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Abstract: The Galerkin finite element method (FEM) has long been used to solve groundwater flow
equations and compute the mass balance in a region. In this study, we proposed a simple, new
computational FEM procedure for global mass balance computations that can simultaneously obtain
boundary fluxes at Dirichlet boundary nodes and finite element hydraulic heads at all nodes in only
one step, whereas previous approaches usually require two steps. In previous approaches, the first
step obtains the Galerkin finite element hydraulic heads at all nodes, and then, the boundary fluxes are
calculated using the obtained Galerkin finite element hydraulic heads in a second step. Comparisons
between the new approach proposed in this study and previous approaches, such as Yeh’s approach
and a conventional differential approach, were performed using two practical groundwater problems
to illustrate the improved accuracy and efficiency of the new approach when computing the global
mass balance or boundary fluxes. From the results of the numerical experiments, it can be concluded
that the new approach provides a more efficient mass balance computation scheme and a much more
accurate mass balance computation compared to previous approaches that have been widely used in
commercial and public groundwater software.
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1. Introduction

The Galerkin finite element method (FEM) has long been used to solve groundwater flow and
advection–dispersion–reaction equations to predict groundwater flow and the transport of pollutants
in porous media. Popular commercial simulation programs, such as FEMWATER [1], FEFLOW [2],
and HYDRUS3D [3], were developed based on the Galerkin FEM, and programs such as these have
been widely used for some time. In these commercial software packages, Galerkin FEM is used to solve
the governing equation of groundwater flow subject to appropriate boundary and initial conditions.
The governing equation is simply a statement of a water mass conservation equation coupled with
constitutive relations, such as Darcy’s law. In this conventional FEM formulation, the pressure or
hydraulic head distribution is obtained and a velocity field is subsequently calculated using Darcy’s
law by taking the derivatives of the calculated pressure head distribution, which is used as either
the advection velocity for calculating the contaminant transport or the flow through a boundary for
calculating the water mass balance. This approach toward obtaining the velocity field is denoted here
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as the conventional differential approach (CDA). However, the calculated velocity field using the CDA
often contains velocity discontinuities at nodal points and element boundaries. Such discontinuities
unfortunately lead to large errors when solving the contaminant transport equation. In addition,
discontinuities can also lead to failure to conserve the water mass in mass balance computations.
The CDA was included in the HYDRUS software.

Yeh [4] demonstrated water balance errors in the range of 24–30% for a complex problem due to
discontinuities in the computed Darcy flux in the interior of the domain. An alternative postprocessing
approach was proposed, which provides a continuous Darcy flux by applying the finite element
approach used to simulate the groundwater head field to the Darcy equation, with the fluxes as the
state variables. Yeh reported that the global mass balance errors could be reduced from 23.8% to 2.2%
when this postprocessing approach was used rather than the CDA. Yeh’s postprocessing approach is
already included in the FEMWATER software and several other studies have applied it to a range of
groundwater flow and transport simulation problems [5–10].

Lynch [11] showed that a precise global mass balance can be achieved via the Galerkin FEM
by focusing only on calculating the boundary flux at a Dirichlet boundary rather than calculating a
continuous Darcy flux over a whole domain. It was shown through mathematical analysis that the
common practice of discarding the Galerkin equations violates the mass balance by requiring that
these fluxes be approximated. In contrast, by retaining the Galerkin equations at Dirichlet boundaries
as the equations for the boundary flux, a precise global mass balance was demonstrated through
conceptual mathematical and hypothetical abstract examples. By retaining the Galerkin equations
at Dirichlet boundaries as the equations for the boundary flux, Carey [12] showed that boundary
fluxes can be calculated with exceptional accuracy. He demonstrated from numerical studies that
the boundary flux errors will be O

(
∆x2k

)
, where k is the degree of the element polynomial basis if

the exact solution is sufficiently smooth. Accordingly, he concluded that the calculated boundary
fluxes not only have exceptional accuracy but also higher rates of convergence compared to the
calculated fluxes using the CDA. It has also been observed by other researchers that the postprocessing
technique suggested by Lynch [11] provides very accurate mass balances [12–16]. However, in all
of these studies, the advantages of the postprocessing technique were demonstrated only through a
conceptual mathematical framework, which was too simple or used hypothetical abstract examples that
were far from typical groundwater scenarios or practical application problems. Most examples were
limited to a one-dimensional steady state with a homogeneous material and simple boundary conditions
or a simple geometry. However, typical groundwater problems are characterized by multi-dimensional,
heterogeneous, and transient features, as well as various source/sinks and a complex geometry.
Furthermore, in all previous approaches using either Yeh’s postprocessing technique or the CDA,
two steps are usually needed to calculate the boundary flux at a Dirichlet boundary. In the first step,
Galerkin finite element solutions are obtained by solving an algebraic matrix equation, and then, in the
next step, the boundary flux is calculated. Even Lynch’s approach calculates integral boundary fluxes
by substituting the obtained finite element solutions into the retained Galerkin equations at Dirichlet
boundaries after solving for the finite element pressure or hydraulic head distributions, and hence,
also requires two steps.

