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Abstract: The purpose of this study is to characterize fracture modes in a concrete structure using
an acoustic emission (AE) technique and a data-driven approach. To clarify the damage fracture
process, the specimens, which are of reinforced concrete (RC) beams, undergo four-point bending
tests. During bending tests, impulses occurring in the AE signals are automatically detected using
a constant false-alarm rate (CFAR) algorithm. For each detected impulse, its acoustic emission
parameters such as counts, duration, amplitude, risetime, energy, RA, AF are calculated and studied.
The mean and standard deviation values of each of these parameters are computed in every 1-s
AE signal and are considered as features demonstrating the damage status of concrete structures.
The results revealed that as the damage level in concrete structures grows, these features also change
accordingly which can be used to categorize the damage fracture stages. The study also carries out
experiments to validate the efficiency of the proposed approaches in terms of visual and qualitative
evaluations. Experimental results show that the proposed characterizing model is promising and
outstanding with the classification performance in the experimental environment of over 82%.

Keywords: reinforced concrete (RC) beams; acoustic emission; data-driven approaches;
crack detection

1. Introduction

Clarifying the damage fracture process in brittle materials such as concrete is a task that takes
substantial effort in the civil engineering community [1–5]. This is particularly vital because, during the
damage fracture process, a sequence of known fracture modes is generally followed that puts buildings
at risk. Therefore, it is essential to characterize fracture modes in concrete structures associated with
cracking to guarantee the safe operation of the structure. A notable method to monitor fracture
phenomena in concrete is the acoustic emission (AE) as it permits to highlight the occurrence of
minor and major fracture events in concrete structure as well as follow the fracture process until
the final failure [3,6–10]. In other words, the general condition of concrete can be identified through
characterizing the AE signals, along with specific indices that enlighten the understanding of the
fracture process.

Impulses are diminishing elastic waves released from the initiation, propagation, and development
of cracks that occur during the AE monitoring process. Such impulses are normally characterized by a
series of parameters that some of them have been proven to be correlated to the fracture process [2,11,12].
The first one is the maximum amplitude (A) of the impulse. This parameter depends on the severity of
the cracking source. Two other important parameters are the rise angle (RA) value and the average
frequency (AF) value as they have been proven to be very sensitive to the fracture mode in many
studies [1,13]. The way to determine the RA parameter is illustrated in Figure 1, which is the duration
of the rising part of the impulse or the rise time (RT) measured in µs over amplitude (A) measured in V.
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The average frequency (AF) is the number of threshold crossings (i.e., counts) over the duration of
the impulse. This parameter is normally measured in kHz [2,14,15]. In addition to these parameters,
AE characteristic parameters such as the peak frequency (PF) [16], the energy also are listed and studied.

Figure 1. AE impulse parameters.

Although these AE characteristic parameters are feasible to clarify fracture modes in concrete
structures, researchers have mainly used them in a laboratory environment. In addition, distinct
damage stages in concrete are actually dependent on various kinds of factors, not only on the fracture
modes of the material itself. Tensile cracks in steel fiber concrete [2,17], for example, are related to
matrix cracking. This depends on the strength and quality of the concrete matrix itself. On the other
hand, shear phenomena are normally associated with fiber pull-out that depends on the interfacial
shear strength between the matrix and the fibers. Moreover, large concrete structures typically include
numerous cracks either from construction or function loads. Thus, clarifying fracture condition in its
absolute form by using some of AE parameters is difficult.

To fully describe the damage status of concrete, several objects should be evaluated. Instead of using
the parameter-based approach, this study proposes to use the data-driven approach. This approach
fundamentally divides the continuously measured AE signal into segmented signals of 1-s length.
Such the segmented signals contain characteristic information that enables the evaluation of the general
condition of concrete at each moment. To determine damage signatures in concrete during bending,
impulses occurring in each of the segmented signals should be detected fully, and their corresponding
parameters are then computed. Characteristic information or features extracted in the segmented
signal are the mean and the standard deviation values of each of the parameters. These features
are considered as functions of time, enable comparisons between the behavior and performance of
the structure before and after sustaining additional loading. Thus, the proposed approach provides
fracture modes in concrete structures during their service life that plays a vital role in guaranteeing the
safe operation of structures.

