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Abstract: The impact of inclement weather on traffic flow has been extensively studied in the literature.
However, little research has unveiled how local weather conditions affect real-time traffic flows both
spatially and temporally. By analysing the real-time traffic flow data of Traffic Signal Controllers
(TSCs) and weather information in Brisbane, Australia, this paper aims to explore weather’s impact
on traffic flow, more specifically, rainfall’s impact on traffic flow. A suite of analytic methods has
been applied, including the space-time cube, time-series clustering, and regression models at three
different levels (i.e., comprehensive, location-specific, and aggregate). Our results reveal that rainfall
would induce a change of the traffic flow temporally (on weekdays, Saturday, and Sunday and at
various periods on each day) and spatially (in the transportation network). Particularly, our results
consistently show that the traffic flow would increase on wet days, especially on weekdays, and that
the urban inner space, such as the central business district (CBD), is more likely to be impacted by
inclement weather compared with other suburbs. Such results could be used by traffic operators to
better manage traffic in response to rainfall. The findings could also help transport planners and policy
analysts to identify the key transport corridors that are most susceptible to traffic shifts in different
weather conditions and establish more weather-resilient transport infrastructures accordingly.
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1. Introduction

The recent expansion of urban areas has brought the diversity of transportation modes in order
to meet the increasing traffic demands in daily life, which accordingly leads to a larger amount of
traffic flow on roads [1]. To deal with the various transportation modes, a deep understanding of traffic
demand and performance is critical [2]. Typically, traffic information contains many attributes such as
speed, flow, and density, among which traffic flow is normally considered as the essential element that
can illustrate the efficiency of traffic management and control [3].

The negative influence of adverse weather on traffic situation is becoming a major concern to
transportation authorities and agencies [4]. First, the external conditions, such as the roughness of
the road surface that can affect the skid of vehicles, could be altered, which may influence driving
behaviour and road safety accordingly. Meanwhile, the traffic pattern in adverse weather might
be different in contrast to the situation in a dry weather condition [5]. Overall, inclement weather
affects transportation in three aspects—demand, safety, and capacity (flow of traffic)—which has been
extensively investigated in the literature [4–9]. However, many of the studies primarily focused on
the fluctuation of the quantities of traffic flow that are affected by inclement weather and very few
studies explored the impact of wet weather conditions on temporal and spatial patterns of traffic
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flow. Furthermore, although some efforts have been made to quantify the spatial-temporal patterns of
real-time traffic flow [10–13], few of them associated the spatial-temporal patterns of real-time traffic
flow with weather information (especially the inclement weather information).

In this paper, to investigate weather’s impact on the spatial-temporal feature of traffic flow,
which describes how the traffic changes in the time-space domain [14], we consider one commonly used
weather parameter—precipitation, which implies the amount of rainfall and snowfall [15]. The utility
of combining traffic flow with weather information is that the temporal-spatial characteristics of traffic
flow under diverse weather conditions can be revealed, highlighted, and converted into distribution
patterns at the spatial and temporal dimension. To fully explore these characteristics, we adopt a
spatial-temporal analytic approach, which can both qualitatively visualise and quantitatively model
the spatial-temporal relationship between weather (rainfall in this study) and traffic flow.

Specifically, we first explore the distribution patterns of traffic flow in different weather conditions
using space-time cube and time-series clustering methods to visualise the spatial-temporal patterns of
traffic flow under dry/wet weather conditions, and then, detect weather’s impact on traffic flow using
statistical models, and identify the time and the location at which traffic flow was impacted by weather;
finally, we quantify weather’s impact on traffic flow at three different levels (i.e., comprehensive,
location-specific, and aggregate). The findings gained from the research can help transport planners
and policy analysts to identify key transport corridors that are most susceptible to traffic flow changes in
different weather conditions and establish more weather-resilient transport infrastructures accordingly.

The rest of the paper is organized as follows. Section 2 reviews relevant studies in the literature.
Section 3 introduces the study region and data sources used in this study. Section 4 describes the
methodologies employed in analysing the data. Section 5 presents the distribution pattern visualisation
of traffic flow, the modelling analysis, and its interpretation. Finally, in Section 6 we discuss the
findings, limitations, and future work.

2. Literature Review

The impact of inclement weather on traffic flow has been extensively investigated in the literature.
In general, previous studies consistently indicated that heavy rain and snow can reduce road capacity
and traffic speed, and increase vehicle crash possibility [4–9]. Maze et al. [16] found that inclement
weather’s impact on traffic depends on the intensity of inclement weather and the type of travelling
mode. Prevedouros and Chang [17] observed that the intersection operations can be affected by wet
weather conditions in three specific aspects (flow and capacity of the roads, the effective time of green
light, and the progression), which may deteriorate the level of service. Agbolosu-Amison et al. [18]
studied the influence of inclement weather on saturation flow, and the results show that the saturation
flow has a significant correlation with inclement weather.

Due to the diversity of weather conditions in various regions at different time periods, the localized
effects of weather on traffic flow may be distinct. For example, Keay and Simmonds [19] investigated the
traffic data of 1989–1996 in Melbourne, Australia, and found a negative relationship between volume
and rainfall amount statistically significant only for winter and spring (wet and cold). Chung et al. [20]
identified the effects of rainfall on traffic counts of the Tokyo Metropolitan Expressway; with the
increase in rainfall, the effects on weekends were larger than on weekdays. Unrau and Andrey [21]
selected 1998’s traffic data on the Gardiner Expressway (a six-lane highway access to Toronto, Canada)
to determine how inclement weather would affect speed–volume relationships, and the result depicted
that under daytime inclement conditions, when the traffic volumes were typically high, there would
be reductions in speeds, and due to the interaction between speed and volume, the volumes would
decrease. Jaroszweski and McNamara [22] studied the rainfall’s effects on road accident data of 2008 to
2011 in Manchester and London, UK, and the relative accidents rates (RARs) were used to evaluate
the effects. The outcome displayed that RARs would increase under inclement weather conditions
in Manchester, while declining in London, which indicated that the difference might be caused by
traffic volume, speed and driver behaviour in these two cities under inclement weather conditions.
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Meanwhile, the results of the study case [23] in Johor and Terengganu, Malaysia, illustrated that the
rainfall would have impacts on traffic flow and speed, but average traffic volume.