Furthermore, the same idea of Lynch [11] and Carey [12] can be extended to compute not only
boundary fluxes but also the internal fluxes [14,16]. For the computation of the internal fluxes,
the Galerkin equations at the interior nodes will be retained, and then, by treating that node as a
Dirichlet boundary, the internal flux can be solved with the Galerkin equation at the node using
the groundwater head at an internal node computed with the Galerkin FEM. The need to calculate
the internal flux often arises when detailed inflow/outflow components are to be examined at the
subdomain level during the calibration and verification phase of modeling studies. On the other hand,
an alternative postprocessing method that calculates the internal flux was developed by assuming that
the flow field is irrotational [17–20]. The alternative postprocessing method subdivides elements into
patches and individual fluxes for each patch are computed to calculate flow rates through each of the
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element faces such that flow through the boundary of any subdomain can be calculated by summing
the flow rates at those faces that define the boundary. In this study, we focussed on the calculation of
only the boundary fluxes to calculate the global mass balance, rather than the internal fluxes.

In this study, a new and simple computational procedure incorporating the postprocessing
approach described by Lynch [11] was proposed to simultaneously obtain boundary fluxes at the
Dirichlet boundary nodes and finite element hydraulic heads at all nodes in only one step. The proposed
procedure was applied to typical groundwater scenario examples to illustrate its applicability to realistic
groundwater problems. Furthermore, a comparison between the postprocessing approach described
by Yeh [4], the conventional differential approach (CDA), and the new approach proposed in this study
was performed using two practical groundwater problems to illustrate the accuracy and efficiency of
the new approach for computing the global mass balance or boundary fluxes.

2. Methodology

In this study, a new computational procedure was introduced based on the postprocessing
approach described by Lynch [11]. In the new approach, the global matrix and load vectors are
assembled in the Galerkin FEM and the integral boundary fluxes at Dirichlet boundary nodes are
assigned as primary variables to be solved, as well as the hydraulic heads at all nodes, except the
Dirichlet nodes. Accordingly, the integral boundary fluxes at the Dirichlet nodes and the finite
element hydraulic heads at all nodes, except the Dirichlet nodes, can be solved using only one step.
The governing equation of water flow in a saturated–unsaturated porous medium can be written as
follows [1,21–23]:

F
∂h
∂t
−∇·(Kskr·∇H) −Q = 0, (1)

where F = θ
ne
α′ + β′ + dθ

dh ; h is the pressure head; H = h + z is the total head; θ is the moisture content;
ne is the effective porosity; α′ and β′ are the modified coefficients of the compressibility of the
medium frame and the water, respectively; Ks is the saturated hydraulic conductivity; kr is the relative
permeability; Q is the source or sink; z is the vertical coordinate (positive upward); and t is time.
To solve the nonlinear flow equation (Equation (1)), constitutive relations must be established that
relate the primary unknown h to the secondary variables θ and kr. In this study, without the loss of
generality, Gardner constitutive relations were used to solve the transient flow in variably saturated
porous media. In Gardner constitutive relations, the water content and relative permeability are given
as simple exponential functions of the pressure head, as follows:

θ =

{
θr + (θs − θr)eλh for h < 0,
θs for h ≥ 0,

(2)

kr =

eλh for h < 0,

1 for h ≥ 0,
(3)

where θs, θr, and λ represent the saturated water content, the residual water content, and a soil index
parameter related to the pore-size distribution, respectively. The Darcy velocity can be calculated using:

V = −K·∇H, (4)

where K = Kskr is the hydraulic conductivity. The initial condition can be written as:

h = h0(x) in R, (5)
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where h0 is a prescribed function of the spatial coordinate x, and R is the region of interest. In the
Galerkin FEM, the weighted residual integral equation can be written using weighting functions Ni,
as follows: ∫

R
Ni

{
F
∂ĥ
∂t
−∇·

[
K·∇

(
ĥ + z

)]
−Q

}
dR = 0, i ∈ N, (6)

where Ni is the weighting function at node i, ĥ is a trial function of h, and N is the total number of
nodes in the finite element network. The trial function ĥ can be calculated using:

ĥ =
N∑

j=1

N j(x)h j, (7)

where h j is the hydraulic head at node j. Using Green’s theorem to remove the second derivative and
substituting Equation (7) into Equation (6), one obtains the following:

N∑
j=1

∫
R

NiFN jdR
∂h j

∂t
−

∫
B

Nin̂·
[
K·∇

(
ĥ + z

)]
dB

+
N∑

j=1

∫
R
∇Ni·K·∇N jdRh j +

∫
R
∇Ni·K·∇z dR

−

∫
R

NiQdR = 0, i ∈ N, (8)

where B is the boundary of the solution region and n̂ is the outward unit vector normal to B. The resulting
system of nonlinear ordinary differential equations (Equation (8)) can be solved in time using the
backward (implicit) Euler finite difference scheme. Accordingly, the final nonlinear system can be
written by substituting Equation (4) into Equation (8), as follows:

N∑
j=1

∫
R

NiFn+1N jdR
hn+1

j

∆t
+

N∑
j=1

∫
R
∇Ni·Kn+1

·∇N jdR hn+1
j

=
N∑

j=1

∫
R

NiFn+1N jdR
hn

j

∆t
−

∫
R
∇Ni·Kn+1

·∇z dR +

∫
R

NiQn+1dR

−

∫
B

Nin̂·Vn+1dB, i ∈ N, (9)

where the superscripts n + 1 and n are the new and old time levels, respectively, and ∆t is the time
step. These equations can be conveniently written in matrix form as follows:

Mn+1
·hn+1 + Sn+1

·hn+1 = Mn+1
·hn
− dn+1

− bn+1, (10)

where [
Mn+1

i, j

]
=

∫
R

NiFn+1N jdR
1

∆t
, i, j ∈ N, (11)[

Sn+1
i, j

]
=

∫
R
∇Ni·Kn+1

·∇N jdR, i, j ∈ N, (12)