The analysis of impulses commonly needs a lot of effort from an expert, including the costly time
to hand-pick impulses occurring in the AE signals. However, for a very large dataset, this procedure is
extremely time-consuming, or even impossible. Therefore, the application of automatic impulse-picking
is necessary. This study suggests using the Constant False-Alarm Rate (CFAR) algorithm for impulse
detection in the concrete AE signals. The CFAR detection in situ used in radar systems to detect
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targets and the choice of the algorithm in this study is due to its robust ability to find targets in an
environment of varying background noise [18,19]. However, impulses collected by the CFAR algorithm
often have incomplete shapes that result in parameter miscalculation. Therefore, it is necessary to
correct impulses before going through subsequent analyses. In this study, one impulse is corrected
by adding adjacent leading and lagging blocks to it. While the resulting impulse fully covers its
components, it also contains redundant or non-signal pieces. Non-signal or noise pieces are then cut
by a proposed impulse-trimming algorithm. This procedure results in a correct final impulse that is
ready for parameter calculations.

The main contributions of this study include:

1. The application of the CFAR algorithm for automatically detecting and characterizing impulses
that occur in the AE signals obtained from concrete structures;

2. The proposal of tips and algorithms to correct detected impulses in terms of their shape;
3. The proposal of using the data-driven approach to categorize the crack modes in

concrete structures.

The rest of this paper is arranged as follows. Section 2 describes the experimental setup including
sample preparation, the four-point loading system, and the AE data acquisition. Section 3 introduces
and thoroughly describes the algorithms used in this study. Section 4 analyzes and verifies the
experimental results as well as shows the efficiency of the proposed classification model. Conclusions
are discussed in Section 5.

2. Experimental Setup

2.1. Preparation of Samples

In this study, reinforced concrete (RC) beams with the same specifications were fabricated in a
laboratory environment to use for fracture characterization in concrete. The length, height, and width
of these RC beams are 240 cm, 30 cm, and 15 cm, respectively. The compressive strength of the RC
beams was approximately 24 MPa. Each RC beam was reinforced by five reinforcing bars, each with
diameters of 16 mm (Figure 2). The maximum tensile strength of these RC beams was more than
455 MPa. To facilitate locating the progression of cracks, the RC beams were whitewashed, and grids
(50 mm × 50 mm) were marked on two side surfaces of the beams. The schematic diagram of the RC
beam is shown in Figure 2.

Figure 2. Schematic illustration of longitudinal section and cross section of the RC beam.

2.2. Test Setup and AE System

During four-point bending tests, the RC beams were loaded by two equal concentrated loads.
The loads were transferred from the actuator through the I-section of a steel beam of that is 80 cm
in length with the displacement rate of 1 mm/s and 2 mm/s, according to different bending tests.
The center-to-center span between supports is 2000 mm. The schematic diagram and the pictorial
illustration of the four-point bending test are depicted as in Figures 3 and 4a. At the bottom surface
of the RC beams, a Linear Variable Differential Transformer (LVDT) was placed at the midspan to
measure the vertical displacement (Figure 4c).
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Figure 3. Schematic illustration of the four-point bending test for the RC beam.

Figure 4. (a) Four-point bending test, (b) AE sensors, (c) displacement measurement, (d) crack
measurement, (e) AE monitoring.

In this study, the AE data was obtained by a PCI-based AE system with eight channels (PCI-8).
These high-speed channels offer simultaneous AE data acquisition, waveform processing, and data
transfer. The PCI bus enables AE data transfer at speeds of up to 132 Mb/s, at a frequency range of
1 kHz to 400 kHz. To sense the acoustic emission signals in concrete, eight low-frequency AE R3I-AST
sensors were surface-mounted on the sides of RC beams using grease as a coupling agent. This type of
sensor possesses notable features such as the high sensitivity and the capability to drive long cables
without the need for a separate preamplifier. During the data acquisition process, the threshold value
of the AE acquisition system was set to be 40 dB to filter out environmental noise and guarantee only
AE signals of interest were recorded. The sampling rate was set to 5 MHz to ensure AE data contains
the intrinsic properties of concrete. An arrangement for the bending test of RC beams is pictorially
shown in Figure 4 and technical specifications of a PCI-8 and R3I-AST sensors are listed in Table 1.
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Table 1. Technical specifications of the AE acquisition system.