Various statistical techniques have been adopted to identify the influence of different weather
conditions on traffic flow. A traffic–weather index [9] was used to determine how traffic flow can be
affected by different weather conditions in different regions of Shanghai. To determine the distribution
patterns of traffic flow, a spatial-temporal autoregressive integrated moving average model was adopted
by Kamarianakis and Prastacos [24], which used a weighting matrix to estimate the spatial properties
of traffic flow that were observed at specific monitoring locations within the same time interval.
Hou et al. [25] used weather adjustment factors to detect the impact of inclement weather on traffic
flow, in which the intensity of the rain or the intensity of the snow is considered. Tao et al. [26] applied
the autoregressive integrated moving average model to quantify the relationship between weather
and bus ridership. Datla and Sharma [27] indicated that the regression models (e.g., linear regression,
logistic regression) were appropriate for detecting the relationship between weather and traffic flow.

In summary, on the one hand, most studies related to weather’s impact on traffic flow mainly
target the total traffic flow change instead of traffic flow’s temporal-spatial patterns. On the other
hand, although there are some efforts on quantifying the spatial and temporal patterns of the real-time
traffic flow, few of them associate the real-time traffic flow with weather information both spatially
and temporally. Theofilatos and Yannis [15] suggested that the joint research of combining real-time
traffic flow data with weather data rather than analysing them separately was necessary. In this study,
we use qualitative and quantitative approaches to fill this gap.

3. Study Region and Data

3.1. Study Region

The study context is Brisbane, the capital city of Queensland, and the third biggest city in Australia,
with an estimated population of 2.5 million in 2018. Brisbane has a humid subtropical climate, in which
the summer is wet and hot, while the winter is dry and warm. The lowest average temperature is 16.6 ◦C
and the highest average temperature is 26.6 ◦C, annually [28]. The transportation network system in
Brisbane is comprehensive, which connects regional centres and interstates. A small portion (8.5%)
of the total trips is completed by using public transport (such as bus, ferry, and rail), whereas most
trips (91.5%) are carried by private vehicles [29]. The CBD of Brisbane is in a peninsula that distributes
along the Brisbane River and is the central hub for the public transportation system, which includes
bus, ferry, and train services [28].

3.2. Data Collection

In this paper, traffic data were obtained from Brisbane City Council (BCC) via an Application
Programming Interface (API). Due to the large volume of real-time traffic flow data, a traditional data
processing approach (such as using hardware storage) cannot efficiently harvest, store, and analyse such
big data [30]. Therefore, in this paper, we adopt a data processing procedure similar to the Real-time
Traffic Information system, consisting of four parts—collecting, processing, analysing, and publishing
real-time traffic data [31]. As shown in Figure 1, the data processing procedure includes four steps,
which are capturing, storing, cleaning, and outputting data accordingly.
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3.3. Data Sources

To distinguish the distribution patterns of traffic flow under different weather conditions,
we selected traffic flow data from an open database of BCC [32] and weather information archived at
the University of Queensland as the principal data sources, as shown in Table 1. Note that Wei et al. [33]
showed the four weather stations in Brisbane (Figure 2) were highly correlated. Therefore, we can
use the weather data at the University of Queensland (UQ) to represent the whole city. In total,
we had access to 856 TSCs, and the weather station in UQ records 12 weather parameters, from which
three parameters important for road traffic, temperature (◦C), rainfall (mm) and wind speed (km/h),
were selected. We obtained traffic flow data from TSC that records traffic flows every one minute
and then, we aggregated the traffic flow data for every 15 min. The 15 min time resolution of traffic
flow data is reasonable for our study because it can filter out random fluctuations in traffic flow rate
but still capture meaningful changes [6]. The weather information at the weather station is updated
every one minute, and to make the time resolutions of these two data sources consistent, we averaged
the weather parameters for every 15 min. The spatial distributions of TSCs and weather stations are
illustrated in Figure 2.
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Table 1. Description of the data for determining weather’s impact on traffic flow in Brisbane.

Dataset Data Description Date Data Source

Traffic flow data Recorded time
TSC (Traffic Signal
Controller) ID
Traffic flow in each
lane (4 lanes)

September
2018–October 2018

Brisbane City Council:
(https://www.data.brisbane.qld.gov.au/data/
dataset/traffic-data-at-intersection-api)

Weather data Temperature (◦C)
Rainfall (mm)
Wind speed (km/h)

September
2018–October 2018

University of Queensland Weather Stations:
(http://ww2.sees.uq.edu.au/uqweather/
archive/AWS_archive/)

Weather Situation (Wet/Dry) Weekday/Weekend Day Date

Wet Weekday Wednesday 5 September 2018
Thursday 6 September 2018
Friday 7 September 2018
Friday 5 October 2018

Weekend Saturday 8 September 2018
Sunday 7 October 2018

Dry Weekday Monday 10 September 2018
Tuesday 11 September 2018
Wednesday 3 October 2018
Thursday 4 October 2018

Weekend Sunday 9 September 2018
Saturday 27 October 2018

We collected the raw traffic flow data and weather data in Brisbane for two months (September
and October 2018) and selected 12 days’ data based on data completeness [35] and the coverage of
different weather conditions and day types (shown in Table 1). Note that Saturday and Sunday are
regarded as two distinct day types, because travel activities on these two days are often different from
each other, as suggested in the literature [26].

Figure 3 depicts the daily patterns of three weather parameters (temperature, wind, and rainfall).
The average values of temperature and wind speed are 17.9 ◦C and 6.5 Km/h, respectively, on wet
weekdays, while 18.6 ◦C and 6.7 Km/h on dry days. On the wet Saturday, the daily rainfall is 2.17 mm,
with an average temperature of 19.5 ◦C and an average wind speed of 5.0 Km/h. On the dry Saturday,
the average wind speed and temperature are 7.7 Km/h and 23.5 ◦C, respectively. On the dry Sunday,
the average wind speed is 5.6 km/h and the average temperature is 18.7 ◦C.
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4. Methodology

To understand weather’s impact on traffic flow qualitatively and quantitatively, more specifically,
rainfall’s impact on traffic flow, we use various visualisation techniques to directly illustrate any
potential weather impact on traffic flow and use statistical methods to detect the relationship between
weather and traffic flow. These techniques and methods are introduced below.