{
dn+1

i

}
=

∫
R
∇Ni·Kn+1

·∇zdR−
∫

R
NiQn+1dR, i ∈ N, (13)

{
bn+1

i

}
=

∫
B

Nin̂·Vn+1dB, i ∈ N. (14)
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It should be noted that
{
bn+1

i

}
is denoted by Lynch [11] as the Galerkin flux or integral boundary

flux at boundary node i and new time level n + 1. Lynch demonstrated that if boundary node
i is a Dirichlet boundary node, the conventional practice of eliminating the Galerkin equations in
Equation (10) at Dirichlet boundaries destroys the mass balance because the flux at the boundary should
instead be calculated as the gradient of the obtained pressure or hydraulic head using Darcy’s law.
Accordingly, he suggested that the Galerkin equations at Dirichlet boundaries should be retained as
the algebraic equations for the boundary flux to ensure a good mass balance. Therefore, Equation (10)
can be rewritten as:

An+1
·hn+1 = cn+1

− bn+1, (15)

where:
An+1 = Mn+1 + Sn+1, (16)

cn+1 = Mn+1
·hn
− dn+1. (17)

Expressing Equation (15) as a matrix and a load vector gives the following:

An+1
1,1 An+1

1,2 An+1
1,3 . . . An+1

1,N
An+1

2,1 An+1
2,2 An+1

2,3 · · · An+1
2,N

An+1
3,1 An+1

3,2 An+1
3,3 · · · An+1

3,N
...

...
...

. . .
...

An+1
N,1 An+1

N,2 An+1
N,3 · · · An+1

N,N





hn+1
1

hn+1
2

hn+1
3
...

hn+1
N


=



cn+1
1

cn+1
2

cn+1
3
...

cn+1
N


−



bn+1
1

bn+1
2

bn+1
3
...

bn+1
N


. (18)

If three arbitrary nodes with node numbers i1, i2, and i3 correspond to a Dirichlet boundary, and
the Dirichlet boundary values at the i1, i2, and i3 nodes are set to hi1, hi2, and hi3, respectively, Equation
(18) can be conventionally changed by setting the rows corresponding to node numbers i1, i2, and i3 to
zero, the diagonal terms to 1, and the corresponding rows of the load vector to the Dirichlet boundary
values hi1, hi2, and hi3, as follows:

An+1
1,1 An+1

1,2 . . . An+1
1,i1 . . . An+1

1,i2 . . . An+1
1,i3 . . . An+1

1,N
An+1

2,1 An+1
2,2 . . . An+1

2,i1 . . . An+1
2,i2 . . . An+1

2,i3 . . . An+1
2,N

...
...

...
...

...
...

...
...

...
...

0 0 0 1 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 1 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 1 0 0 0 0
...

...
...

...
...

...
...

...
...

...
An+1

N,1 An+1
N,2 . . . An+1

N,i1 . . . An+1
N,i2 . . . An+1

N,i3 . . . An+1
N,N





hn+1
1

hn+1
2
...

hn+1
i1
...

hn+1
i2
...

hn+1
i3
...

hn+1
N



=



cn+1
1 − bn+1

1
cn+1

2 − bn+1
2

...
hi1
...

hi2
...

hi3
...

cn+1
N − bn+1

N



. (19)

Another conventional approach to accommodate the Dirichlet boundary condition is to simply
discard rows and columns corresponding to Dirichlet boundaries such that the dimensions of the
matrix and the load vector are reduced, and to modify the load terms at nodes connected to Dirichlet
boundaries by moving the known Dirichlet boundary values to the right-hand side as follows:



An+1
1,1 An+1

1,2 · · · An+1
1,N−3

An+1
2,1 An+1

2,2 · · · An+1
2,N−3

...
...

...
...

An+1
N−3,1 An+1

N−3,2 · · · An+1
N−3,N−3





hn+1
1

hn+1
2
...

hn+1
N−3


=



cn+1
1 − bn+1

1 −An+1
1,1 hi1 −An+1

1,i2 hi2 −An+1
1,i3 hi3

cn+1
2 − bn+1

2 −An+1
2,1 hi1 −An+1

2,i2 hi2 −An+1
2,i3 hi3

...

cn+1
N−3 − bn+1

N−3 −An+1
N−3,i1hi1 −An+1

N−3,i2hi2 −An+1
N−3,i3hi3


. (20)
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The approach described in Equation (19) maintains the matrix size, whereas the approach described
in Equation (20) reduces the matrix size by the number of Dirichlet boundary nodes, and hence the latter
approach may be more computationally efficient, particularly for a large number of Dirichlet nodes.
Approaches deriving Equations (19) or (20) after some manipulation are hereafter denoted as the
typical conventional approach (TCA) for accommodating the Dirichlet boundary condition.

