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Abstract: One of the common problems of organizations with turn-key projects is the high scrap rate.
There exist such traditional methods as Lean Six Sigma (LSS) and DMAIC tools that analyze causes
and suggest solutions. New emerging intelligent technologies should influence these methods and
tools as they affect many areas of our life. The purpose of this paper is to present the innovative
Small Mixed Batches (SMB). The standard set of LSS tools is extended by intelligent technologies
such as artificial neural networks (ANN) and machine learning. The proposed method uses the
data-driven quality strategy to improve the turning process at the bakery machine manufacturer.
The case study shows the step-by-step DMAIC procedure of critical to quality (CTQ) characteristics
improvement. Findings from the data analysis lead to a change of measurement instrument, training of
operators, and lathe machine set-up correction. However, the scrap rate did not decrease significantly.
Therefore the advanced mathematical model based on ANN was built. This model predicts the CTQ
characteristics from the inspection certificate of the input material. The prediction model is a part of a
newly designed process control scheme using machine learning algorithms to reduce the variability
even for input material with different properties from new suppliers. Further research will be focused
on the validation of the proposed control scheme, and acquired experiences will be used to support
business sustainability.

Keywords: artificial neural network; lean six sigma; machine learning; process capability; small
mixed batches; turning process

1. Introduction

The rapidly changing economic and market environment and increasing pressure for a sustainable
lifestyle bring changes in the behavior and the habits of people. Machines for the macroscopic
world are being developed [1]. Similarly, engineering can produce at the precision level of microns,
and measurement technologies have shifted to high-sensitive optical sensors and imaging technologies.
This changing environment places new demands on innovation and change, but most industrial
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organizations, according to the survey [2,3], are not yet in a state where they would introduce intelligent
technologies. These technologies, in the context of Quality 4.0, allow the processing and presentation
of a large amount of data from past measurements that can be used to look back for the trends and
forward-looking decision making [4,5], where new business can appear based on new technologies [6],
aiming at value creation [7] with increasingly demanding customers.

Despite these possibilities, many non-automotive industry organizations still record their
measurements in paper forms and underuse the power of data to reduce material and energy
consumption, which is a necessary condition for sustainability on the organizational level [8]. Moreover,
bakery machine manufacturers have to keep up with this reality and continuously innovate their
activities, change the product portfolio, and improve the quality and performance of processes,
but all within the principles of hygienic design of the bakery machine [9]; although, in many
cases, they produce machine components in small mixed batches according to individual customer
requirements (custom made bakery machines). There is no remaining time or financial opportunities
for 100% quality inspection of all characteristics of manufactured parts. Therefore, process engineers
and quality engineers must be able to monitor the critical to quality (CTQ) characteristics, process
quality, and performance indicators in real-time and must be able to use tools of advanced quality
improvement to ensure that the production process is stable and efficient [10,11]. Research on processes
with low repeatability and small mixed batches has, in the past, been focused mainly on products and
less on processes. That is, quality has been studied only on final parts or products [12].

The presented case study relates to an organization that has not analyzed the process capability
and performance in the past; it relied mainly on production time standards and the skills of
operators. Nowadays, the necessity to modify production towards more sustainable business and
according to individual customer specifications and preferences, the “Lean” paradigm [13,14] and
Six Sigma philosophy, is increasingly being applied, because organizations need to focus on process
improvement [15,16].

Our research aims to propose a sequence of quality improvement steps related to the
implementation of Lean Six Sigma (LSS) tools and intelligent technologies for Small Mixed Batch (SMB)
production. In the case study of a bakery machine manufacturer, the newly developed Lean Six Sigma
Small Mixed Batch (LSS-SMB) method with machine learning methodology is applied. The goal of the
case organization is to improve the turning process capability (Cp).

The rest of the paper is structured as follows: Section 2 contains the literature survey of tools and
methods used for SMB production system improvement with a focus on using intelligent technologies.
Section 3 describes the problem in the bakery machine manufacturer and introduces the newly
developed LSS-SMB method. This section also contains a detailed description of data collection and
analysis during the two years of project duration. In Section 4, we continue by presenting the key
results of our case study with the support of tables and figures. Section 5 discusses our findings,
and Section 6 presents the key conclusions from the entire paper.

2. Context: Tools and Methods Used for Small Mixed Batch Production System Improvement

The volume of data available for research in recent years is exponentially growing [17]. Therefore,
most businesses try to gain value from them. Data and analytics are changing the basis of competition,
and companies are using analytical capabilities to launch brand new business and process models.
Regarding quality management, access to data and information has also changed. The desired results
are more likely to be achieved if decisions are based on the analysis and evaluation of data from the
documented information [18]. The use of information from various existing organization databases
in connection with Lean manufacturing principles translates the organization’s performance into
higher productivity, less invested time, better quality, customer satisfaction, increased sales and,
consequently, increased profit [19]. Currently, the use of Lean tools in the manufacturing industry
has been remarkably expanded thanks to using extensive data analysis that has impressive power to
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detect non-conformances, reduce waste and delivery times and lead the organization to streamlined
manufacturing and value stream mapping [20].

Our research started with a literary survey, which contained keywords and abstracts related to:
“Six Sigma”; “Lean”; “Small Mixed Batch”; “Statistical Process Control” and, applying intelligent
technologies for Quality 4.0, “machine learning”; “machine vision”. To ensure better search inclusion,
phrase variants “Statistical Process Control” and “SPC”, “Six Sigma” and “Lean Six Sigma”, were used.
There was initially no search restriction in the release year to avoid the arbitrary exclusion of resources.
The results have been examined in more detail by keyword and thematic focus, and a group of papers
was selected and sorted by years of occurrence. In particular, those related to industrial production
and intelligent technologies were used in further research. Findings are summarized in the following
three Sections.

2.1. Six Sigma, Lean and Intelligent Technologies

Selecting the right analytical tools to understand data to work with is a difficult task for experts.
In industrial practice, the Six Sigma methodology is often used. It combines analytical and statistical
quality tools and offers a universally applicable method of gradual improvement, which is an integral
part of it. Lean Manufacturing is a system for maximizing product value for the customer while
minimizing waste without reducing productivity. The synthesis of Lean Manufacturing with Six Sigma
creates a comprehensive system that removes waste and reduces process variation and optimizes
product output [21]. The high-level problem-solving approach in Lean Six Sigma is a 5-steps process
called DMAIC (Define, Measure, Analyze, Improve, Control) [22]. Data analysis in Lean Six Sigma
is typically historical in nature because data are gathered and analyzed after processes have run.
Even in the control phase, when active process management is ongoing, data analysis occurs after the
manufacturing rather than as the process runs [23].