4.1. Traffic Pattern Visualisation

To illustrate the influence of weather variables on the spatial-temporal distribution of traffic flow,
two visualisation techniques, i.e., space-time cube and time-series clustering, are used to visualise the
traffic flow patterns at each TSC under different weather conditions, as elaborated below.

• Space-Time Cube

Space-time cube [36] is defined as a three-dimensional array T (T = [x, y, t]), where x, y are the
location coordinates and t is the trip departure time, as shown in Figure 4. In this paper, x and y
represent the coordinates of each TSC, and t is the time resolution of traffic flow data, which is 15 min
by default. The value in each space-time cube is the total traffic flow within 15 min at each TSC
on each day. Once a space-time cube in different weather conditions on a specific day is generated,
the spatial-temporal distribution of traffic flow is extracted and visualised based on the predefined
space-time cube using time-series clustering, which is introduced below.
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• Time-Series Clustering

Time-series clustering [38] uses K-medoids to classify the time-series clusters in which the medoid
(one particular TSC in our study) is the centre of a cluster and has the minimum dissimilarity between
itself and other TSCs within the same cluster [39]. Using this method, TSCs can be classified into
different clusters.

4.2. Statistical Models

To quantitatively understand weather’s impact on traffic flow, statistical models are developed to
identify the relationship between inclement weather and traffic flow.

Based on the results from the two visualisation techniques introduced above, we first use traffic
flow as the dependent variable and weather conditions as the independent variables to directly explore
weather’s impact on traffic flow using linear regression analysis. Then, we use traffic flow time-series
clusters as the dependent variable and weather conditions as the independent variables to further
explore weather’s impact on the change of traffic flow trend. Since traffic flow time-series clusters
are categorical, linear regression analysis is not suitable. Thus, logistic regression analysis is used,
instead. Moreover, traffic flow time-series clusters are ranked, and weather’s impact on their ranking
is modelled using ordered logistic regression. These statistical models are introduced below.

• Linear Regression (LR) Model
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LR can model the relationship between a response variable and a set of independent variables,
and has been used to model the relationship between weather and traffic flow in the literature
(e.g., reference [27]). A general form of the linear regression model considered in our study is
shown below,

yi = β0 + β1x1,i + β2x2,i + · · ·+ βmxm,i + εi i = 1, 2, . . . . . . , n (1)

where yi is the traffic flow of the ith observation, xm,i is the mth independent variable (e.g., daily rainfall,
day of the week or TSCs categories) for the ith observation, and βm is the regression coefficient for the
mth independent variable.

• Multiple Logistic Regression (MLR) Model

MLR is a statistical model that can be used to observe how the independent variables may affect
the dependent variables when the dependent variables are nominal and its outcomes are more than
two [40]. For m possible outcomes (e.g., time-series cluster ranking in this study), when the outcome
m− 1 is selected as the pivot or reference, totally m− 1 independent binary logistic regression models
would be calculated, as illustrated below:

ln p(yi=1)
p(yi=m−1) = β1,0 + β1,1x1,1,i + β1,2x1,2,i + · · ·+ β1,Nx1,N,i

· · · · ··

ln p(yi=m)
p(yi=m−1) = βm,0 + βm,1xm,1,i + βm,2xm,2,i + · · ·+ βm,Nxm,N,i

(2)

where βm,N is the regression coefficient for the Nth independent variable when the outcome is m,
xm,N,i is Nth independent variable (e.g., daily rainfall, day of the week or TSCs categories) of the ith
observation when the outcome is m.

• Ordered Logistic Regression (OLR) Model

OLR is a statistical model that can detect the impact from independent variables on the dependent
variables when the dependent variables are ordinal. In this study, traffic flow time-series clusters are
further ranked into three categories—low, moderate, and high. OLR is adopted to model weather’s
impact on such ranking.

The equation of OLR can be defined as follows:

Y = m if αm−1 < Y∗ ≤ αm (3)

where m is the ordinal response, α is the endpoint that can set the continuous scale for Y∗, Y∗ is the
continuous variables (unobserved) that belong to the observed dependent variables (e.g., time-series
cluster ranking in this study), Y∗ = Xβ+ ε, X is the vector of independent variables, β is the vector
of coefficients, and ε is the error term. For c possible outcomes, totally c − 1 independent binary
logistic regression models would be estimated, and according to the proportional odds assumption,
the coefficients of all these logistic regression models are the same [40]. In modelling ordinal dependent
variables (for example, time-series cluster ranking in this study), the logit transformation is applied to
the cumulative probabilities for maintaining the category order, as shown in the equation below.

Logit
[
P
(
Y ≤ m)] = log

(
P(Y ≤ m)

1− P(Y ≤ m)

)
(4)

A typical model for the cumulative logits is: Logit[P(Y ≤ m)] = α j + β1x1 + β2x2 + · · ·+ βnxn =

αm + β′X, where m = 1, . . . , c− 1; c is the total number of categories; x1, x2, . . . , xn are n explanatory
variables; β1, β2, . . . , βn are corresponding coefficients.

More information on ordered logistic regression can be found in references [40,41].

• Confusion Matrix



Sustainability 2020, 12, 5596 8 of 24

To comprehensively assess the performance of MLR and OLR, the confusion matrix is used.
More specifically, the confusion matrix consists of True Positive, False Positive, False Negative, and True
Negative, as defined below [42]:

True positive (TP): The actual and predicted cluster categories are the same for any cluster category.
False positive (FP): The actual outcome does not belong to a specific cluster category, but the

predicted outcome belongs to a specific cluster category.
False negative (FN): The actual outcome belongs to a specific cluster category, but the predicted

outcome does not belong to a specific cluster category.
True negative (TN): The actual and predicted outcomes do not belong to a specific cluster category.
Based on TP, FP, TN, and FN, some additional indicators can be calculated:
Sensitivity: The indicator to measure the performance of a prediction model about whether the

model can predict the outcome in a specific cluster category correctly when the actual outcome belongs
to that specific cluster category, which is defined as:

Sensitivity =
TP

TP + FN
(5)

Specificity: The indicator to value how good the prediction model is incorrectly determining the
cluster categories, and is defined as:

Specificity =
TN

TN + FP
(6)

When interpreting the results, it is not reliable to rely on sensitivity. Both a high value of sensitivity
and a high specificity are necessary for a good prediction model.

