different statistics
measure the compactness, the separation, and the connectedness of the different clusters [40,48].

• The average distance between clusters measures the separation of clusters; as the average distance
increases, so does the separation.

• The average distance within cluster objects measures the compactness of the clusters; as it decreases,
the compactness increases.

• The average silhouette width also measures the separation between clusters. Each silhouette width
coefficient is close to 1 if the object is in the right cluster, 0 means that the object is between clusters
and −1 means that the object is entirely in the wrong cluster. So, we want the average to be as
close to 1 as possible.

• The Pearson Gamma or normalized gamma coefficient shows the correlation between distances and a
01-vector where 0 means same cluster and 1 means different clusters.

• The Dunn index may be calculated in two ways, but in both cases, the Dunn index should be
maximized: In the first version, the minimum separation divided by the maximum diameter; in the
second way, the minimum average dissimilarity between two cluster divided by the maximum
average within cluster dissimilarity.

In addition to the statistical indexes, we can also use visual methods to explore the results of
clustering. The first possibility is to visualize the clusters with PCA in a two-dimensional space.
The other option is the silhouette plot, where the diagram shows the silhouette coefficient for each
object in an ordered way separated for each cluster.

2.8. External Cluster Validation

During the external cluster validation, we can compare two cluster validation techniques to each
other. As in this research we created an expert based categorization as well as the wider parameter-based
cluster using PAM method, we can compare the two categorizations to each other. The external cluster
validation parameters measure how the external cluster number is matched to the clustered one.

The Rand index [49] measures the similarity between two clusters; its range is from−1 (no common
value) to 1 (completely the same). The Variation Index described by Meila [50] is also a valuable tool to
measure the similarity of the two clusters.

3. Results and Discussion

The initial phase of our research was to collect the necessary data for our clustering analysis.
We shared all the data which collected for this purpose online [51].

We presented the results in three different scenarios below. In the first case, we always made the
assessment on the entire dataset. The second presented scenario is the one with the selected parameters
based on multinomial regression. The third case is when we only use the operator and the owner
parameters. We used Gower distance here as the measure of dissimilarity of the different objects.

We visualized the raw dataset in a two-dimensional space using PCA methodology (Figure 2).
The two axes have no specific meaning, they only provide an artificial scale for visualization purposes.
Although the scaling and the axes of the figures are not the same, it is viable for comparing the resulting
patterns to each other. The dataset with all parameters is less clusterable than the one with selected
parameters. In the last one, only four datapoints are visible, since the entire dataset is clustered into
these four points.
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Table 2. Results of the Chi-square tests. 

Parameter Value Asymptotic Significance (2-Sided) 
Owner 63.574 0.000 

Operator 183.798 0.000 
User_card_dock 15.654 0.001 

Wout_registration 12.026 0.007 
User_card_terminal 11.718 0.008 

Int_user_card 11.156 0.011 
Deposit_short 11.148 0.011 

Continent 19.562 0.021 
Credit_card_terminal 9.109 0.028 

Mobile_station 8.045 0.045 
App_bike 7.999 0.046 

Figure 2. Dataset visualized with principal component analysis (PCA) (a) based on all parameters;
(b) based on the selected parameters; (c) based on the operator and owner parameters.

The same conclusion can be drawn from the heatmap resulting from the VAT approach (see Figure 3)
as well as from the Hopkins statistics. The factoextra package [47] implements Halt = 1 −H as the
definition of H provided in the methodology section. Halt = 0.2661683 proved to be for all parameters
(scenario 1), while Halt = 0.1565344 for the selected parameters (scenario 2). We used the seed number
123 for the calculation of Hopkins statistics.
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We used the SPSS for the preselection of the parameters for the multivariate regression. Table 2
contains those variables whose p-value is lower than the chosen significance level (α = 0.25) in the
Chi-square test.

Table 3 contains those variables whose p-value is lower than the chosen significance level (α = 0.25)
in the one-way ANOVA test. Parameter names can be found next to the dataset description in [51].

After seven iterations with the multinomial regression, the model with the following parameters
were selected:

• Factor: Int_PT_fare, Int_user_card, Wout_registration, Deposit_short, Mobile_station.
• Continuous: First_30, Agglo_coverage, Station_density, Long_aff, E_bike_density, Bikes.

We ran the cluster analysis in the R software using the PAM method for all three scenarios with
k = 4. As shown in Figure 4, the clustering is better with the selected parameters.
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Table 2. Results of the Chi-square tests.