Current intelligent technologies related to Quality 4.0 enable real-time process control and
decision-making. Machine learning as a sub-set of artificial intelligence that provides systems with
the ability to automatically learn and improve from experience without being explicitly programmed.
Several researchers use machine vision [24], machine learning [25] and artificial neural networks
(ANN) [26] for prediction of dimensional deviation and surface roughness. However, these intelligent
technologies and real-time quality control and improvement are not yet an integral part of LSS practice.

2.2. Small Mixed Batches, Short Run, and Statistical Process Control

The term “small mixed batch” is used when different products are in the batch, but according to
some characteristics, they can be investigated together [12]. The term “short-run” (SR) means that
only a few pieces are produced, and consequently, a different part or item is going to be produced.
It means that the production cycle is very short, or it does not allow intervention within a reasonable
time; the repeatability of the production batch is low, and a very small volume of items is in a batch.

Statistical process control (SPC) techniques are applicable in any small mixed batch or short-run
production, which are repeatable in any way [27]. The primary tool of the SPC is a control chart that
shows the evolution of process variability over time.

For the application of control charts to SMB, process measurements from different products should
be grouped. The procedure for the grouping of similar processes is described in [12]. It is necessary
to regularly verify that data grouping for small mixed batch SPC is still valid. To flexibly group and
reorganize operations, it is essential to record meta-data along with the measured data so that each
measured value is associated with a group of processes [28].

The concept of intelligent SPC uses gathered data, artificial neural networks, and machine learning
to improve the automatic detection of the out of control state of the process, or to estimate the process’s
mean value and variance [29–31]. The authors use intelligent technologies only for the detection
of an adverse condition, but not for its prediction or prevention. To flexibly group and reorganize
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operations, it is essential to record meta-data along with the measured data so that each measured
value is associated with a group of processes.

2.3. Dimensional Deviation and Surface Roughness Prediction

The ability to predict the surface quality before machining gives manufacturers an advantage
in terms of cost-saving, shorter cycle time, and less re-work or rejects [32]. Several advanced
approaches have been applied to develop the methodology of the dimensional tolerances and surface
roughness prediction:

• Response surface methodology (RSM) in combination with the design of experiments (DOE) or
regression analysis is used to develop a mathematical model for predicting surface roughness
for a given set of input parameters. Mathematical modelling was used for the turning process
in [33,34].

• Artificial intelligence methods, particularly neural networks, can be applied to predict surface
roughness and dimensional deviation based on the input variables [26,35,36]. Radial basis function
(RBF) as a tool for prediction has been used by several authors [37–39].

In recent years, the development of machine vision hardware and advanced image processing
technology has opened new possibilities in the field of tool condition monitoring and geometrical
properties measurement of the workpiece without removing the workpiece from the lathe machine [40].
There are three commonly used technologies in optical shaft measurement systems: high-resolution
matrix array, CCD cameras, and line scan technology [41].

Classical statistics and Lean Six Sigma have shown that if input variables have large variance,
we would expect a large variance in the output variable(s). Finding a suitable approximation for the
proper functional relationship y = f (X) between the response of interest y and a set of input variables
X = {xi, x2, . . . , xn}, e.g., a response surface method (RSM) according to [33] can be used. Generally, if
the response function is not known or is non-linear, a second-order model is utilized [42] in the form of
Equation (1):

y = b0 +
n∑

i=1

bixi +
n∑

i=1

biix2
i +

n∑
i< j

bi jxix j + ε (1)

where ε represents the noise or error observed in the response y such that the expected response is
(y− ε) and bs are the regression coefficients to be estimated.

The least-square technique can be used to fit a model equation containing input variables by
minimizing the residual error measured by the sum of squared deviations between the actual and
estimated responses. The calculated coefficients or the model equations, however, need to be tested for
statistical significance.

According to [39], due to the inadequacy and inefficiency of the analytical models to explain the
non-linear properties existing between machining parameters, intelligent systems such as ANN, fuzzy
logic, and expert systems have emerged. ANN is an appropriate technique used to handle the problem
of non-linearity. ANNs trained with a backpropagation algorithm can be used according to [39,43] to
predict optimal machine set-up. The feedforward backpropagation neural network [44] is applied in
many cases when it is necessary to determine the output in terms of reliability, accuracy, and efficiency.
The ANN defines a mapping y = f (X;θ) and learns parameters θ = {w, b} to accomplish the best
function approximation. Figure 1 shows the structure of the neural network with n input variables,
one hidden layer with m neurons, and the output layer with one neuron. The parameters θ of a neural
network are weights wi j and biases bk. Each neuron j calculates its output Equation (2):

y j = fa

 n∑
i=1

(
wi j + b j

) (2)
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where fa is a neuron activation function. The learning algorithm uses a training set T =
{
(X, y)

}
of

input/output pairs to find the parameters θ. A different set of input/output pairs that are not included
in T is used to evaluate an ANN precision.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 21 
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Figure 1. Structure of the feedforward artificial neural network.

Factors (controllable variables X) affecting the dimensional deviation and surface roughness
(output variables y), according to [33,38,45], are listed in Table 1.

Table 1. Factors affecting surface profile, dimensional deviation, and roughness.

Classification Factors

Cutting parameters Cutting speed, depth of cut, feed rate, process kinematics

Tool properties Tool wear, tool angle, tool nose radius, tool shape, tool material, run-out
errors, tool deflection

Workpiece properties Workpiece diameter, length, defect in the material

Workpiece material
Chemical composition, mechanical properties: hardness, tensile and

yield strength, elongation and reduction in area, toughness, creep
resistance, fatigue resistance

Machining equipment Chatter, vibrations, noise, cutting forces

Machining environment Cooling fluid, friction in the cutting zone, chip formation, temperature

Among these factors, according to [33,38,39], cutting speed, depth of cut, and feed rate are most
often used to determine the influence on the quality of a produced surface. These factors were used
in the prediction models discussed later. The authors in [29,33–41,43–45] use prediction models for
dimensional deviation and surface roughness prediction only. They do not deal with the integration of
models into the process of quality control.

The critical survey in Sections 2.1–2.3 implies that intelligent technologies are not fully integrated
into traditional methods of Lean Six Sigma and process quality control. Therefore, our research is
going to address this issue to further move industrial processes towards business sustainability.