Positive Predictive Value (PPV): A ratio of the number of true positive values to the total number
of positive values (TP + FP), which represents the portion of the positive values that have been
predicted correctly, and is defined as:

PPV =
TP

TP + FP
(7)

Negative Predictive Value (NPV): A ratio of the number of true negative values to the total
number of negative values (TP + FP), which represents the portion of the negative values that have
been predicted correctly, and is defined as:

NPV =
TN

TN + FN
(8)

Positive and negative predictive values would change when the numbers of actual observations
in a specific cluster category change.

Accuracy: The prediction accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

5. Results

In this section, we apply the proposed methods to explore the spatial-temporal relation between
traffic flow and weather conditions using the data collected in Brisbane. Two parts are presented in
this section—one is the visualisation results of weather’s impact on traffic flow, and the other is the
modelling results for the relationship between weather and traffic flow.

5.1. Visualisation of Traffic Flow Pattern

We first process the total traffic flows of the whole study region. We aggregate traffic flow every
15 min at multiple TSCs for each day, then determine how the traffic flow trend changes at each
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day across different periods. Finally, by comparing plots of weather data with traffic flow trends,
the relationship between traffic flow and weather conditions is visually represented.

Figure 5a depicts the total aggregated traffic flow over the target days. This figure shows that
generally, the traffic flow on weekday reaches peak points during the morning peak hours (around
7:30 a.m. to 8:30 a.m.) and the afternoon peak hours (around 4:30 p.m. to 5:45 p.m.), regardless of
weather conditions. In addition, a similar trend can be found on Saturday and Sunday, although the
peak hours of the weekends occur near noon (around 11:00 a.m. to 1:00 p.m.). However, from this
figure, the trending of traffic flow on each target date can be observed, no obvious difference of traffic
flow under various weather conditions can be detected. Combining with Figure 5b, we can visually
identify that the aggregated weekday traffic flow in the wet weather condition is generally higher than
that on the dry weekday, but no clear trend can be observed for Saturday and Sunday.
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We first adopt time-series clustering to categorize all TSCs’ traffic flow in terms of the traffic
amount while considering three day types. Figure 6 demonstrates the TSC traffic flow profile on
different day types, which can be grouped into three clusters (traffic flow change patterns of the low
traffic flow group, moderate traffic flow group, and high traffic flow group) for both wet and dry
days with the similar traffic pattern. Specifically, the morning peak hours (7:30 a.m. to 8:30 a.m.) and
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evening peak hours (4:30 p.m. to 5:45 p.m.) on weekdays are in line with the results from the total
aggregated traffic flow trends in Figure 5, while the only peak hours appear on both Saturday and
Sunday. Moreover, no significant changes can be detected when visually comparing the traffic flow
trend for the time-series cluster under wet and dry conditions.
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We then apply time-series clustering to further explore the changing rate (The equation for
calculating the changing rate: ρ = a−b

b × 100% where ρ is the changing rate (relative to dry days), a is
the traffic flow on wet days, and b is the traffic flow on dry days) of traffic flow on three day types
(Figure 7). It is observed that three clusters can be classified on each day type. In particular, the higher
changing rate appears at two periods on weekdays (12:00 a.m. to 5:00 a.m. and 8:00 p.m. to 12:00 p.m.),
while it normally occurs on Saturday between 10 a.m. and 6 p.m., and Sunday between 6 a.m. and
8 p.m., respectively. Based on the changing rate profile of each cluster, it is reasonable to classify cluster
1 as stable, cluster 2 as slightly fluctuant, and cluster 3 as fluctuant (see Figure 7), accordingly.
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The corresponding spatial distributions of the time-series traffic flow clusters (traffic flow change
patterns) are shown in Figure 8. It is found that on weekdays and Sundays, there is no significant
difference in the spatial distribution of time-series clusters between the dry and wet weather conditions.
On Saturday, however, in the wet weather, most TSCs in the CBD area are classified into cluster 1
(traffic flow change patterns of the low traffic flow group), while in the dry weather, most TSCs in CBD
areas are labelled as cluster 2 (traffic flow change patterns of the moderate traffic flow group).
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The time-series clusters of changing rates at each TSC are displayed spatially in Figure 9a,
which suggests that traffic flow on weekdays fluctuates more significantly, while it is relatively stable
on Sunday. By implementing a tool named Combinatorial Or [43] in ArcGIS, we further clustered the
shifting patterns of traffic flow at each TSC into three clusters—Increased (TSCs shift from the low
traffic flow cluster on dry days to the high traffic flow cluster on wet days), Decreased (TSCs shift from
the high traffic flow cluster on dry days to the low traffic flow cluster on wet days), and No Change
(TSCs belong to the same cluster class on both dry and wet days), as shown in Figure 9b. It is clear that
more TSCs on Saturday have the “Decreased” shifting situation, while on Sunday, more TSCs belong
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to “Increased” class. In the modelling section, we use these TSCs’ classes to determine the impact of
the spatial character of TSCs on traffic flows.
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In summary, compared to the dry weather conditions, the traffic flow increases under wet weather
on weekdays and Sunday, while declining on Saturday (see Figure 9b). In wet weather conditions,
vehicles normally run slowly due to the slippery road surface, which may lead to a declining capacity
of the public transport system to carry passengers. In addition, the speed awareness monitors deployed
across the city [44] may also change the speed limit to slow down driving speed. On weekdays and
Sundays, people have to travel for certain compulsory activities (e.g., working schedule and religious
activities on Sunday mornings) despite the weather conditions, that is, the traffic demand is fixed in
this situation. The possibility of taking private vehicles or commercial vehicles would be higher for
passengers to avoid delay and to reduce the discomfort level caused by inclement weather. This can
also be partially explained by the findings [45] that under inclement weather conditions, the travel
distance would reduce, except the trips with commuting purposes, and the proportion of people
choosing walking and biking would also decrease. As for on Saturday, people may choose to stay at
home and some outdoor activities might be cancelled due to inclement weather, therefore, the demand
for extra vehicles would reduce.