In contrast to the TCA above, the new approach maintains the Galerkin equations at the Dirichlet
boundaries by setting the values of

{
bn+1

i

}
, i.e., the Galerkin fluxes or integral boundary fluxes at the

Dirichlet nodes, as unknown variables, and at the same time, moving the values of {hi}, i.e., the a priori
known hydraulic heads at the Dirichlet nodes, to the right-hand side. As an easier explanation, if the
rows corresponding to node numbers i1, i2, and i3 in Equation (18) are expressed in algebraic equations,
the following equations can be obtained:

An+1
i1,1 hn+1

1 + An+1
i1,2 hn+1

2 + · · ·+ An+1
i1,i1 hn+1

i1 + · · ·+ An+1
i1,i2 hn+1

i2 + · · ·+ An+1
i1,i3 hn+1

i3 + · · ·+ An+1
i1,N hn+1

N = cn+1
i1 − bn+1

i1 , (21)

An+1
i2,1 hn+1

1 + An+1
i2,2 hn+1

2 + · · ·+ An+1
i2,i1 hn+1

i1 + · · ·+ An+1
i2,i2 hn+1

i2 + · · ·+ An+1
i2,i3 hn+1

i3 + · · ·+ An+1
i2,N hn+1

N = cn+1
i2 − bn+1

i2 , (22)

An+1
i3,1 hn+1

1 + An+1
i3,2 hn+1

2 + · · ·+ An+1
i3,i1 hn+1

i1 + · · ·+ An+1
i3,i2 hn+1

i2 + · · ·+ An+1
i3,i3 hn+1

i3 + · · ·+ An+1
i3,N hn+1

N = cn+1
i3 − bn+1

i3 . (23)

Similarly, rows not corresponding to arbitrary node number k that is not a Dirichlet node can be
expressed as Equation (24):

An+1
k,1 hn+1

1 + An+1
k,2 hn+1

2 + · · ·+ An+1
k,i1 hn+1

i1 + · · ·+ An+1
k,i2 hn+1

i2 + · · ·+ An+1
k,i3 hn+1

i3 + · · ·+ An+1
k,N hn+1

N = cn+1
k − bn+1

k . (24)

If the known values of hn+1
i1 , hn+1

i2 , and hn+1
i3 (i.e., hi1, hi2, hi3, respectively) are moved to the

right-hand side, and the unknown values of bn+1
i1 , bn+1

i2 , and bn+1
i3 are moved to the left-hand side,

Equations (21)–(24) can be changed to Equations (25)–(28), respectively, as follows:

An+1
i1,1 hn+1

1 + An+1
i1,2 hn+1

2 + · · · + bn+1
i1 + · · · + 0 + · · · + 0 + · · · + An+1

i1,N hn+1
N = cn+1

i1 −An+1
i1,i1 hi1 −An+1

i1,i2 hi2 −An+1
i1,i3 hi3, (25)

An+1
i2,1 hn+1

1 + An+1
i2,2 hn+1

2 + · · · + 0 + · · · + bn+1
i2 + · · · + 0 + · · · + An+1

i2,N hn+1
N = cn+1

i2 −An+1
i2,i1 hi1 −An+1

i2,i2 hi2 −An+1
i2,i3 hi3, (26)

An+1
i3,1 hn+1

1 + An+1
i3,2 hn+1

2 + · · · + 0 + · · · + 0 + · · · + bn+1
i3 + · · · + An+1

i3,N hn+1
N = cn+1

i3 −An+1
i3,i1 hi1 −An+1

i3,i2 hi2 −An+1
i3,i3 hi3, (27)

An+1
k,1 hn+1

1 + An+1
k,2 hn+1

2 + · · · + 0 + · · · + 0 + · · · + 0 + · · · + An+1
k,N hn+1

N = cn+1
k − bn+1

k −An+1
k,i1 hn+1

i1 −An+1
k,i2 hn+1

i2 −An+1
k,i3 hn+1

i3 . (28)

Finally, if the set of Equations (25)–(28) are expressed in a matrix form in the new approach, a new
expression for the simultaneous algebraic equation system can be written as follows:



An+1
1,1 An+1

1,2 · · · 0 · · · 0 · · · 0 · · · An+1
1,N

An+1
2,1 An+1

2,2 · · · 0 · · · 0 · · · 0 · · · An+1
2,N

...
... · · · 0 · · · 0 · · · 0 · · ·

...

An+1
i1,1 An+1

i1,2 · · · 1 · · · 0 · · · 0 · · · An+1
i1,N

...
... · · · 0 · · · 0 · · · 0 · · ·

...

An+1
i2,1 An+1

i2,2 · · · 0 · · · 1 · · · 0 · · · An+1
i2,N

...
... · · · 0 · · · 0 · · · 0 · · ·

...

An+1
i3,1 An+1

i3,2 · · · 0 · · · 0 · · · 1 · · · An+1
l3,N

...
... · · · 0 · · · 0 · · · 0 · · ·

...

An+1
N,1 An+1

N,2 · · · 0 · · · 0 · · · 0 · · · An+1
N,N





hn+1
1

hn+1
2
...

bn+1
i1
...

bn+1
i2
...

bn+1
i3
...

hn+1
N



=



cn+1
1 − bn+1

1 −An+1
1,i1 hi1 −An+1

1,i2 hi2 −An+1
1,i3 hi3

cn+1
2 − bn+1

2 −An+1
2,i1 hi1 −An+1

2,i2 hi2 −An+1
2,i3 hi3

...

cn+1
i1 −An+1

i1,i1 hi1 −An+1
i1,i2 hi2 −An+1

i1,i3 hi3

...

cn+1
i2 −An+1

i2,i1 hi1 −An+1
i2,i2 hi2 −An+1

i2,13hi3

...

cn+1
i3 −An+1

i3,i1 hi1 −An+1
i3,i2 hi2 −An+1

i3,i3 hi3

...

cn+1
N − bn+1

N −An+1
N,i1 hi1 −An+1

N,i2 hi2 −An+1
N,i3 hi3



. (29)

As shown in Equation (29), the unknown variables to be solved are the hydraulic heads at all nodes,
except the Dirichlet nodes, along with the Galerkin fluxes at the Dirichlet nodes. Therefore, in the new
approach, by solving the simultaneous algebraic systems in Equation (29), the boundary fluxes at the
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Dirichlet nodes and the finite element hydraulic head solutions at all nodes, except the Dirichlet nodes,
can be obtained simultaneously in one step. Compared to the new approach, Yeh’s approach and
the CDA consist of two steps, wherein the first step is to obtain the Galerkin finite element hydraulic
heads at all nodes by solving Equations (19) or (20), and then, calculate the boundary fluxes using
the obtained Galerkin finite element hydraulic heads. Hence, the new approach presents a more
straightforward and efficient computational procedure.