3. Methods and Materials

The new, innovative Lean Six Sigma Small Mixed Batch (LSS-SMB) method was developed by
making use of the ANN and machine learning approach in addition to the standard set of LSS tools.
This method was applied in the bakery machine manufacturer organization for improvement of the
turning process. The following Sections describe the problem that needed to be solved and explain the
new LSS-SMB method and its implementation.
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3.1. Organization and Problem Description

The research was conducted in an organization that develops innovative solutions for the bakery
industry. A medium-sized, engineering-oriented organization with a small production volume has a
diverse range of product-mix and many machine settings for different production orders. The main
end products are bakery machines. The machines are made up of components like conveyors, hoppers,
cylinders, and electrical cabinets. The assembly of these components creates units for processing a
bakery dough, forming and molding units, and food ingredient-dispensing units. Almost every project
has specific customer requirements and is a so-called “turn-key” solution. Therefore, manufacturing
can be considered as SMB production.

Stainless-steel cylinders are one of the most important and expensive components of produced
units. Each cylinder consists of a tube (A), a side flange (B), and a shaft (C) (Table 2). Product volume
is about 1800 pcs/year in 271 design variants. The cylinder material AISI 304 (X5CrNi18-10) DIN
1.4301 or AISI 304L (X2CrNi18 9) DIN 1.4307 is purchased from European (EUR) and Indian (IND)
suppliers. Cylinders are machined by turning on CNC center MAZAK QTN 350, and the cylinder
type determines the lathe machine set-up. The resulting CTQ characteristic is a shaft precise diameter
∅50h6 obtained from stainless steel rod ∅80h9 by hard and finish turning. For finish turning, a coated
cemented carbide cutting tool (CVD TICN+AL2O3+TIN), manufactured by Sandvik, Sweden, is used.
The new cutting tool is used for each workpiece.

Table 2. Basic components, material, and critical to quality (CTQ) characteristics of the cylinder.

Type Cylinder and Its
Components * Material

CTQ Specification

Precise Diameter Roughness Ra

400
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* Components: A—tube, B—flange, C—shaft.

One of the most important problems of the organization was the cylinder scrap rate of about
14%. The Pareto analysis showed that the main cause of non-conformity was the exceeding of precise
diameter and roughness specifications. Therefore, the improvement was focused on the turning
process. The organization decided to implement the Six Sigma project, where the data-driven quality
strategy is used. The precise diameter ∅50h6 and roughness Ra is measured after completion of a
batch of three cylinders (type 400, type 600, type 800) loaded into pallets and transferred to the quality
inspection with an average time lapse up to 12 h.

The problem was investigated in detail using the 8D report (Appendix A Table A1). Part D3
of the 8D report highlights the risk of the existence of a similar problem on other cylinders in the
batch. Therefore, the innovative Lean Six Sigma Small Mixed Batch was designed to improve the
production system.

3.2. Lean Six Sigma Small Mixed Batch Method

The essence of the LSS-SMB method lies in the use of Define–Measure–Analyze–Improve–Control
(DMAIC) phases in repetitive cycles until the expected improvement of the process under investigation
is achieved. The method takes into account the specifics of the short-run and small mixed batch
production system. It uses several tools from the well-known Lean Six Sigma toolbox that was
extended by artificial neural networks (ANN) and machine learning. Figure 2 shows the DMAIC
phases, activities, and selected tools of the LSS-SMB method.
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Figure 2. Lean Six Sigma Small Mixed Batch production system method. Legend: SIPOC—acronym
for Suppliers, Inputs, Process, Outputs, and Customers; VOC—voice of customer; VOP—voice of
process; VSM—value stream mapping; RCA—root cause analysis; MSA—measurement system analysis;
8D—eight disciplines problem-solving method; KPI—key performance indicators; SPC—statistical
process control; Cp, Cpk—process capability index; Pp, Ppk—process performance index.

The method is implemented using a sequence of the following steps:

(1)—Improvement objectives are set in the Define phase of the DMAIC cycle.
(2)—Existing data are collected and processed in the Measure phase of the DMAIC cycle.
(3)—The collected data from the past measurements are analyzed with appropriate tools, and the
necessary changes are determined in the Analysis phase.
(4)—The changes are realized in the Improvement phase using suitable tools.
(5)—If necessary, new measurements are designed and performed in the next cycle through the
Measurement phase.
(6)—New measurements are analyzed to determine if further changes are needed.
(7)—Further changes are realized in the repeated Improvement phase of the DMAIC cycle using
suitable tools.
(8–10)—The phases Measure, Analyze, and Improve are repeated until the improvement objectives
are reached.
(11)—The process is maintained in the improved condition through a better understanding of the
process obtained in the preceding steps.

3.3. Data Collection

In the first stage of the project (beginning of the 2018), 150 individually measured data for one
design variant recorded on paper forms were transferred to table (Appendix B Table A2). The data
represents the deviation from the precise diameter of ∅50 mm. The initial target value of deviation (T)
was set by the operator to −0.008 mm.
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In the second stage of the project in 2018, Lean Six Sigma training was conducted for project team
members and operators. The high-speed optical micrometer was purchased, and data was directly
recorded into the Excel table (Appendix B Table A3). Measured data were separated according to EUR
supplier (100 records) and IND supplier (100 records) for all design variants.

The third stage of the project in 2019 brought a detailed recording of input material properties:
diameter deviation, roughness, chemical composition, and mechanical properties, from individual
inspection certificates. Twenty-six records are intended for the prediction models calculation
(Appendix B Table A4).

3.4. Data Analysis

The analysis of measurements from the year 2017 shows missing data between 0.000 and−0.010 mm
in the histogram (Figure 3a). The run chart in Figure 3b displays dependence of variance and mean
value on the workpiece material supplier. It was concluded that the operator and the measuring
device influence measured data significantly. Therefore, no deeper data analysis was conducted for
these measurements.
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Figure 3. Measured data recorded by European (EUR) and Indian (IND) material supplier (a) histogram;
(b) the run chart for precise diameter deviation (data from the year 2017).

Based on process expert recommendation, the depth of cut and finish allowance was changed for
EUR material and the machine target value was moved from −0.008 mm to 0.000 mm. Input material
was labelled with a QR-code according to its origin (EUR or IND). The new lathe machine set-up
parameters are listed in Table 3.
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Table 3. Lathe machine set-up parameters.