Overall, the above results from using the visualisation techniques reveal both the spatial and
temporal distribution of traffic flow at each TSC considering weather impact. Next, we investigate
how daily rainfall impacts traffic flow at each TSC using statistical modelling methods.
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5.2. Modelling Weather’s Impact on Traffic Flow

To thoroughly investigate weather’s impact on traffic flow, we develop three levels of statistical
analysis in this section: first the comprehensive level, then the location-specific level, and finally,
the aggregate level, as explained below in detail. By doing so, consistent results on rainfall’s impact on
traffic flow can be convincingly obtained.

5.2.1. Comprehensive Level

At this level, we develop statistical models to quantitatively investigate how traffic flow is affected
by potential important factors, such as day type, weather condition (daily rainfall), and the TSC
classification. Specifically, two dependent variables are considered: the total traffic flow at each TSC on
each day (TOTAL_FLOW) and the classifications of time-series cluster (Cluster_ID, Cluster_ID = 1, 2, 3).
Independent variables include the day type (DAY_OF_WEEK), which is classified into Weekday = 1,
Saturday = 2, Sunday = 3, daily rainfall (RAIN_ACC), and the TSC classification. According to the
results in Section 5.1, we can categorize TSCs in two ways (Figure 9): (1) classifying the TSCs in terms
of the clusters of traffic flow changing rate at each TSC location (Stable = 1, Slightly Fluctuant = 2,
Fluctuant = 3), which is denoted as TSC_CLASS_A, and (2) classifying the TSCs in terms of the
changing direction of the clusters (Increased = 1, Decreased = 2, No change = 3), which is denoted
as TSC_CLASS_B. We apply LR to model the total traffic flow of TSC and use MLR/OLR to model
classifications of time-series cluster, respectively. To compare the models with these two different
classifications of TSC, we apply the Akaike Information Criterion (AIC), which reflects the relative
quality of statistical models for a given set of data. The best models using LR, MLR, and OLR are
summarized in Table 2; it is noteworthy that we select 70% of the raw data as the training data to
calibrate the MLR/OLR model and the remaining 30% of the raw data as the testing data to validate
the model.

Table 2. Summary of models.

Category Model No. of Observation AIC df

Linear Regression model

Model_1 (with TSC_CLASS_A) 10,406 22,8779.40 7
Model_2 (with TSC_CLASS_B) 10,406 22,8766.70 7

* Model_2 has smaller AIC value, which means Model_2 is better.

Multiple Logistic
Regression model

Model_3 (with TSC_CLASS_A) 10,648 19,862.29 10
Model_4 (with TSC_CLASS_B) 10,648 20,700.38 12

* Model_3 has smaller AIC value, which means Model_3 is better.

Ordered Logistic
Regression model

Model_5 (with TSC_CLASS_A) 10,648 19,849.88 7
Model_6 (with TSC_CLASS_B) 10,648 20,742.59 7

* Model_5 has smaller AIC value, which means Model_5 is better.

* means the better models of using LR, MLR, and OLR.

Table 3 illustrates the summary statistics of the variables that are adopted in the LR model
(Model_2) and MLR model (Model_3)/OLR model (Model_5); the same variables are included in
the MLR and OLR models. We use variance inflation factors (VIF) to detect the multicollinearity,
and the results (Table 4) show that the VIF values of all the independent variables are less than 5.0,
which indicates no existence of multicollinearity has been detected [10] and simultaneous involvement
of these independent variables would not affect the analytic results of the models.

The values of estimated parameters of the LR model (Model_2) are listed in Table 5, which shows
rainfall (RAIN_ACC) has a significant impact on the total traffic flow. When holding other factors
constant, a one unit increase in rainfall (RAIN_ACC) would lead to an increase of 861 vehicles
to the total traffic flow. Meanwhile, day types also have significant impacts on the total traffic
flow. More specifically, the amount of total traffic flow would decline on Saturday and Sunday,
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when compared with weekdays. In addition, the total traffic flow would increase among the TSCs
where the shifting pattern of traffic flow belongs to the “Decrease” category (TSC_CLASS_B = 2),
relative to TSCs in the “Increase” category. The impact of TSC_CLASS_B = 3 (p-value > 0.05) on the
total traffic flow is marginally significant.

Table 3. Summary statistics.

Model Variable Min Max Mean/% SD

Model_2
(n = 10,406)

TOTAL_FLOW 629 89,188 26,404 14,635.37

DAY_OF_WEEK (Weekday = 1;
Saturday = 2; Sunday = 3) 1 3

Weekday = 67.12%
Saturday = 16.32%
Sunday = 16.57%

TSC_CLASS_B (Increased = 1;
Decreased = 2; No change = 3) 1 3

Increased = 3.48%
Decreased = 1.69%
No change = 94.83%

RAIN_ACC (mm) 0.00 2.17 0.32 0.60

Model_3/Model_5
(n = 10,648)

Cluster_ID
(Low traffic flow = 1;
Moderate traffic flow = 2;
High traffic flow =3)

1 3
Low traffic flow = 47.36%
Moderate traffic flow = 40.24%
High traffic flow =12.40%

TSC_CLASS_A
(Stable = 1;
Slightly Fluctuant = 2;
Fluctuant = 3)

1 3
Stable = 88.39%
Slightly Fluctuant = 10.07%
Fluctuant = 1.54%

DAY_OF_WEEK
(Weekday = 1; Saturday = 2;
Sunday = 3)

1 3
Weekday = 66.94%
Saturday = 15.97%
Sunday = 17.08%

RAIN_ACC (mm) 0.00 2.17 0.31 0.59

Table 4. Variance Inflation Factors (VIF) For Multicollinearity Detection.

Model Variable VIF

Model_2
DAY_OF_WEEK 1.23
TSC_CLASS_B 1.05
RAIN_ACC 1.17

Model_3/Model_5
DAY_OF_WEEK 1.39
TSC_CLASS_A 2.30
RAIN_ACC 1.42

Table 5. Estimated parameters for Model_2 of the LR model.