The global mass balance can be obtained by integrating Equation (1) over the whole space
domain R, applying the divergence theorem, and substituting Equation (4), as follows:∫

R
F
∂h
∂t

dR−
∫

R
QdR +

∫
B

n̂·VdB = 0. (30)

The first and second terms on the left-hand side of Equation (30) represent, respectively, the
volumetric rate of increase in moisture content and the mass change rate due to sinks/sources, with the
latter being positive for withdrawal over the whole region R. The last term indicates the outwardly
normal flux through the global boundary B. If we assume, for the sake of simplicity, that a global
boundary consists of a Dirichlet boundary Bd, a Neumann boundary Bn, and an impermeable boundary
Bim, the flux through the whole boundary can be divided into three components, as shown below:∫

B
n̂·VdB =

∫
Bd

n̂·VdB +

∫
Bn

n̂·VdB +

∫
Bim

n̂·VdB = Fd + Fn + Fim, (31)

where Fd, Fn, and Fim represent the fluxes through a Dirichlet boundary Bd, Neumann boundary Bn, and
impermeable boundary Bim, respectively. To evaluate the mass balance computational performance of
the different approaches, the global mass balance error over a whole region can be defined as:

Mass balance error (MBE) =
total net mass through all boundaries − mass change in region

total mass accumulated in region
× 100. (32)

If the total mass accumulated within a certain period ∆t in a region can be obtained as the sum of
the total net mass through all boundaries during ∆t and the mass added (or removed) to the initial
mass in the region during ∆t due to sources (or sinks), Equation (32) can be rewritten as:

MBE =
−

∫
B n̂·VdB× ∆t−

∫
R F∂h

∂t dR× ∆t−
∫

R QdR× ∆t∫
R θ(t0)dR−

∫
B n̂·VdB× ∆t +

∫
R QdR× ∆t

× 100, (33)

where θ(t0) is the moisture content distribution at the initial time t0. Here, at the Neumann and
impermeable boundaries, respectively, Fn and Fim are known a priori, i.e., prescribed with known values.
Accordingly, if the flux through a Dirichlet boundary can be calculated exactly and the finite element
hydraulic solutions obtained from Equations (19), (20), or (29) are free of error, the mass balance
equation (Equation (30)) will be perfectly satisfied, assuming that the numerical quadrature is exact and
there is no temporal discretization error. The flux through the Dirichlet boundary can be conventionally
calculated by either differentiating the hydraulic heads computed from Equation (19) or (20) using
the CDA, or by applying the finite element approach to the Darcy equation with the hydraulic heads
computed from Equation (19) or (20) using Yeh’s approach. However, the approach proposed in this
study directly calculates the flux through Dirichlet boundaries by solving Equation (29) for Galerkin
fluxes or integral boundary fluxes at the Dirichlet nodes. To illustrate the superiority of the mass
balance computation performed using the proposed approach, here, the approach was compared to
the CDA and Yeh’s approach using two practical groundwater scenarios.
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3. Results and Discussion

Two hypothetical groundwater examples were used in this study to compare the proposed
approach to the CDA and Yeh’s approach. The first problem considered the case of infiltration through
the bottom of a long ditch of a certain width, which is parallel to two long rivers that bound an
unconfined aquifer. This example was adapted from Strack [24]. The second problem involved a
hypothetical small watershed with a sloping area, as described by Yeh [4], with the exception of the
boundary conditions. In the first example, two different discretization schemes were applied, with the
whole domain discretized into fine and coarse grids, respectively. Within the two discretization systems,
the accuracies of the different finite element hydraulic head solutions over the entire domain obtained
through the TCA or new approach and the accuracies of the fluxes at Dirichlet boundaries obtained
using each of the three computational approaches were compared to analytical solutions of the
hydraulic head distribution and the boundary flux. Similarly, for the second example, the cumulative
mass balance error was calculated and the CPU time was recorded for each of the three computational
approaches for comparison.

3.1. Example 1: Steady-State Infiltration through the Bottom of a Long Ditch

In the first example, it was assumed that the bottom of the ditch was not in contact with the
phreatic surface and that water will leak through the bottom, filter down to the phreatic surface,
and finally join the flow in the aquifer. As shown in Figure 1, the distance between the rivers L was
200 m and the heads along the left and right rivers were 1 and 3 m, respectively. The rate of steady
infiltration through the bottom of the ditch was 0.2 m/day. The coordinates of the boundaries of the
ditch were ξ1 and ξ2 at 10 and 20 m, respectively; hence, the width of the long ditch b was 10 m.
To calculate the hydraulic head distribution over the whole domain and the fluxes at the boundary,
the whole domain was discretized with rectangular elements at each of two different discretization
levels, as shown in Figure 2. For the fine and coarse discretization, the largest element sizes in the
x-direction were 1 and 20 m, respectively. To consider the rate of infiltration through the bottom of the
ditch, a Neumann boundary condition was specified along the ditch; Dirichlet boundary conditions
were assigned along the rivers, as shown in Figure 2. All other boundaries were assumed to be
impermeable. Modeling of the unsaturated flow in the zone between the bottom of the ditch and the
phreatic surface was not conducted to keep the numerical solutions of the hydraulic head distribution
and boundary flux consistent with the analytical solutions developed by Strack [24], in which the
unsaturated flow was not considered. Accordingly, to account for the occurrence of unsaturated flow
during the simulation, the curves of the constitutive relations that associate the pressure head with the
water content and relative permeability were determined, as shown in Figure 3, where the material
properties of the constitutive relations are shown in Table 1. In this constitutive relation, when the
pressure head was less than 0, the water content became θr, and thus, the relative permeability was 0.
The steady-state hydraulic head distributions were calculated through Equations (19), (20), and (29)
using the TCA and the new approach, and subsequently, the velocity field distributions in the whole
domain were obtained through postprocessing using either Yeh’s approach or the CDA at all different
discretization levels to compute the integral boundary fluxes for the mass balance computation.
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Figure 1. Schematic diagram showing local infiltration through the bottom of a long ditch (modified
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(b) the relative permeability.