Supplier Lathe Machine Set-Up Parameters

Cutting Speed (vc) [m/min] Depth of Cut (ap) [mm] Feed Rate (f) [mm/rev] Allowance [mm]

Roughing Finishing Roughing Finishing Roughing Finishing Roughing

EUR 180 110 2.0 (2.5 1) 1.0 (0.5 1) 0.25 0.2 1.0 (0.5 1)
IND 180 110 2.0 1.0 0.25 0.2 1.0

1 EUR steel set-up changed from the year 2018.

The analysis of measurements from the year 2018 showed that data are normally distributed,
the process capability is 0.94 for EUR supplier, and 0.73 for IND supplier, but the target Cpk = 1.33
was not met. Therefore, a more in-depth analysis was required to find out the cause of variability.
Dimensional deviation and roughness are influenced not only by machine set-up but also depend on
material properties. New analysis should consider different sub-suppliers and material properties
according to the inspection certificate. Histogram and individual moving range (IMR) charts are shown
in Figure 4.

Sustainability 2020, 12, x FOR PEER REVIEW 9 of 21 

The analysis of measurements from the year 2018 showed that data are normally distributed, 
the process capability is 0.94 for EUR supplier, and 0.73 for IND supplier, but the target ݇݌ܥ = 1.33 
was not met. Therefore, a more in-depth analysis was required to find out the cause of variability. 
Dimensional deviation and roughness are influenced not only by machine set-up but also depend on 
material properties. New analysis should consider different sub-suppliers and material properties 
according to the inspection certificate. Histogram and individual moving range (IMR) charts are 
shown in Figure 4. 

Table 3. Lathe machine set-up parameters. 

Supplier Lathe Machine Set-Up Parameters 

 
Cutting Speed (vc) [m/min] Depth of Cut (ap) [mm] Feed Rate (f) [mm/rev] Allowance [mm] 

Roughing Finishing Roughing Finishing Roughing Finishing Roughing 

EUR 180 110 2.0 (2.5 1) 1.0 (0.5 1) 0.25 0.2 1.0 (0.5 1) 

IND 180 110 2.0 1.0 0.25 0.2 1.0 

1 EUR steel set-up changed from the year 2018. 

 

 
Figure 4. Histogram and individual moving range charts for diameter deviation: (a) EUR suppliers, 
(b) IND suppliers (data from the year 2018). 

The analysis of measurements from the year 2019 showed that even the chemical composition, 
mechanical properties, and hardness of the material are within tolerances; they influence the 
investigated CTQ characteristics. Table 4 shows an observed range of material properties and CTQ 
characteristics of the cylinder after finish turning. 

Figure 4. Histogram and individual moving range charts for diameter deviation: (a) EUR suppliers,
(b) IND suppliers (data from the year 2018).

The analysis of measurements from the year 2019 showed that even the chemical composition,
mechanical properties, and hardness of the material are within tolerances; they influence the investigated
CTQ characteristics. Table 4 shows an observed range of material properties and CTQ characteristics
of the cylinder after finish turning.
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Table 4. Range of the chemical and mechanical properties, precise diameter deviations and roughness
Ra (data from the year 2019).

Material Chemical Composition [%] Mechanical Properties Roughness Ra Diameter Deviation

EUR supplier

0.012–0.026%C
0.260–0.500%Si

1.510–1.850%Mn
0.036–0.040%P
0.015–0.030%S

18.041–18.200%Cr
8.020–8.130% Ni

H: 167–170 HBW
YS(Rp0.2): 235–318 MPa

A: 53.2–58%
0.832 to 1.002 −0.001 to −0.006

IND supplier

0.017–0.027%C
0.260–0.490%Si

1.450–1.800%Mn
0.036–0.042%P
0.018–0.025%S

18.030–18.370%Cr
8.020–8.280% Ni

H: 158–176 HBW
YS (Rp0.2): 192–270 MPa

A: 53–73%
0.802 to 0.990 0.000 to −0.012

Legend: H—Hardness [HBW]; YS (Rp0.2)—Yield strength [MPa]; A—Elongation [%].

Therefore, the collected data were used to create two models to estimate the diameter deviation
and two models for roughness Ra estimation after turning operation, based on the knowledge of the
material properties of stainless steel used. Both models have three input variables: yield strength
RP0.2, elongation, and hardness. The first of the two models uses the response surface method (RSM)
and the second-order polynomial model described by Equation (1).

The second model uses feedforward ANN, as described in Section 2.3. The network has one
hidden layer with ten neurons with a hyperbolic tangent sigmoid activation function. The output layer
has one neuron with a linear activation function. The models were created in Matlab software (Total
Academic Headcount license).

Table 5 shows the values of the Coefficient of Determination R2 used to assess how good the model is.
The value closer to one is better. Training of ANN is a stochastic process. Therefore, 30 independent runs
were statistically evaluated to compare three different training methods. Appendix B Table A5 contains
results for three to ten neurons in the hidden layer. The ANN trained with Levenberg–Marquardt
backpropagation algorithm with ten neurons in the hidden layer has higher value of R2 at shorter
calculation time.

Table 5. Comparison of prediction models (30 runs for statistical evaluation of artificial neural networks
with ten neurons in hidden layer).

Prediction Model Coefficient of Determination R2 Calculation Time [minutes]

Diameter
deviation

ANN

Training Method Max Min Mean Max Min Mean

Levenberg–Marquardt 0.990 0.986 0.946 2.00 1.59 1.41
Scaled Conjugate Gradient 0.974 0.972 0.953 3.13 2.09 1.52
BFGS Quasi-Newton 0.978 0.969 0.890 6.16 4.28 3.00

Polynomial regression 0.917 < 0.1

Roughness Ra ANN

Training Method Max Min Mean Max Min Mean

Levenberg–Marquardt 0.973 0.876 0.966 4.75 1.51 2.35
Scaled Conjugate Gradient 0.973 0.948 0.964 9.24 6.36 8.06
BFGS Quasi-Newton 0.974 0.724 0.950 11.9 6.66 9.69

Polynomial regression 0.892 < 0.1

A comparison of the diameter deviation model’s accuracy is graphically presented in Figure 5a.
The models use 23 samples from 26 because the preliminary calculation revealed three outliers.
Two randomly chosen samples, No 5 (material supplier from IND) and No 18 (EUR supplier),
were excluded from the model calculation to demonstrate model accuracy and behavior for the input
that is outside of the set of known samples. Similarly, the comparison of the accuracy of roughness Ra
models is depicted in Figure 5b. From Figure 5a,b it is evident that:
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• The functional dependence between steel mechanical properties and monitored CTQ characteristics
exists, and an appropriate model can be created to predict values of diameter deviation and
roughness after machining.

• Models can predict values outside of the set of known samples with lower but sufficient precision.
• The accuracy of the ANN model is better than the polynomial regression model in both cases.
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The presented models can be used for prediction of the diameter deviation and roughness if a
new supplier or new steel grade will appear.