Overall Goodness-of-Fit
Log Likelihood = −11,4376.4; Significance Level < 0.01; AIC = 22,8766.7

Variable Estimated Value Standard Error t_Value Pr

Intercept 26,349.5 785.7 33.537 <0.001
RAIN_ACC 861 339.9 2.533 0.0113

DAY_OF_WEEK = 2 −3193.7 420.7 −7.592 <0.001
DAY_OF_WEEK = 3 −7149.6 392.4 −18.221 <0.001
TSC_CLASS_B = 2 5767.1 1345.1 4.287 <0.001
TSC_CLASS_B = 3 1443.6 780.2 1.850 0.0643

Note: TSC_CLASS_B = 1 and DAY_OF_WEEK = 1 are selected as reference categories, respectively.

All the parameters that used in the MLR model (Model_3) are summarized in Table 6, which shows
that all the variables that are used to calculate the odds of time-series clusters being classified into
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traffic flow change patterns of the low traffic flow group instead of the moderate traffic flow group
are statistically significant. When controlling for other factors, with a one unit increase in the rainfall
(RAIN_ACC), the odds of time-series clusters being classified into traffic flow change patterns of the
low traffic flow group are 26% (i.e., (exp(0.235)−1) = 0.26) higher than the odds of being classified into
traffic flow change patterns of the moderate traffic flow group. Meanwhile, for Saturday and Sunday,
the odds of time-series clusters that can be classified into traffic flow change patterns of the low traffic
flow group are 64% (i.e., (exp(0.495)−1) = 0.64) and 25% (i.e., (exp(0.224)−1) = 0.25) larger, respectively,
than the odds of the clusters being classified into traffic flow change patterns of the moderate traffic
flow group, relative to weekdays. Finally, for time-series clusters at TSCs with slightly fluctuant traffic
flow changing rate (TSC_CLASS_A = 2) and time-series clusters in TSCs with large fluctuant traffic
flow changing rate (TSC_CLASS_A = 3), the odds of clusters being categorized into traffic flow change
patterns of the low traffic flow group are more than five (i.e., (exp(1.868)−1) = 5.48) and more than nine
(i.e., (exp(2.349)−1) = 9.48) times greater, respectively, than the odds of the clusters being classified into
traffic flow change patterns of the moderate traffic flow group, relative to the clusters in TSCs with
stable traffic flow changing rate (TSC_CLASS_A = 1), which basically implies that moderate traffic
flow is often stable with a small changing rate.

Table 6. Estimated parameters for Model_3 of the MLR model.

Overall Goodness-of-Fit
Log Likelihood = −6910.3; Significance Level < 0.01; AIC = 19,862.29

Variable Estimated Value Standard Error t_Value Pr

1: Intercept −0.210 0.038 −5.486 <0.001
3: Intercept −1.111 0.054 −20.751 <0.001

1: RAIN_ACC 0.235 0.063 3.758 <0.001
3: RAIN_ACC −0.064 0.098 −0.656 0.512

1: DAY_OF_WEEK = 2 0.495 0.077 6.466 <0.001
3: DAY_OF_WEEK = 2 −0.098 0.121 −0.811 0.417
1: DAY_OF_WEEK = 3 0.224 0.070 3.201 0.001
3: DAY_OF_WEEK = 3 0.027 0.099 0.268 0.789
1: TSC_CLASS_A = 2 1.868 0.108 17.257 <0.001
3: TSC_CLASS_A = 2 −0.432 0.234 −1.849 0.064
1: TSC_CLASS_A = 3 2.349 0.306 7.676 <0.001
3: TSC_CLASS_A = 3 −16.447 1889.594 −0.009 0.993

Note: (i) For the response variable, Cluster_ID = 2 is selected as the reference category, while for the
independent variables, TSC_CLASS_A = 1 and DAY_OF_WEEK = 1 are selected as reference categories,
respectively; (ii) 1: Intercept, 1: RAIN_ACC, 1: DAY_OF_WEEK = 2, 1: DAY_OF_WEEK = 3, 1: TSC_CLASS_A = 2,
1: TSC_CLASS_A = 3 are the parameters that are used to calculate the odds of time-series cluster (response variable)
being classified into Cluster_ID = 1; 3: Intercept, 3: RAIN_ACC, 3: DAY_OF_WEEK = 2, 3: DAY_OF_WEEK = 3,
3: TSC_CLASS_A = 2, 3: TSC_CLASS_A = 3 are the parameters that are used to calculate the odds of time-series
cluster (response variable) being classified into Cluster_ID = 3.

Table 7 summarizes the results of the OLR model (Model_5), which shows that rainfall (RAIN_ACC)
has a significant impact on the category of time-series clusters (response variable). When holding other
factors constant, with a one unit increase in RAIN_ACC, the odds of the time-series clusters being
classified into traffic flow change patterns of the high traffic flow group (instead of the moderate or low
traffic flow group) or traffic flow change patterns of the moderate traffic flow group, (instead of the low
traffic flow group) would diminish by 21.2% (i.e., (exp (−0.238)−1) × 100% = −21.2%). Additionally,
the category of the time-series clusters is significantly impacted by day type. For Saturday and
Sunday, when holding other factors constant, the odds of the time-series clusters being classified
into traffic flow change patterns of the high traffic flow group (instead of the moderate or low traffic
flow group) or traffic flow change patterns of the moderate traffic flow group (instead of the low
traffic flow group) would decrease respectively by 38.6% (i.e., (exp(−0.487)−1) × 100% = −38.6%)
and 16.6% (i.e., (exp(−0.182)−1) × 100% = −16.6%), relative to weekdays. Lastly, TSC classification
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(TSC_CLASS_A) is significantly correlated to the category of time-series clusters. More specifically, for
the clusters at the TSCs that have slightly fluctuant traffic flow changing rate (TSC_CLASS_A = 2) and
the clusters at the TSCs with fluctuant traffic flow changing rate (TSC_CLASS_A = 3), when holding
other factors constant, the odds of the time-series clusters being categorized into traffic flow change
patterns of the high traffic flow group (instead of the moderate or low traffic flow group) or traffic flow
change patterns of the moderate traffic flow group (instead of the low traffic flow group) would decrease
respectively by 85.6% (i.e., (exp(−1.937)−1) × 100% = −85.6%) and 92.8% (i.e., (exp(−2.629)−1) × 100%
= −92.8%), relative to clusters in the TSCs with a stable traffic flow changing rate (TSC_CLASS_A = 1).