Parameter Value Asymptotic Significance (2-Sided)

Owner 63.574 0.000
Operator 183.798 0.000

User_card_dock 15.654 0.001
Wout_registration 12.026 0.007

User_card_terminal 11.718 0.008
Int_user_card 11.156 0.011
Deposit_short 11.148 0.011

Continent 19.562 0.021
Credit_card_terminal 9.109 0.028

Mobile_station 8.045 0.045
App_bike 7.999 0.046
Country 126.487 0.051

Hour_closed 6.995 0.072
Diff_station 19.487 0.077
Code_dock 6.133 0.105

Code_terminal 6.106 0.107
Diff_renting_option 25.603 0.109

Deposit_long 6.050 0.109
Int_PT_Fare 5.415 0.144
Code_bike 4.287 0.232

Table 3. Results of the one-way ANOVA tests.

Parameter F Significance

Operation 13.773 0.000
Deposit_short_EUR 4.367 0.007

Service_area 3.877 0.013
Deposit_long_EUR 3.793 0.014

E_bikes_dens 3.686 0.016
Station 3.433 0.022
Bikes 3.365 0.024
Docks 3.141 0.031

City_size 2.337 0.082
Population 2.096 0.109
Long_att 1.884 0.142
Long_aff 1.818 0.154
First_30 1.776 0.160

Agglo_coverage 1.555 0.209
Station_density 1.449 0.237
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The results of the clustering can be described with the average silhouette width of each cluster
(Table 4) and the silhouette plots Figure 5). The average silhouette width increases to 1 in the absolutely
clustered scenario. The cluster based on the selected parameters has no negative data in cluster 1 and
2, which means a good clustering result.

Table 4. Cluster size and average silhouette width in three different scenarios.

Cluster Id.

Based on All Parameters Based on the Selected Parameters Based on the Operator and
Owner Parameters

Cluster Size Average
Silhouette Width Cluster Size Average

Silhouette Width Cluster Size Average
Silhouette Width

1 25 0.04 19 0.33 14 1
2 11 0.10 15 0.60 15 1
3 20 0.12 17 0.22 23 1
4 8 0.17 13 0.24 12 1
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The internal cluster validation statistics shows similar results (Table 5). Where it is appropriate,
the owner and operator scenario has the theoretical minimum or maximum values. There are some
exceptions e.g., the first Dunn index shows worse results for the selected parameter scenario than the
all-parameters one.

Table 5. Internal cluster validation statistics for the three different alternatives.

Based on All
Parameters

Based on the Selected
Parameters

Based on the Operator
and Owner Parameters

Number of observations 64 64 64
Average distance between clusters 0.2543182 0.330922 0.7448368

Average distance within cluster 0.2315138 0.1898745 0
Average silhouette width 0.01317239 0.356468 1

Pearson Gamma coefficient 0.1585032 0.4660481 0.8330978
Dunn index, first version 0.2005322 0.1838311 ∞

Dunn index, second version 0.8049529 1.323103 ∞

External cluster validation was based on the clustering related to the expert opinion. Therefore,
the last column of Table 6 is just for reference purposes; obviously, it has no meaning besides that the
statistical calculation is working.

Table 6. External cluster validation statistics for the three different alternatives.

Based on All Parameters Based on the Selected
Parameters

Based on the Operator
and Owner Parameters

Corrected Rand index 0.07757761 0.4368271 1
Variation Index 2.22212 1.217804 4.440892 × 10−16
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The results of the clustering algorithm for the selected parameter can be seen in Figure 6.
There is a distinct cluster which is clearly different from the others, while the remaining three are
somewhat overlapping.
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We compared expert-based clustering with parameter-based clustering. Out of 64 systems,
42 clustered into the same cluster as the expert based method suggests and the remaining 22 (35%) were
misplaced by the clustering algorithm. Based on our results, we decided that these 22 systems should
be categorized as a fifth cluster, called Other. The clustering was correct for the systems, which were
owned by a private company: No system with such parameters was missing, and none was misplaced
to this cluster. The public systems showed similarly good results, as there were only 3 out of 12 that
were misplaced and even these 3 showed some similarity with the selected clusters (e.g., Bixi Montreal
is a public system, but has similarity with a commercial one, the two others were Chinese systems,
where the difference between a public or a private company is sometimes hard to spot).

Eleven systems were misplaced into the cluster where the operator is supposed to be an advertising
company, although all these systems are operated by a service provider. It was also true for the other
way around: Four systems out of five were misplaced into the cluster with a service provider as
operator, although they have an advertising company operator. This might indicate that the service
provider and the advertising company business model and those system characteristics are not as
distinct from each other as the purely public and purely private models.