4. Results

In this section, the results of the newly developed LSS-SMB method applied on the turning process
are described. The application of the method brought an incremental improvement during the years
2018 and 2019. The proposed method is a sequence of quality improvement steps based on Lean Six
Sigma DMAIC. Therefore, the results are described in chronological order.

The LSS-SMB project started in 2018 by analyzing historical data from 2017. The analysis revealed
problems due to inaccurate measurement and recording of data by the operator. At the same time,
it showed an improper lathe machine set-up and that the material from different suppliers (EUR
or IND) significantly affects the CTQ characteristics. The following steps were taken as part of the
improvement: the operator was trained for Lean Six Sigma, the measuring instrument was replaced,
and the lathe machine set-up changed according to the material supplier.
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Table 6 summarizes the results of the first project stage. It contains the tools and the results of
the use of those tools for each step numbered according to Figure 2. For example, in the LSS phase
(1) Define, the Project initiation tool was used, and the result is a Project charter. The LSS phase (3)
Analyze also includes Findings, which identify the cause of the problem. This structure is repeated in
Tables 7 and 8.

Table 6. The project’s gradual results from the 1st project stage.

LSS Phase Tools Results and Findings

(1) Define

• Project initiation
• Project team creation
• Project plan
• Project goal
• Project charter:

- Gant diagram
- SIPOC

Results:

• Project charter: 2018–2019
• Goal: Achieving of the turning process capability Cpk = 1.33
• SIPOC definition:

- Supplier (internal): welding shop
- Input material: steel rod ∅80 h9
- Process: Turning on CNC center (Mazak QTN 350)
- Output: cylinder CTQ characteristics (precise diameter

∅50 h6 mm, roughness Ra = 1.1 µm)
- Customer (internal): assembling department

(2) Measure (Data from the year 2017)

Data acquisition
Database
Data grouping
MSA

Results:

• Electronic database of past measurements
• Data grouped by material origin (EUR, IND) as they had the same:

- machine: CNC turning center MAZAK QTN 350
- process: turning (hard; finish)
- CTQ characteristics specification (∅50 h6 mm; Ra ≤ 1.1 µm)

- measuring instrument: digital micrometer (range 25–50 mm;
reading error 0.005 mm)

• MSA was not conducted

(3) Analyze (Data from the year 2017)

Root causes analysis
VOC
Pareto analysis
CTQFrequency analysis
Set-up analysis
Run chart
Capability analysis

Results:

• The total number of non-conformities caused by non-compliance
of precise diameter ∅50 h6 mm is 8%.

• Frequency analysis: missing data between 0.000 and −0.010.
• Machine set-up analysis: same set-up for (400, 600, 800 cylinder

types) (Table 3)
• Histogram, IMR chart, Figure 3a,b
• Initial material inspection is not performed

Findings:

• Inaccurate, manual data entry in paper forms
• Data rounding by operators
• Insufficient measuring range of measuring device
• The average value of the deviation of precise diameter ∅50 is

shifted from the target value due to the inappropriate lathe
machine setting. The deviation average is −0.017 for EUR material,
and, for IND material, it is −0.015

(4) Improve 8D report

Results:

• Personnel training for LSS
• Input material labeling by QR-code
• Changing the lathe machine set-up (Table 3) for hard turning and

finish turning
• Purchasing the new measuring device: High-speed

optical micrometer

Legend: LSS—Lean Six Sigma; SIPOC—Suppliers, Inputs, Process, Outputs, and Customers; Cpk—process
capability; MSA—measurement system analysis; EUR—Europe; IND—India; CTQ—critical to quality; VOC—voice
of customer; IMR—individual moving range.

The analysis of data gathered during the year 2018 showed an improvement in the preliminary
process capability, but the organization’s stated goal Cpk = 1.33 was still not achieved. Dimensional
deviation and roughness variances could not be explained only by machine set-up, or EUR and IND
supplier. From this knowledge, the hypothesis arises that the variances are caused by differences in
chemical composition and in mechanical properties of the material from individual sub-suppliers.
Table 7 summarizes the results of this project stage.

As a part of the next project stage, a more sophisticated analysis of the measured data from 2019
was carried out using analytical modeling and ANN. The result was two models, which confirmed our
hypothesis that the variability of CTQ characteristics could be predicted according to the mechanical
properties of the input material. This prediction has proved to be very important for further reduction
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in variability and improvement of the turning process capability. This finding leads to the design of
the new control scheme (Figure 6).

The created prediction model is used in cooperation with machine learning algorithms to indicate
conditions when the change of machine set-up parameters (cutting speed, depth of cut, and feed rate)
must compensate for the variation in the mechanical properties of the input material. If predicted
characteristics are not within tolerances, then the machine set-up has to be changed. The prediction
model allows us to compensate for the variability in supplied steel material properties, which can
bring the process under control. A new machine set-up, together with measured inputs, must be
recorded. Data will be used to extend existing models in such a way that cutting speed, depth of cut,
and feed rate will be included in the set of model inputs. The prediction model will learn from each
new measurement by the appropriate machine learning algorithm. A detailed description of the actual
project stage results is given in Table 8.

Table 7. The project’s gradual results from the 2nd project stage (year 2018).

LSS Phase Tools Results and Findings

(5) Measure

Data acquisition
Database

Data grouping
MSA

Capability analysis

Results:

• Data grouped by material origin (EUR, IND)
• Electronic data capture from high-speed optical

micrometer to a structured database
• MSA (TV < 10%)

(6) Analyze Root causes analysis 8D report

Results:

• Data normality analysis (Shapiro–Wilk test):
normal distribution

• Correlation analysis: data are not correlated
• Histogram and IMR charts Figure 4a EUR supplier;

Figure 4b IND supplier
• Preliminary process capability for EUR supplier

Cpk = 0.94 and IND supplier Cpk = 0.73

Results:

• Hypothesis: Variances in chemical composition and
mechanical properties of the material from individual
sub-suppliers are significant

• Further measurements are required for determining
non-conformity causes

(7) Improve 8D report
Results:

• Extended recording of the mechanical properties of the
input material

Legend: LSS—Lean Six Sigma; MSA—measurement system analysis; EUR—Europe; IND—India; IMR—individual
moving range; Cpk—process capability.Sustainability 2020, 12, x FOR PEER REVIEW 3 of 21 
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Table 8. Project gradual results from the 3rd project stage (year 2019).

LSS Phase Tools Results and Findings

(8) Measure Capability analysis
Results:

• New data measurement and gathering material
properties from the inspection certificates

(9) Analyze Predictive modeling
Root causes analysis

Result:

• Second-order polynomial models and ANN
models to estimate the diameter deviation and
roughness Ra

Findings:

• The hypothesis that variances in mechanical
properties of the material from individual
sub-suppliers are significant is confirmed.