AE sensors (R3I-AST)

Peak sensitivity (V/µbar): −28 dB
Operating frequency range: 10–40 kHz

Resonant frequency: 31 kHz
Directionality: ±1.5 dB

Gain: 40 dB
Noise Level: <3 µV

8-channel AE PCI board
16-bit A/D conversion

PCI-bus provides AE data transfer rates up to 132 Mb/sec to a PC computer
4 High Pass, 4 Low Pass filter selections for each channel.

2.3. Separation of Destructive Processes

From the observations of cracking growth during bending tests, it is found that the fracture
process in concrete can be divided into four damage stages.

Stage 1: In this stage, the RC beam gradually transforms from the normal condition to the damage
condition. Some micro-cracks occur at the end of the stage.

Stage 2: Hair-line cracks begin to appear on the surface of the RC beam and develop to macro-cracks.
Stage 3: The formation of main cracks happens. The RC beam undergoes the occurrence of

distributed flexural and shear cracks, leading to steel yielding.
Stage 4: The intensification of steel yielding and shear cracks leads to concrete crushing.
The damage stage classification is graphically illustrated as in Figure 5. The left side demonstrates

the increase of load applied on the RC beam versus deflection. The right side shows the number of
impulses detected every second by sensor 1 during the bending test.

Figure 5. Damage growth of a RC beam during a bending test.

3. Methodologies

3.1. Impulse Detection Using Constant False Alarm Rate (Cfar) Algorithm

Constant false-alarm rate (CFAR) algorithm is a typical data-dependent processing technique
originally used in radar systems to find targets in an environment of varying background noise, clutter,
and interference. The way this algorithm works is to determine the power threshold that above which
any return can be considered to originate from a target.

CFAR detection schemes mostly calculate the power threshold by estimating the level of the noise
floor around the cell under test (CUT). This can be found by taking a block of cells around the CUT
(training cells) and calculating the average power level. To avoid signal components from leaking into
the training cell, which could adversely affect the noise estimate, cells immediately adjacent to the
CUT are normally ignored (guard cells). The scheme of the CFAR algorithm is described in Figure 6.
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Figure 6. A diagram of the CFAR detection scheme.

This study applied the cell averaging CFAR algorithm to detect AE impulses in concrete due to its
stability and robustness in finding targets [18]. First, the detection threshold, T, must be calculated:

Ti = αPi (1)

where Pi is the noise power estimate for the cell under test Ci and α is the threshold factor.
The noise power estimate Pi can be computed as:

Pi =
1

2N

G+N∑
l=G+1

∣∣∣Ci+l
∣∣∣2 + |Ci−l|

2 (2)

where N and G are the number of training cells and guard cells, respectively. In general, the number of
leading and lagging cells are the same. To control the number of targets detected, the threshold factor
α is used and defined as follows:

α = N(P−1/N
f a − 1) (3)

where P f a is the desired false alarm rate. If this false alarm rate is high, more targets will be detected
but at the expense of an increased number of detected false targets. Conversely, if the false alarm rate
is low, fewer targets will be detected, but the number of detected false targets will be low.

To apply the CFAR algorithm for detecting AE impulses in RC beams, the study divided every 1-s
length AE signal into 2000 cells for analysis. The number of training cells and guard cells on each side
is set to 20 and 10, respectively. For each cell under test, the adaptive threshold is calculated using
(2) and (3). If the cell power of the cell under test is higher than its noise power threshold, the cell
is considered to contain a target. Figure 7 shows the principle of the algorithm and the result after
applying the CFAR detection algorithm for a 1-s AE signal.

3.2. Impulse Correction

The outcome of CFAR detection is the cells originating from targets or impulses. However,
impulses formed by such target cells are usually incomplete. A typical example of an impulse detected
by the CFAR algorithm is shown in Figure 8a. This form does not fully cover the parts of an impulse.
To cover all the parts of an impulse, the study added adjacent complementary blocks of cells around
the initial incomplete impulse. The resulting new form of the impulse shown in Figure 8b. However,
it is clear that the impulse should be trimmed afterward to cut its redundant components since such
superfluous components certainly lead to miscalculation of the impulse’s parameters such as the
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rise-time, duration, average frequency, counts, etc. Figure 8c is an example of an expected impulse
after being trimmed.