Table 1. Soil properties determining the curves of the constitutive relations. K, θs, θr, and λ are the
hydraulic conductivity, saturated water content, relative water content, and soil index parameter related
to the pore-size distribution, respectively.

Soil Properties Example 1 Example 2

K (m/day) 10 0.01
θs (m3/m3) 0.368 0.368
θr (m3/m3) 0.102 0.102
λ (m−1) 9.8 1.0

As shown in Figure 4, the difference between the velocity field distributions of Yeh’s approach
and the CDA seemed to be small by visual inspection alone, except around the upconing of the water
table beneath the ditch, where the velocity obtained using the CDA was significantly larger than that
using Yeh’s approach. However, to provide a more sophisticated analysis, the difference between
velocity field distributions calculated using the Yeh’s postprocessing approach and the CDA method
were quantified by calculating the root mean square (RMS) of the normalized velocity difference vector.
The root mean square (RMS) of the normalized velocity difference vector was defined as follows:

normalized RMS =

√√√√
1
N

N∑
i=1

VYeh
i −VCDA

i

VYeh
i,n


2

, i ∈ N,

VYeh
i,n =

{
VYeh

i , i f VYeh
i ≥ VYeh

max × 0.001,
VYeh

max × 0.001, i f VYeh
i < VYeh

max × 0.001,
(34)

where N is the total number of nodes; VYeh
i and VCDA

i are the magnitudes of velocities at the ith
node calculated using the Yeh’s approach and CDA, respectively; and VYeh

max is the maximum value of
VYeh

i (i = 1, 2, . . . , N). The RMS values of the normalized velocity differences calculated according to
Equation (34) are indicated in Table 2.
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Figure 4. Steady-state hydraulic heads calculated using the typical conventional approach (TCA) and
velocity field distributions obtained using (a) Yeh’s postprocessing approach and (b) the conventional
differential approach (CDA) at the fine discretization level.

Table 2. The RMS values of the normalized velocity differences calculated using Equation (34).

Spatial Discretization Level Normalized RMS (%)

Fine 32.9
Coarse 33.6

As shown in Table 2, the RMS values of the normalized velocity differences were 32.9% and 33.6%
in the fine and coarse discretization levels, respectively, which are not small. It was found out that
these results are reasonably consistent with those found in Yeh [4].
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The analytical solution from Strack [24] was adapted for a more accurate comparison, as follows:

φ(x) =

√
2
K

[
−Φ1

(x− 0.5L)
L

+ Φ2
(x + 0.5L)

L
+ (n̂·V)BC·Gd(x)

]
(35)

where φ(x) is the elevation of the water table at x; Φ1 and Φ2 are the discharge potentials for the
horizontal flow at the left- and right-hand boundaries, respectively; (n̂·V)BC is the rate of infiltration
through the bottom of the ditch; and L is the width of the aquifer. Here, Φ1 = 1

2 Kφ2
1 and Φ2 = 1

2 Kφ2
2,

whereφ1 andφ2 are the elevations of the water table at the left- and right-hand boundaries, respectively.
Gd(x) from Equation (35) was calculated as follows:

Gd(x) =
(x + 0.5L)

L

[
(0.5L− ξ2)b + 0.5b2

]
, x1 ≤ x ≤ ξ1, (36)

Gd(x) =
(x + 0.5L)

L

[
(0.5L− ξ2)b + 0.5b2

]
− 0.5(x− ξ1)

2, ξ1 ≤ x ≤ ξ2, (37)

Gd(x) =
(x + 0.5L)

L

[
(0.5L− ξ2)b + 0.5b2

]
− b(x− ξ2) − 0.5b2, ξ2 ≤ x ≤ x2, (38)

where b is the width of the ditch and b = ξ2 − ξ1. In addition, the analytical discharges at the left and
right Dirichlet boundaries could be obtained by differentiating Equation (35) with respect to x and
calculating the discharges at x1 and x2, as follows:

∂Φ
∂x

∣∣∣∣∣
x=x1

=

−Φ1

L
+

Φ2

L
+ (n̂·V)BC·

[
(0.5L− ξ2)b + 0.5b2

]
L

, (39)

∂Φ
∂x

∣∣∣∣∣
x=x2

=

−Φ1

L
+

Φ2

L
+ (n̂·V)BC·

[
(0.5L− ξ2)b + 0.5b2

− bL
]

L

. (40)

The analytical solutions allowed for the accuracy of the computed water table profiles obtained
through the new approach for solving Equation (29) and through the TCA for solving Equations (19)
or (20) under the two different discretization levels to be evaluated in greater detail. Furthermore,
as shown in Figure 5, the computed water table profiles could be plotted against the exact analytical
solutions from Equation (35). The maximum difference Eh between the exact analytical and numerical
solutions was calculated thus:

Eh = max
∣∣∣φ̂(xi) −φ(xi)

∣∣∣, i ∈ N, (41)

where φ̂(xi) is the computed water table at location xi andφ(xi) is the analytical solution of Equation (35)
at location xi. According to Figure 5, the water table profiles computed using the new method to solve
Equation (29) and using the TCA to solve Equations (19) or (20) were identical. Indeed, we found good
agreement between the two results, regardless of the mesh discretization level (not shown). However,
the maximum difference Eh increased with increasing element size in both approaches, as shown in
Table 3.