• The model can predict the precise diameter
deviation and roughness.

(10) Improve 8D report
Results:

• Design of the control scheme for reducing
variability in process outputs (Figure 6)

(11) Control
(Not realized yet)

Quality control plan
SPC

Result:

• Keeping the process in an improved state using
the practices outlined in the QC plan and SPC.

Legend: LSS—Lean Six Sigma; SPC—statistical process control; QC—quality control.

5. Discussion

The current state of knowledge presented in the literature [22–26] shows that the tools of intelligent
technologies [27,28] are not fully integrated into the traditional methods of Lean Six Sigma DMAIC and
process quality control and real-time data availability is not currently used. Therefore, we extended
the traditional method with ANN tools, machine learning, and predictive models in the Analysis
and Control phases, according to Figure 2. We added an internal cycle in the DMAIC where the
Measurement—Analysis—Improvement phases are repeated to make full use of real-time data.

The literature [11,30] describes the concept of intelligent SPC that uses gathered data, artificial
neural networks, and machine learning to improve the automatic detection of the out of control state
of the process [31,32]. This approach indicates only the already existing shift of the process, and it does
not compensate for the input variability.

The application of the new LSS-SMB in a bakery machine manufacturer has shown us that the
tools used so far are not enough to reduce the variability of the turning process. A more in-depth
analysis revealed that information from inspection certificates could be used to predict the observed
CTQ characteristics and allows the operator to change the process set-up parameters in advance. It has
therefore proved appropriate to incorporate intelligent technologies into the LSS-SMB method and to
use previously unused information and thus improve the logistics of the flow of information obtained
from suppliers’ material certificates.

Predictive models for dimensional deviation and surface roughness have already been created,
but the authors [29,37–45] did not integrate them into the process quality control. Our proposed control
scheme (Figure 6) responds to changes in material properties and corrects the process in advance
(feedforward control). The whole system learns and improves automatically through machine learning.

The presented case study confirmed the functionality and applicability of the proposed LSS-SMB
method in the case of a bakery machine producer. Its application led to the proposal to improve the
entire process control system, which uses intelligent technologies for further reduction in variability
and process capability improvement.
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The limitation of the LSS-SMB method is that the prediction models are based on data from
the past, and the real future may be different. Therefore, intelligent SPC will also have to be used.
The diagram in Figure 6 is incomplete because it does not directly determine the lathe machine set-up.

In future research, we would like to:

• Analyze whether the prediction model, which includes a larger number of samples and, at the
same time, takes into account the chemical composition of the material, will be more accurate.

• Modify the control scheme to determine the machine set-up correction directly.
• Determine how the LSS-SMB application contributed to the bakery machine manufacturer’s

business sustainability.

The organization will benefit from the proposed LSS-SMB if the presented control scheme
is implemented.

6. Conclusions

The paper has presented the innovative Lean Six Sigma methodology for Small Mixed Batch
production systems. The standard set of LSS tools is extended by intelligent technologies, namely
artificial neural networks and machine learning. The LSS-SMB methodology is illustrated in the case
study of the bakery machine turning process. The step-by-step DMAIC procedure was conducted with
the following results:

• Data analysis revealed that operators inaccurately recorded measurement data, and the measuring
device did not have a sufficient range. Therefore the measurement instrument was changed,
and operators were trained on how to use it.

• The average value of the deviation of precise diameter is shifted from the target value; therefore,
lathe machine set-up was corrected.

• Further analysis of data shown that the variance of mechanical properties of the material from the
same suppliers influences the precise diameter deviation and roughness. Therefore, the advanced
mathematical model based on ANN that allows prediction of CTQ characteristics from input
material properties was built. The created prediction model is a part of a newly designed process
variability control scheme using machine learning algorithms to reduce the variability for input
material with different properties from new suppliers.

As further causes of variability have been identified, and the process has become statistically
stable, it is possible to proceed with the implementation of SPC for SMB production. Acquired
experiences will be used by the organization to improve other organization processes. The use of
modern advanced methods such as mathematical modeling, ANN, and machine learning is a necessary
step in further quality problem-solving in the industry. Therefore, our future research will be focused
on the implementation and validation of proposed methods in the context of LSS.
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Appendix A

Table A1. 8D report.

D1 Team formation LSS-SMB project manager, quality engineer, process engineer, set-up operator, lathe operator.

D2 Problem description Customer: Assembly department Part number: Roller
400XXXXXXXXX72 Category: LSS-SMB project

What?
The surface quality and

dimensional deviation Ø50 h6 is
NOK
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D2 Problem 
description 

Customer: Assembly department 
Part number: Roller 
400XXXXXXXXX72 

Category: LSS-SMB 
project 

What? 
The surface quality and dimensional 

deviation Ø50 h6 is NOK 

 

Picture of the defect 

Why? Surface quality NOK for assembly 
Where? Unit assembly department  
When? Preparation of roller for UNIT assembly  
Who? Assembly operator 
How? Pre-assembly visual control  

How many? One piece 
Part manufacturing 

date: 
November 29, 2017 

Re-occurrence: Yes 
D3 Risk on a similar 
product and process 

Yes. Similar rollers produced at the same time: Roller 600 00000026. Roller 800 00007242. 

D4 Root causes of 
occurrence 

After lathe operation, the surface quality of precise roller diameter not controlled. 

D5 Root causes of 
non-detection (RCO) 

1) Lathe operators not instructed to control product surface quality when lathe operation is finished. 
2) Quality control department not instructed to inspect the surface quality and surface damages after 

lathe operation. 

D6 Permanent 
countermeasures 

1) Inspect surface quality of roller in precise diameter area by the operator and set up product release 
by the shift leader. 2) Inspect surface quality of roller by the Quality control department. 3) Lathe 

operation instruction updated. 4) Lathe operators trained. 5) Quality control instruction updated. 6) 
Quality control department staff trained. 
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department, Quality control department. 
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Picture of the defect

Why? Surface quality NOK for assembly

Where? Unit assembly department

When? Preparation of roller for UNIT assembly

Who? Assembly operator

How? Pre-assembly visual control

How many? One piece

Part manufacturing date: November 29, 2017

Re-occurrence: Yes

D3 Risk on a similar product and process Yes. Similar rollers produced at the same time: Roller 600 00000026. Roller 800 00007242.

D4 Root causes of occurrence After lathe operation, the surface quality of precise roller diameter not controlled.