Figure 7. The application of CFAR detection for impulse detection.

Figure 8. The process to determine the correct impulse.

To automatically trim the redundant parts of an adjusted impulse, the study proposes an
Impulse-Trimming Algorithm (Algorithm 1) that able to automatically detect redundant components
or non-impulse components. The details of the proposed algorithm are described as follows:
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Algorithm 1 Impulse-Trimming Algorithm.

1. Compute the upper RMS envelope of a redundant impulse. Find the peak value of the RMS envelope
and its corresponding index (i.e., Peak-Index).

2. Set the Cellsize that represents the size of each cell (i.e., the number of samples in each cell). As a result,
the number of front cells (i.e., NoFrontCells) is determined by dividing the number of samples from the
First-Index to Peak-Index by Cellsize. It is necessary to compute the mean value of the front cells
(MeanOfFrontCells) and determine the minimum value of the front cells (i.e., MinOfFrontCells).

3. To locate the StartCell of an impulse (i.e., contain the onset point of an impulse), it is necessary to carry
out the Conditional Statements and Loops, as follows:

4. for i = NoFrontCells:-1:1
5. if ((mean(MeanOfFrontCells (i-2:i)) < 1.1 * MeanOfFrontCells (i-3)) && (MeanOfFrontCells (i-2) < 1.2 *

MinOfFrontCells))
6. StartCell = i;
7. break
8. else
9. StartCell = i;
10. end
11. end
12. The number of rear cells (i.e., NoRearCells) is the number of cells calculated from the Peak-Index to

End-Index of an impulse. The mean value of rear cells (i.e., MeanOfRearCells) and the minimum value of
the rear cells (i.e., MinOfRearCells) is computed in a similar way as above.

13. To locate the EndCell of an impulse (i.e., contain the end point of an impulse), carry out the Conditional
Statements and Loops, as follows:

14. for i = 1:NoRearCells
15. if ((mean(MeanOfRearCells (i:i+2)) < 1.1 * MeanOfRearCells (i+3)) && (MeanOfRearCells (i+2) < 1.2 *

MinOfRearCells))
16. EndCell = i+2;
17. break
18. else
19. EndCell = i+2;
20. end
21. end
22. * The coefficients in the algorithm can be adjusted appropriately for each specific data.

Figure 9 shows the application of the impulse-trimming algorithm. The impulse is now correct
for further parameter analysis.
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4. Analysis and Verification

4.1. The Trend of Important Parameters During a Bending Test

In this study, numerous parameters were listed and studied including amplitude (V), energy (µVs),
duration (ms), rise-time (ms), counts (-), peak frequency (kHz), RA value (µs/V) and AF value (kHz).
The method to calculate these parameters is illustrated as in Figure 1.

Figure 10 describes the evolutions of some of the parameters versus time. The blue solid line
is obtained through the moving average of the recent values calculated for every 1-s AE signal.
Meanwhile, the orange solid line is the standard deviation of the recent values calculated for each
segmented signal. The dotted lines correspond to the damage zones categorized in Section 2. In zone
1, when a concrete beam is in the normal condition, there is only a small number of detected impulses.
The impulses detected in this zone have AF values fluctuating from 20 kHz to 160 kHz and RA values
varying from approximately 0 to 1000 ms/V. The energies of these impulses are relatively small, below
10 µVs. In zone 2, the number of collected impulses begins to gradually increase, up to 100 hits/s
(Figure 5). Impulses in this zone primarily originate from small matrix cracking events caused by the
tensile load at the bottom of the specimen. The AF values and RA values of impulses in this zone have
large fluctuations from 30 to 200 kHz and from approximately 0 to 1000 ms/V, respectively. At the
stage of the main crack formation (zone 3), the highest rate of incoming AE impulses is recorded,
up to 110 hits/s (Figure 5). There are visible cracks on the top and bottom surfaces of an RC beam
near the loading points, accompanied by several side cracks. Impulses in this zone have significantly
higher energies as compared to the impulses in the other zones. In addition, the AF and RA values of
impulses only slightly fluctuate by a small amount. In zone 4, the specimen begins to split into two
main pieces and fiber pull-out starts to occur. The characteristic of impulses in this zone is that their
duration parameters have higher values than those of the impulses in the other zones. The energies of
these impulses are still high but lower than those in zone 3.