Table 3. The maximum difference Eh between the exact analytical and numerical solutions obtained
through the new approach to solve Equation (29) and the TCA to solve Equation (19) or (20) at two
spatial discretization levels.

Spatial Discretization Level New Approach’s Eh (m) TCA’s Eh (m)

Fine 6.16 × 10−2 6.16 × 10−2

Coarse 8.55 × 10−2 8.55 × 10−2
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In addition to the computed water table profiles, E f , which is the percentage error between the
exact analytical solution and the integral boundary flux at the Dirichlet boundaries computed using
the three methods, was calculated as follows:

E f =
(FA − FN)

FA
× 100, (42)

where FA is the analytical boundary discharge obtained using Equations (39) and (40) and FN is the
boundary flux at the Dirichlet boundaries obtained through Yeh’s approach, the CDA, or the new
approach. According to Table 4, at the fine discretization level, the percentage errors between the
exact analytical solutions and the computed boundary fluxes on the left- and right-hand sides using
the new approach were 0.96% and 1.07%, respectively, whereas those between the exact analytical
solutions and the computed boundary fluxes on the left- and right-hand sides using Yeh’s approach
were 1.06% and 1.59%, respectively. Yeh’s approach produced slightly larger errors (1.1–1.5-fold)
than the new approach. Furthermore, in the CDA, the errors on the left- and right-hand sides were
8.55% and 3.23%, respectively, which were larger than those produced by the new method by 3.0 and
8.9 times, respectively. Similarly, at the coarse discretization level, the errors on the left- and right-hand
sides produced using the new approach were 1.63% and 1.81%, respectively, and those on the left- and
right-hand sides using Yeh’s approach were 19.23% and 6.16%, respectively. At the coarse discretization
level, Yeh’s approach produced much larger errors than the new approach. Moreover, in the CDA,
as the mesh became coarser, the errors on the left- and right-hand sides increased drastically from 8.55%
and 3.23% to 42.61% and 12.30%, respectively. Therefore, regardless of the mesh discretization level,
the new approach produced the most accurate results in the calculation of boundary fluxes, which is a
requisite for mass balance computations. In addition, the CDA yielded larger errors compared to Yeh’s
approach, which is consistent with previous findings.
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Table 4. Boundary fluxes at the Dirichlet boundaries computed using three methods: Yeh’s approach,
the CDA, and the new approach, under two different discretization levels. The exact analytical solutions
are also shown, and the percentage errors between the exact analytical solutions and the computed
boundary fluxes are given in parentheses.

Methods Boundary Sides Boundary Fluxes at the Dirichlet Boundary
(m3/day) under Different Discretization Levels

Analytical solution Left/right 1.05/0.95

Fine Coarse

New approach Left/right 1.060/0.940 1.067/0.933
(E f = 0.96%/1.07%) (1.63%/1.81%)

Yeh’s approach Left/right 1.039/0.935 0.881/0.895
(1.06%/1.59%) (19.23%/6.16%)

CDA Left/right 0.960/0.919 0.603/0.833
(8.55%/3.23%) (42.61%/12.30%)