D5 Root causes of non-detection (RCO)
1) Lathe operators not instructed to control product surface quality when lathe operation is finished. 2)

Quality control department not instructed to inspect the surface quality and surface damages after
lathe operation.

D6 Permanent countermeasures

1) Inspect surface quality of roller in precise diameter area by the operator and set up product release
by the shift leader. 2) Inspect surface quality of roller by the Quality control department. 3) Lathe

operation instruction updated. 4) Lathe operators trained. 5) Quality control instruction updated. 6)
Quality control department staff trained.

D7 Effectiveness Check effectiveness result during the next 3 productions (lathe operation of rollers 400-600-800). Verify
roller surface quality after lathe operation.

D8 Lessons learned
1) Verify documents: Lathe instruction; Quality control instruction, 2) Verify samples: Verify three

types of rollers (400, 600, 800) prior assembly—after lathe operation, 3) Verify staff: Lathe department,
Quality control department.
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Table A2. Measurements from the year 2017.

No EUR IND No EUR IND No EUR IND No EUR IND

1 −0.010 −0.022 25 −0.023 0.000 49 −0.020 0.000 73 −0.017
2 −0.015 0.000 26 −0.018 −0.010 50 −0.025 −0.013 74 −0.019
3 −0.010 −0.022 27 −0.021 −0.019 51 −0.018 −0.017 75 −0.010
4 −0.021 0.000 28 −0.010 0.000 52 −0.015 −0.015 76 −0.029
5 −0.017 −0.027 29 −0.011 −0.018 53 −0.011 −0.018 77 −0.014
6 −0.019 −0.024 30 −0.011 −0.025 54 −0.011 0.000 78 −0.013
7 −0.014 −0.016 31 −0.022 −0.018 55 −0.010 79 −0.011
8 −0.011 −0.028 32 −0.015 0.000 56 −0.022 80 −0.028
9 −0.016 0.000 33 −0.029 0.000 57 −0.024 81 −0.020

10 −0.018 −0.013 34 −0.022 0.000 58 −0.025 82 −0.013
11 −0.023 0.000 35 −0.015 −0.027 59 −0.012 83 −0.017
12 −0.023 0.000 36 −0.029 −0.010 60 −0.010 84 −0.017
13 −0.018 −0.029 37 −0.027 0.000 61 −0.013 85 −0.013
14 −0.016 0.000 38 −0.022 −0.018 62 −0.023 86 −0.017
15 −0.011 −0.010 39 −0.015 −0.022 63 −0.025 87 −0.017
16 −0.025 −0.011 40 −0.010 −0.010 64 −0.028 88 −0.019
17 −0.017 −0.021 41 −0.019 −0.022 65 −0.029 89 −0.017
18 −0.012 −0.020 42 −0.018 −0.022 66 −0.010 90 −0.026
19 −0.027 −0.020 43 −0.011 0.000 67 −0.015 91 −0.011
20 −0.010 −0.022 44 −0.027 −0.016 68 −0.015 92 −0.029
21 −0.010 −0.015 45 −0.023 0.000 69 −0.017 93 −0.018
22 −0.017 0.000 46 −0.020 −0.029 70 −0.025 94 −0.011
23 −0.013 −0.013 47 −0.020 −0.025 71 −0.025 95 −0.020
24 −0.016 0.000 48 −0.010 0.000 72 −0.025 96 −0.020
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Table A3. Measurements from the year 2018.

No EUR IND No EUR IND No EUR IND No EUR IND

1 −0.007 −0.005 25 −0.007 −0.010 49 −0.011 −0.008 73 −0.008 −0.006
2 −0.010 −0.004 26 −0.004 −0.005 50 −0.012 −0.011 74 −0.007 −0.005
3 −0.006 −0.008 27 −0.004 −0.005 51 −0.006 −0.004 75 −0.013 −0.011
4 −0.012 −0.015 28 −0.007 −0.005 52 −0.009 −0.015 76 −0.009 −0.006
5 −0.007 −0.014 29 −0.010 −0.005 53 −0.007 −0.004 77 −0.009 0.000
6 −0.006 −0.004 30 −0.005 −0.008 54 −0.012 −0.004 78 −0.008 −0.008
7 −0.015 −0.007 31 −0.011 −0.016 55 −0.009 −0.011 79 −0.006 −0.007
8 −0.008 −0.007 32 −0.008 −0.006 56 −0.010 −0.010 80 −0.012 −0.010
9 −0.009 −0.008 33 −0.005 −0.009 57 −0.012 −0.008 81 −0.013 −0.005

10 −0.014 −0.004 34 −0.003 −0.009 58 −0.009 −0.011 82 −0.009 −0.001
11 −0.011 −0.010 35 −0.007 −0.011 59 −0.011 −0.005 83 −0.010 −0.014
12 −0.009 −0.013 36 −0.008 −0.003 60 −0.008 −0.009 84 −0.010 −0.007
13 −0.006 −0.009 37 −0.010 −0.007 61 −0.015 −0.006 85 −0.008 −0.002
14 −0.013 0.000 38 −0.009 −0.010 62 −0.014 −0.013 86 −0.006 −0.010
15 −0.007 −0.005 39 −0.003 −0.010 63 −0.008 −0.008 87 −0.012 −0.009
16 −0.011 −0.002 40 −0.006 −0.006 64 −0.007 −0.007 88 −0.016 −0.006
17 −0.011 −0.007 41 −0.011 −0.004 65 −0.009 −0.007 89 −0.008 −0.008
18 −0.008 −0.013 42 −0.010 −0.005 66 −0.010 −0.008 90 −0.008 −0.007
19 −0.011 −0.012 43 −0.011 −0.014 67 −0.009 −0.006 91 −0.008 −0.005
20 −0.005 −0.005 44 −0.010 −0.008 68 −0.006 −0.007 92 −0.007 −0.008
21 −0.009 −0.008 45 −0.008 −0.011 69 −0.006 −0.002 93 −0.008 −0.009
22 −0.008 −0.005 46 −0.007 −0.009 70 −0.011 −0.008 94 −0.012 −0.011
23 −0.005 −0.004 47 −0.007 −0.011 71 −0.010 −0.008 95 −0.009 −0.004
24 −0.012 −0.010 48 −0.011 −0.006 72 −0.010 −0.002 96 −0.009 −0.006

Table A4. Measurements from the year 2019.