Table 7. Estimated parameters for Model_5 of the OLR model.

Overall Goodness-of-Fit
Log Likelihood = −6915.155; Significance Level < 0.01; AIC = 19,849.88

Variable Estimated Value Standard Error t_Value Pr

RAIN_ACC −0.238 0.056 −4.254 <0.001
DAY_OF_WEEK = 2 −0.487 0.069 −7.066 <0.001
DAY_OF_WEEK = 3 −0.182 0.062 −2.954 0.003
TSC_CLASS_A = 2 −1.937 0.100 −19.431 <0.001
TSC_CLASS_A = 3 −2.629 0.305 −8.611 <0.001

1|2 −0.476 0.035 −13.670 <0.001
2|3 1.651 0.042 39.549 <0.001

Note: TSC_CLASS_A = 1 and DAY_OF_WEEK = 1 are selected as reference categories, respectively.

For the MLR model, from the effect plot of RAIN_ACC and DAY_OF_WEEK (Figure 10a), it is
obvious that the possibilities of clusters being classified into traffic flow change patterns of the low
traffic flow group are slightly higher than into the moderate traffic flow group on the dry weekdays.
When the rainfall increases, the possibilities of time-series clusters being categorised into traffic flow
change patterns of the low traffic flow group on three day types (weekdays, Saturday, and Sunday)
would rise, while the odds of the clusters being categorised into traffic flow change patterns of the
moderate and high traffic flow group would both drop. Overall, the possibility for the cluster trend
to be categorised into traffic flow change patterns of the high traffic flow group is low, no matter on
the dry or wet days. The similar changing patterns of possibilities happen on dry and wet Saturdays
and Sundays. Among all these three days’ types, the possibility of time-series cluster being classified
into traffic flow change patterns of the low traffic flow group on Saturdays (both on wet and dry) is
the highest.

The effect plot of RAIN_ACC and TSC_CLASS_A is shown in Figure 10b. In dry weather situations,
traffic flow change patterns of the low traffic flow group would have a bigger possibility to appear in
the regions where the TSCs belong to TSC_CLASS_A = 3, while traffic flow change patterns of the
moderate and high traffic flow group have a greater chance to show in the areas where the TSCs belong
to TSC_CLASS_A = 1. When the rainfall increases, the possibility of time-series cluster being classified
into traffic flow change patterns of the low traffic flow group in these three TSC_CLASS_A classes
would increase, but the situations for traffic flow change patterns of the moderate and high traffic
flow group are the opposite. Under inclement weather, the time-series clusters in TSC_CLASS_A = 3
have the highest odds (among three TSC_CLASS_A classes) of being classified into traffic flow change
patterns of the low traffic flow group, while traffic flow change patterns of the moderate and high
traffic flow group have the highest chance of being associated with TSC_CLASS_A = 1 (compared with
the situations in other TSC_CLASS_A categories). Similar conclusions can be drawn from the results
of the OLR model (Figure 11a,b).
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Next, we cross-validate the performances of Model_3 and Model_5 by using the testing data and
the confusion matrix. Table 8 summarizes the prediction indicators for MLR and OLR models. It is
observed that the prediction accuracy for traffic flow change patterns of the low traffic flow group is
the best among all three clusters for both MLR and OLR models. Overall, both MLR and OLR models
can reasonably predict each cluster, and the prediction accuracy for each cluster is over 50%.

Table 8. Summary of prediction performance of the MLR and OLR model.

MLR model performance (Model_3)

Cluster_ID Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

1 46.49 74.64 60.76 62.29 60.57
2 72.81 40.69 46.98 67.46 56.75
3 0 100 NaN 87.70 50.00

OLR model performance (Model_5)

Cluster_ID Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

1 38.80 84.50 67.89 62.05 61.65
2 82.83 32.66 47.03 72.49 57.74
3 0 100 NaN 87.70 50.00

5.2.2. Location-Specific Level

At this level, we test whether rainfall has a significant impact on traffic flow at fixed locations.
From the analysis above, it is evident that TSC location can have a notable impact on the relationship
between weather conditions and traffic flow. To derive more insight, we develop a linear regression
model for each TSC to reveal the spatial weather impact on traffic flows. In total, 877 models
are developed. Amongst these models, for 266 TSCs, rainfall appears to be a significant factor
(p-value < 0.05). For these TSCs, where rainfall has a significant impact on traffic flow, a tool called
inverse distance weighted in ArcGIS [26] is utilized to visualise the impact of the rainfall on traffic flow
at each TSC, based on the coefficient of rainfall in the linear regression model (as depicted in Figure 12).
From Figure 12, overall, these models consistently show that as the rainfall increases, traffic flow at
each TSC tends to increase; moreover, the traffic flows of TSCs in the inner districts such as Kangaroo
Point, Coorparoo, Fortitude Valley, and Spring Hill are more likely to be affected by the rainfall than
those in the suburbs.
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5.2.3. Aggregate Level

To further confirm the conclusions drawn from location-specific (TSC-controlled) analysis so far,
we also modelled the impact of rainfall on traffic flow at the aggregate level across all the locations,
where the dependent variable is the total traffic flow within 15 min on each day (SUM_FLOW),
the independent variables are rainfall data within 15 min (RAIN_ACC_15min), and the day of data
captured (DAY_OF_WEEK), respectively. The summary statistics of the variables can be identified
from Table 9 and based on the total 1152 observations, we obtain the LR model (Table 10). In this
model, all the variables (p < 0.05) have significant correlations with traffic flow, which is in line with
the results above. Particularly, a positive impact of rainfall on the total traffic flow is also revealed,
which is consistent with our conclusion drawn at location-specific level and the comprehensive level.

Table 9. Summary statistics (n = 1152).