Figure 10. The trend of some important parameters during a bending test: (a) The trend of AF values
during a bending test (b) The trend of RA values during a bending test (c) The trend of Duration values
during a bending test (d) The trend of Energy values during a bending test.
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4.2. Data-Driven Approach or Concrete Crack Mode Classification

To characterize the damage stages of an RC beam, a new method based on a data-driven approach
is proposed. Specifically, the classification model uses feature vectors to learn and characterize the
state of the RC beam. Each feature vector is a set of features calculated from the parameters obtained in
every 1-s interval. A Mean of Energy feature, for example, is calculated by averaging energy values of
impulses picked in a 1-s segmented signal. While an STD of Energy feature is determined by measuring
the amount of variation of a set of these energy values. (Figure 10d).

To form a feature vector, a representative pool of 16 features was computed, including the Mean
Of Average Frequency, Mean Of Peak Frequency, Mean Of Duration, Mean Of Counts, Mean Of RA,
Mean Of Amplitude, Mean Of Rise-Time, Mean Of Energy, STD Of Average Frequency, STD Of Peak
Frequency, STD Of Duration, STD Of Counts, STD Of RA, STD Of Amplitude, STD Of Rise-Time,
and the STD Of Energy. In addition, a Cumulative AE-hits feature, which is the number of impulses
occurring in every 1-s segmented signal, and a Cumulative Energy feature, which is the cumulative
energy value of these impulses, are also listed and studied since these two features reflect the damage
initiation and accumulation in concrete.

The bending test in this study lasted around 1030 s, so the number of feature vectors used to train
and test a characterizing model is 1030. This dataset was divided into three sub-datasets, representing
three fracture stages of concrete structure, accordingly (i.e., the normal stage (zone 1), the micro-crack
stage (zone 2), and the macro-crack stage (zone 3 and zone 4). The efficiency of the new approach is
demonstrated in Figure 11, as only a few features can fairly categorize the state of the RC beam by
representative clusters in a 3-D feature space. The classification between the normal state and the
damage stage of the RC beam is relatively easy when some specific features can distinguish these
two damage stages into two separate clusters (Figure 11a). Regarding the classification of damage
grades, the problem is relatively more complicated when their representative clusters lightly overlap
(Figure 11b,c). However, with the help of powerful classifiers such as support vector machine (SVM)
or a multi-layer neural network (MLP), the classification problem can be solved comprehensively.

Figure 11. A scattering of the AE features: (a) A scattering of the AE features for normal condition
and damage condition (b) A scattering of the AE features for micro-crack condition and macro-crack
condition (c) A scattering of the AE features for all stages of a RC beam during a bending test.
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In terms of the qualitative evaluation, to justify the efficiency of the approach, the study used a
k-NN-based classifier to categorize the damage states of the RC beam. In this experiment, the dataset
of 1030 feature vectors of the three fracture conditions was randomly divided into two parts. One was
used to train the classifier and the other was used to validate the performance of the model. To collect
the most discriminating features, the study ranked 18 initial features in each vector using the relief
algorithm [20,21]. This algorithm works best for estimating the feature importance for distance-based
supervised models that use pairwise distances between observations to predict the response as a
k-NN. Finally, the top 10 ranked features are used to train the model. The classification result is
shown in Figure 12. From the figure, the normal condition is almost exactly categorized from the
damage condition. Meanwhile, there is a misclassification between the micro-crack condition and the
macro-crack condition, but this ratio is relatively low. The overall accuracy of the model is 82.46%.

Figure 12. Confusion matrix of a k-NN-based fracture classification using a data-driven approach.

5. Conclusions

This paper validated the effectiveness of the proposed concrete-fracture classification model using
a data-driven approach. In addition, this study also employed the CFAR algorithm for automatically
detecting impulses occurring in AE signals. The parameters of the impulses are calculated for
each second. Statistical measurements of these parameters such as mean or standard deviation are
considered as features to train and validate the classification model. The experimental results of this
study showed a promising outcome for the proposed approach to characterize the damage status in
concrete structures.
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