3.2. Example 2: A Problem Involving a Hypothetical Small Watershed with a Sloping Area

In this section, a problem involving a hypothetical small watershed with a sloping area described
in Yeh [4], with the exception of the boundary conditions, was computed to compare the efficiency and
accuracy of the new approach with Yeh’s approach and the CDA. The aquifer system was assumed
to be composed of homogeneous sand with the unsaturated properties given in Table 1. It was
assumed that streams flowed adjacent to the left and right boundaries of the aquifer. For the finite
element calculation, the entire region was discretized with three-dimensional hexahedral elements.
The total numbers of nodes and elements were 806 and 360, respectively. Figure 6 shows a vertical
cross-section of the discretized domain. Nine elements on the top plateau surface were considered
constant Neumann flux elements, as shown in Figure 6, and were assigned a constant infiltration
rate of 0.1 cm/day. The sloping sides, along with the bottom, front, and back sides, were considered
impermeable boundaries (lower boundary surfaces A–E and upper boundary surfaces F–I). As shown
in Figure 6, on the interfaces between the aquifer and the streams, Dirichlet boundary conditions
were designated and the hydraulic heads at the left and right boundaries were set at 130 and 190 cm,
respectively. To obtain the initial conditions for a transient simulation, a constant infiltration rate of
0 cm/day was set at the top plateau surface. A variable time step size was used, with an initial time
step size of 10−5 days, and each subsequent time step size increased 1.1-fold with a maximum time
step size not greater than 0.1 days. The hydraulic head distributions were obtained using the new
approach and the TCA over a total simulation time of 100 days. Comparisons of the hydraulic head
distributions over a simulation time of 100 days obtained using the new approach and the TCA are
shown in Figure 7, where the hydraulic head distributions were identical. Because there were no
available analytical solutions, the numerical results of the hydraulic head distributions were compared
against those obtained with a very fine discretization system; it was found that the numerical solutions
were very similar at this fine discretization level (not shown). The MBEs of Equation (33) calculated
through the new approach, Yeh’s approach, and the CDA, as well as the CPU times for all approaches,
are compared in Table 5. The new approach had faster CPU times (by 31.8% and 32.4%, respectively)
compared to the CDA and Yeh’s approach, and the MBE of the new approach was less than those of the
CDA and Yeh’s approach by approximately 950-fold and 552-fold, respectively. The reason for this was
that, first, the new approach took only one step to obtain the boundary fluxes at the Dirichlet nodes to
be used in the mass balance computation, whereas the CDA and Yeh’s approach required a second step
for solving the velocity fields. Therefore, the CDA and Yeh’s approach needed a longer computational
time to calculate the velocity fields in the additional second step. Moreover, the new approach was
much more accurate than Yeh’s approach or the CDA because the latter two approaches calculated the
boundary fluxes incorrectly. In the CDA, a discontinuous velocity field is generated at nodal points
and element boundaries, leading to a significant boundary flux error. Although it has been reported
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that Yeh’s approach produces much better results than the CDA by obtaining continuous velocity
fields [4–6,8–10], in this example, Yeh’s approach produced significant errors comparable to those from
the CDA because of the large boundary flux errors along the impermeable boundary in the complicated
flow regime. The boundary flux should theoretically be zero along an impermeable boundary; however,
the velocity obtained through Yeh’s approach did not satisfy this theory, as discussed in previous
studies [4]. In particular, the boundary flux errors could be severe at an impermeable boundary zone
within the convergent region of the flow (boundary surface segments FG, BC, and CD) in Figure 8,
where the magnitude and direction of the flow velocity changed dramatically, as shown in Figure 7.
Accordingly, even using Yeh’s approach, significant global mass balance errors can occur when an
impermeable boundary is located in a highly complicated flow regime, as shown in Figure 8. The MBE
calculations at different numerical simulation times were performed using the new approach, as well as
Yeh’s approach and the CDA, which are shown in Figure 9. Compared to the new approach, the MBEs
obtained through the other approaches increased with time because the boundary fluxes through an
impermeable boundary were always calculated to be nonzero at all time steps and accumulated over
time in the MBE calculations. These erroneous nonzero boundary fluxes originated from the inaccurate
velocity calculations in Yeh’s approach and the CDA at these boundaries. Although these errors at the
impermeable boundaries can be reduced by refining elements in the CDA and Yeh’s approach, the
new approach at this discretization level still produced mass balance errors within only approximately
3.37 × 10−3% for all simulation times, as shown in Table 5. Therefore, in these typical groundwater
scenarios, the new approach provided a much more accurate MBE calculation compared to the other
approaches for all simulation times. The new approach also demonstrated superior efficiency.
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4. Conclusions

In this study, a simple new computational procedure based on the approach described by
Lynch [11] was proposed to simultaneously obtain boundary fluxes at Dirichlet boundary nodes and
finite element hydraulic heads at all nodes, except Dirichlet boundary nodes, within a single step to
provide accurate mass balance computations. Compared to previous mass balance computational
procedures, such as Yeh’s approach and the CDA, which usually require two steps, the new approach
was computationally more efficient and convenient. Most previous mass balance studies based on
Lynch’s approach [11] are limited in application to only simple mathematical concepts or hypothetical
abstract examples that have a one-dimensional steady state with homogeneous material and simple
boundary conditions or simple geometry. These examples are far from typical groundwater scenarios
or realistic application scenarios. Accordingly, the proposed procedure was applied here to two typical
groundwater scenarios. The first considered a case of infiltration through the bottom of a long ditch of
a certain width, as adapted from Strack [24], and the second was a problem involving a hypothetical
small watershed with a sloping area, as described in Yeh [4], with different boundary conditions
and aquifer properties. In the first example, for two different spatial discretization levels, solutions
derived using the proposed approach and two previous approaches (Yeh’s approach and the CDA)
were compared in terms of the accuracy of the calculated fluxes at the Dirichlet boundaries using
analytical solutions. As the spatial discretization became coarser, the calculated maximum difference
between the exact analytical solution and the numerical solutions computed through Yeh’s approach
and the CDA were much larger than the difference observed with the new approach. The calculated
mass balance errors from the previous approaches increased significantly as the mesh became coarser;
however, using the new approach, the errors increased only slightly to within approximately 2% at all
mesh discretization levels.

Similarly, in the second example, the mass balance error of the new approach was much less
(552-fold and 950-fold, respectively) than those of the previous approaches because Yeh’s approach
and the CDA yielded significant errors when calculating the velocities at the impermeable boundaries.
Although it has been reported that Yeh’s approach produces much better results than the CDA by
obtaining continuous velocity fields, even Yeh’s approach in this example produced significant errors
when calculating the velocities, especially when an impermeable boundary was located in a highly
complicated flow regime, leading to significant global mass balance errors. Furthermore, the CPU
time of the new approach was approximately 32.4% and 31.8% faster than those of Yeh’s approach
and the CDA, respectively, because the new approach used only one step to obtain boundary fluxes
at the Dirichlet nodes, whereas both Yeh’s approach and the CDA needed a second step to compute
the velocity fields. From the results of these numerical experiments, it can be concluded that the new
approach provided more accurate and efficient mass balance computations compared to the previous
approaches that are widely used in commercial and public groundwater software.
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