If we only use three big clusters (purely public, purely private, and mixed), we end up only with
the miscategorization of 6 systems out of 64. The analysis of the different clusters and the identification
of their common features is the next step of this line of research, however some general characteristics
of the proposed four clusters can be described here as a starting point. The basis of these descriptions
is both the categorization described in Section 2.3 and the results of the clustering exercise:

• Cluster 1 (Public systems): Both the operator and owner of the system are public institutions.
The owner is usually a city or one of its companies. The operator can be the same organization
or a new one created for this specific purpose. The income is coming directly from the user
fees, but usually it requires subsidization. The goal of such a scheme usually is to provide an
alternative transport mode or educate the citizens rather than profit making. Typical example:
MVG Rad (Munich).
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• Cluster 2 (Private systems): Both the operator and owner of the system are private companies,
usually the same one. The income is coming from the user fees as well as advertisements.
The goal here is clearly profit making, therefore a more cost-efficient operation is envisaged.
Furthermore, some limitation related to the network or the users can be applied. Typical example:
NextBike Croatia.

• Cluster 3 (Mixed systems): The owner of the system is a public entity (usually a city or a transport
operator), while the operator is a private company. The goal of the owner is usually to provide
wider transport choices to citizens, while a private company is providing a service. There are two
distinct business models for the private company based on the main source of income. In both
cases, the user fees are collected for the owner, hence the financial risk from the usage is on the
owner side. In the first type, the service provider gets a service fee (availability payment) based
on a service level agreement. In the second type, the operator can use different advertising spaces
around the city to cover the expenses of the system operation. However, from the system point
of view, there are not enough distinct features of these two subtypes to cluster them separately.
Typical example: MOL-Bubi (Budapest-subtype 1); Velib (Paris-subtype 2).

• Cluster 4 (other systems): There are several systems that can be categorized by an unsupervised
algorithm to one of the above clusters based on the expert knowledge of the authors cannot fit
well with them. The reasons are usually hard to spot, but for instance, it can be that a public
company design a system with clear profit-making goals, or a private company acts similarly
towards a public entity. There are especially some outliers in the Chinese systems, due to the
specificities of the country political structure.

Additionally, there are some limitations with the current methodology. As it was stated above,
collecting all parameters from the different systems is a time-consuming process. Furthermore,
the current data become outdated very quickly as not only new systems emerge, but also the technology
changes. This research does not consider dockless schemes, although they have become more and more
popular in recent years [52]. At the same time, these systems are almost all profit-oriented, privately
funded systems, which can be easily put under the same, distinct category. The other problem with
this type of applied, data-driven approach is that an error in data collection can cause problems in
interpreting the results. This was one of the reasons that we chose a clustering method that is less
vulnerable to outliers.

4. Conclusions

In this study, we developed a method for categorizing public bike sharing systems, which consisted
of 8 steps:

1. Data collection,
2. Dataset analysis,
3. Cluster analysis I.,
4. Univariate statistical tests,
5. Multinomial regression,
6. Cluster analysis II.,
7. Internal cluster validation,
8. External cluster validation.

During data collection, we faced several problems, therefore only 64 parameters were collected
from 64 systems around the world [51]. The dataset analysis showed that the dataset is clusterable.
We selected the operator and owner type as initial parameters for expert based clustering, from which
we created four clusters.

We preselected 19 factor type and 15 continuous type parameters for multinomial regression, based
on the univariate statistical tests, out of which five factor parameters and six continuous parameters
were selected for the final model.
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We reran the PAM-approach-based clustering again with the selected parameters, which resulted
in better fit than in the case of all parameters. Forty-two systems were assigned to the correct clusters,
the remaining 22 were misplaced by the clustering algorithm. Our initial assumption was too optimistic,
as only 65% of the systems could be clustered with this method. Thirty-five percent fall into the “Other”
category. At the same time, if we only use three main clusters (public, private, and mixed), the error is
reduced to 6 systems out of 64.

This can be arguably a correct solution as the service provider and the advertising company
business model might not be separated. So, there are four proposed clusters: Public systems, private
systems, mixed systems, and other systems.

This article describes the basic characteristics of these clusters, however analyzing the
characteristics in details of the different clusters is the next step of this ongoing research. Additionally,
future research work will be devoted to overcoming some of the limitations of the presented
methodology. One of the main limitations is the data availability; if new, reliable data become
available (e.g., usage data, travel pattern, financial data), the current methodology can be expanded
to cover this. Another development path can be the inclusion of the dockless schemes to the current
analysis, which was neglected in this article due to the lack of reliable data.

This article can help for those who would like to apply the clustering methodology in a different
domain. At the same time, it can provide a basis for further research in the public bike sharing domain,
as the proposed methodology can be applied for a different set of PBS systems. A newly designed
system can be categorized based on the owner and operator, which can help to find similar systems
and identify problems and best practices in the earl stage. In other words, this paper can provide
significant added value for researchers and academics as well as policy makers and practitioners.
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