Sample Sub-supplier Mechanical Properties Outputs

YS 0.2 Elongation Hardness Diameter Deviation Ra

1 IND s-s1 292 58 174 −0.012 0.985
2 EUR s-s1 235 55 168 −0.006 0.832
3 IND s-s2 276.05 54 158 −0.005 0.808
4 IND s-s3 270.13 54 156 −0.012 0.802
5 IND s-s4 292 71 174 −0.010 0.930
6 IND s-s5 284 72 176 −0.012 0.941
7 IND s-s6 286 59 176 −0.010 0.941
8 IND s-s7 290.53 53 158 −0.006 0.898
9 IND s-s8 286 73 175 −0.012 0.900
10 EUR s-s2 235 55 168 −0.005 0.900
11 IND s-s9 292 58 174 −0.010 0.990
12 IND s-s10 284 59 176 0.000 0.941
13 IND s-s11 290.53 53 158 −0.005 0.898
14 EUR s-s3 239 58 170 −0.001 1.002
15 IND s-s12 286 58 175 −0.010 0.950
16 IND s-s13 281 57 176 0.000 0.901

17 IND s-s14 286 58 176 −0.005 0.898
18 EUR s-s4 277 53.9 171 −0.004 0.998
19 EUR s-s5 249 53.2 167 −0.002 1.002
20 EUR s-s6 279 53.2 167 −0.001 1.002
21 IND s-s15 290.53 53 158 −0.008 0.870
22 IND s-s16 284 72 176 −0.011 0.945
23 EUR s-s7 318 57.5 170 −0.030 0.940
24 EUR s-s8 235 55 168 −0.020 0.992
25 IND s-s17 292 71 174 −0.010 0.900
26 EUR s-s9 239 54 167 −0.004 0.931

YS 0.2—yield strength; IND—India; EUR—Europe; s-s—sub-supplier number; Ra—roughness.
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Table A5. Statistical evaluation of ANN; each line contains statistics for 30 runs.

Coefficient of Determination R2 Calculation Time [minutes]

Neurons Training Function Max Min Mean Max Min Mean

Diameter
Deviation

3 Levenberg–Marquardt 0.984 0.849 0.973 6.38 1.72 3.03
4 Levenberg–Marquardt 0.986 0.926 0.982 3.89 1.62 2.47
5 Levenberg–Marquardt 0.987 0.968 0.979 2.81 1.69 2.05
6 Levenberg–Marquardt 0.989 0.981 0.983 2.97 1.59 1.96
7 Levenberg–Marquardt 0.991 0.979 0.985 2.40 1.47 1.81
8 Levenberg–Marquardt 0.989 0.976 0.988 2.38 1.46 1.83
9 Levenberg–Marquardt 0.986 0.940 0.979 2.87 1.49 1.80
10 Levenberg–Marquardt 0.990 0.946 0.986 2.00 1.41 1.59
3 Scaled Conjugate Gradient 0.958 0.957 0.957 3.28 1.45 2.02
4 Scaled Conjugate Gradient 0.975 0.857 0.966 2.96 1.62 2.04
5 Scaled Conjugate Gradient 0.967 0.892 0.953 2.75 1.43 1.99
6 Scaled Conjugate Gradient 0.980 0.956 0.977 2.64 1.54 2.04
7 Scaled Conjugate Gradient 0.982 0.965 0.979 2.96 1.70 2.17
8 Scaled Conjugate Gradient 0.979 0.978 0.978 2.69 1.60 2.03
9 Scaled Conjugate Gradient 0.984 0.957 0.979 3.43 1.59 2.23
10 Scaled Conjugate Gradient 0.974 0.953 0.972 3.13 1.52 2.09
3 BFGS Quasi-Newton 0.949 0.841 0.937 4.70 2.05 3.53
4 BFGS Quasi-Newton 0.958 0.931 0.951 5.00 2.89 3.79
5 BFGS Quasi-Newton 0.962 0.888 0.951 5.39 2.68 3.67
6 BFGS Quasi-Newton 0.980 0.871 0.952 5.23 2.85 3.74
7 BFGS Quasi-Newton 0.966 0.945 0.957 4.91 2.97 3.84
8 BFGS Quasi-Newton 0.979 0.943 0.973 5.75 2.43 4.13
9 BFGS Quasi-Newton 0.972 0.957 0.964 5.73 2.95 4.11
10 BFGS Quasi-Newton 0.978 0.890 0.969 6.16 3.00 4.28

Roughness
Ra

ANN Levenberg–Marquardt 0.972 0.274 0.884 9.09 2.75 5.86
4 Levenberg–Marquardt 0.973 0.550 0.926 7.98 1.71 3.87
5 Levenberg–Marquardt 0.973 0.830 0.964 4.25 1.46 2.55
6 Levenberg–Marquardt 0.973 0.962 0.971 4.74 1.49 2.47
7 Levenberg–Marquardt 0.973 0.902 0.970 3.47 1.42 2.11
8 Levenberg–Marquardt 0.973 0.951 0.968 5.25 1.38 2.10
9 Levenberg–Marquardt 0.973 0.403 0.937 4.59 1.43 2.13
10 Levenberg–Marquardt 0.973 0.876 0.966 4.76 1.51 2.35
3 Scaled Conjugate Gradient 0.844 0.746 0.817 9.37 6.09 7.51
4 Scaled Conjugate Gradient 0.972 0.143 0.849 8.37 5.74 7.35
5 Scaled Conjugate Gradient 0.964 0.764 0.950 8.79 6.93 7.59
6 Scaled Conjugate Gradient 0.972 0.524 0.947 8.00 5.88 6.98
7 Scaled Conjugate Gradient 0.972 0.760 0.933 7.89 5.42 7.07
8 Scaled Conjugate Gradient 0.973 0.968 0.971 7.94 4.75 6.84
9 Scaled Conjugate Gradient 0.973 0.967 0.973 9.09 6.51 7.91
10 Scaled Conjugate Gradient 0.973 0.948 0.964 9.24 6.36 8.06
3 BFGS Quasi-Newton 0.914 0.547 0.848 9.89 3.30 7.11
4 BFGS Quasi-Newton 0.973 0.401 0.954 11.36 3.24 8.38
5 BFGS Quasi-Newton 0.972 0.915 0.963 11.35 5.22 8.92
6 BFGS Quasi-Newton 0.974 −0.271 0.929 11.04 5.73 8.85
7 BFGS Quasi-Newton 0.971 0.786 0.933 11.07 6.77 9.16
8 BFGS Quasi-Newton 0.973 0.648 0.951 11.62 5.94 9.01
9 BFGS Quasi-Newton 0.973 −0.187 0.934 11.64 6.35 9.47
10 BFGS Quasi-Newton 0.974 0.724 0.949 11.91 6.66 9.69
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