Variable Min Max Mean/% SD

SUM_FLOW 22,172 531,976 253,111 148,766.80

RAIN_ACC_15min (mm) 0.00 2.17 0.14 0.37

DAY_OF_WEEK (Weekday = 1;
Saturday = 2; Sunday = 3) 1 3

Weekday = 66.67%;
Saturday = 16.67%;
Sunday = 16.67%
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Table 10. Estimated parameters for aggregate level LR model.

Overall Goodness-of-Fit
Log Likelihood = −15,322.35; Significance Level < 0.01; AIC = 30,654.7

Variable Estimated Value Standard Error t_Value Pr

Intercept 258,525 5622 45.985 < 0.001
RAIN_ACC_15min 72,460 13,828 5.240 <0.001

DAY_OF_WEEK = 2 −44,527 12,217 −3.645 <0.001
DAY_OF_WEEK = 3 −67,290 11,718 −5.743 <0.001

Note: For the independent variable, DAY_OF_WEEK = 1 is selected as the reference category.

6. Discussion and Conclusions

By utilizing space-time cube, time-series clustering, and statistical modellings, we have
qualitatively and quantitatively analysed rainfall’s impact on traffic flow spatially and temporally,
using the TSC datasets in Brisbane, Australia, as a case study.

The main contribution of this study is that the spatial-temporal impact of inclement weather
conditions on traffic flow has been consistently detected using the visual detections and modellings
at different levels. Some findings regarding the fundamental relation among traffic flow, traffic flow
change pattern, weather conditions, day types, and spatial distributions of traffic flow are concluded
and summarized below. A positive impact of rainfall on the total traffic flow is also revealed, which is
consistent with our conclusion drawn at location-specific level and the comprehensive level.

From the qualitative approach using spatial-temporal cube and time-series clustering, we have
shown the difference of the spatial-temporal patterns of traffic flow and the distribution of traffic flow
change pattern under various weather conditions on different day types. To gain more insights on the
relationship between the spatial-temporal patterns of traffic flow and the rainfall, a series of statistical
models have been developed.

From the quantitative approach using statistical models, rainfall’s impact on traffic flow is
consistently detected from the models at three different levels. First, at the comprehensive level
(i.e., all the important factors are simultaneously considered in a single model, such as day type,
daily rainfall, and location), it is noticeable that rainfall, day types, and locations are all significantly
correlated to traffic flow and change patterns of traffic flow. Generally, traffic flow on weekdays is
the highest, while it is low on Sunday under both dry and wet weather conditions; traffic flow in
wet weather normally increases compared with that in dry weather conditions; the traffic flow at the
locations where the change patterns of traffic flow shift from the high traffic flow patterns on dry days
to the low traffic flow patterns on wet days is higher than the traffic flow at the locations with the
opposite shifting direction of traffic flow change patterns.

Meanwhile, when it comes to the traffic flow change patterns, the total traffic flows on dry days
and wet days at locations are classified into three groups (dry/wet day low traffic flow group, dry/wet
day moderate traffic flow group, dry/wet day high traffic flow group), respectively, the traffic flow at
each location (on dry/wet days) has been categorized into one specific traffic flow group, and the related
traffic flow change pattern can be detected. The classification results show that the amount of traffic
flow in each classified traffic flow group on wet days is higher than the corresponding group on dry
days. Furthermore, rainfall has a notable impact on traffic flow change patterns, as summarized below.

On dry days, the odds of having low traffic flow group on the locations with fluctuant changing
rate of traffic flow is higher than that on all the other locations; for the dry day moderate and high
traffic flow groups, they have greater possibilities of occurring at the locations with stable changing
rate of traffic flow. The same patterns happen in the wet weather condition. The larger the rainfall is,
the higher the odds of having low traffic flow group occurring on the locations with fluctuant changing
rate of traffic flow. The rainfall would also increase the odds of Saturdays having low traffic flow
group, which is in line with the implication [46] that the increased frequency of precipitation events
would decrease the number of trips on specific days with leisure purposes. Additionally, when the
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rainfall increases, although the possibilities of having moderate and high traffic flow group on locations
with stable changing rate of traffic flow would decline, they still have a greater chance of appearing
on these locations compared with other locations. Overall, the results above illustrate the rainfall’s
impact on the classified traffic flow group and traffic flow change pattern at each location spatially and
temporally, and reveal how the traffic flow at each location changes over time on a dry/wet day.

Finally, the location-specific analysis depicts that the locations in the urban inner space, such as
CBD, are more likely to be impacted by the inclement weather, and that the rainfall’s impact on traffic
flow in the urban inner region is bigger than in the urban outer area. Finally, the aggregate level
analysis detects the impact of rainfall on traffic flow across different locations. Specifically, the rainfall
positively impacts the total traffic flow.

To summarize, we have implemented various methodologies to comprehensively analyse
the impact of rainfall on traffic flow both qualitatively and quantitatively, and at three levels
(i.e., comprehensive, location-specific, and aggregate). The results from our analyses consistently
show that both traffic flow and traffic flow change patterns are significantly affected by the inclement
weather conditions (i.e., the traffic flow would increase on wet days, especially on weekday), and that
the rainfall can induce the change of traffic flow temporally (on weekdays, Saturday, and Sunday and
at various periods of each day) and spatially (at different locations in the transportation network).

By recognising the spatial-temporal impacts of rainfall on traffic flow, the locations and time
periods that are significantly influenced by rainfall can be identified, which can be used by planners or
researchers to more accurately model the impact of rainfall on transport infrastructures. Furthermore,
since our analysis shows an increase in traffic flow in wet weather, this finding can have important
implications on traffic congestion and road safety. Because in wet weather, drivers usually drive more
cautiously and more slowly to avoid collision due to reduced friction between the vehicle’s tires and
the road surface, such behaviour means that traffic congestion is more likely to occur in wet weather.

Some limitations in this paper will be further addressed in our future work. First, this paper
only considers two months’ traffic data in Brisbane. In the future, more data will be used to cover
more diverse weather conditions. Moreover, public transit should be considered in future studies.
Meanwhile, we have applied MLR and OLR to statistically model the spatial-temporal relation between
weather conditions and traffic flow. In the future, data mining and deep learning methods could
be considered.
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