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Abstract: For the first time, the distribution and modifications of living ostracod associations
present in the Gulf of Trieste (GoT) in relation to alterations caused by human activity in the last
20 years were investigated. The results were compared with the main physicochemical parameters
(especially nitrogen and phosphorus) measured over the same period, which can lead to a general
decrease in environmental quality. For a more in-depth analysis of the changes recorded by ostracods
in the last 50 years, a period in which eutrophication and anoxia increased, we revisited the study
carried out by Masoli in the GoT in 1967. The results obtained made it possible to verify how, over the
last 20 years, ostracod assemblages have suffered a decrease both qualitatively and quantitatively.
Most of the species recovered show characteristics of opportunism and tolerance to environmentally
stressful conditions, high organic matter concentrations, and oxygen deficiency. The ostracods
analyzed in 1967 showed similar results with few dominant opportunistic species. We verified how
ostracods recorded in GoT, similar to Mollusks and Foraminifera, have been impaired by the possible
environmental crisis linked to the recurrence of mucilage and hypoxic events documented for the
GoT in the last 50 years. Finally, a comparison with the best environmental conditions found in the
Marine Nature Reserve of Miramare (MPA) allowed us to emphasize the important role of protected
areas to avoid loss of biodiversity due to urbanization.

Keywords: urbanization; Gulf of Trieste; ostracods; nutrients; environmental stress; marine
nature reserve

1. Introduction

Urbanization is one of the main causes of species extinction [1]. The expansion and growth of
anthropic activities decrease biological diversity because the same “urban-adaptable” species become
widespread and locally abundant across several ecosystems [2,3]. Thus, a great deal of research has
been focused on human influence generating ecological degradation from coastal urbanization to
pollution and eutrophication [4,5]; these fundamental changes have taken place with the evolution
of freshwater systems and fluxes during the last century, with particular impact seen over the last
50 years [5,6]. More specifically, drastically increased urbanization is currently one of the main sources
of anthropogenic impact [7,8], often exerting significant pressure on coastal ecological systems [9].

The need to start efficient mitigation activities to assess and manage the negative impacts of
urbanization on natural habitats (i.e., to reduce urban footprints and to preserve habitats in urbanized
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areas) has highlighted the importance of investigating recent anthropic impact and the response
of contiguous marine ecosystems. In this context, the Gulf of Trieste (GoT) represents a suitable
area to investigate recent human impact on a coastal marine environment, as this area has been
densely urbanized over a long period and subject to agricultural activities in the inland Friulian Plain.
The presence of wastewater discharge and riverine inputs have caused episodes of anoxia [10] similar
to those observed in other coastal areas [5,11–13].

The GoT is characterized by several sources of pressure such as industrial sites, two busy harbors
(Trieste and Monfalcone), intense ship traffic, aquaculture, mussel farming, and tourism facilities.
The effects of anthropogenic disturbances in the GoT were investigated taking into account the
presence and distribution of geochemical pollutants and biological markers and by using an integrated
approach [14–16]. Adami et al. [17,18] studied the close relationship between biometric parameters for
sediment dwelling organisms and the heavy metal content and assessed the relevance of anthropogenic
Cu, Pb, Zn, and Cd as a factor of pollution, conditioning benthic life in the harbor of Trieste.

Barbieri et al. [19], investigating surface sediments near urban and industrial sewage discharges,
pointed out the noxious, recent anthropogenic pressure on the benthic environment related to the
presence of anomalously high concentrations of copper and zinc. The experimental evidence suggested
the need for stricter control of heavy metal contents in sewage before diffusion to the open sea
in order to avoid further compromise of marine life at the seawater/sediment interface and, indirectly,
human health in coastal communities.

Moreover, the GoT is part of one of the most polluted areas in the Mediterranean. Apart from
issues with mercury (Hg), the GoT is also subject to industrial and sewage pollution [20]. Due to
deteriorating water quality in the Gulf, there has been great concern that Hg could be remobilized from
sediment to the water column as well as could enhance methylation rates which may consequently
increase already elevated Hg levels in aquatic organisms. Hg exhibited higher concentrations in the
surface layer in the area in front of the river plumes. Higher bottom concentrations of dissolved Hg
observed at some stations were likely due to remobilization from sediments, including resuspension
and benthic recycling [21,22].

Acquavita et al. and Petranich et al. [23,24], analyzing several coastal sites and harbor areas
in the GoT, demonstrated how port areas or marinas, in particular, were highly impacted by
various contaminants (trace metals, polycyclic aromatic hydrocarbons, polychlorobiphenyls, organotin
compounds, etc.).

On this basis, a restricted area of the GoT was identified as heavily polluted and defined as a Site
of National Interest (SIN) (d.lgs. 22/97; d.lgs. 152/2006) which required cleanup [25].

Recent analysis investigated the relationship between benthic communities and anthropization
in areas of growing urbanization [4,26]. The analysis of microbenthic communities found where
wastewater enters the GoT indicates a degree of environmental stress due to imbalance, showing
how waste treatment has been effective at controlling the adverse effects of urban discharges [27].
Tomašovỳch et al. [28] found that production of the opportunistic bivalve Corbula gibba strongly
fluctuated over the past few centuries and suggested that intervals with higher frequencies of hypoxia
were not exclusively driven by human-induced enrichment in the 20th century. The long-term
response of whole macrobenthic communities to natural or anthropogenic impacts in the GoT remains
largely unknown.

Gallmetzer et al. [4] recorded a decline in some molluscan species in the second half of the twentieth
century as well as an associated increase in some opportunistic species as a result of an increase
in fishing and hypoxia phenomena.

Recent studies on foraminifera communities [29,30] highlighted the response of this taxon to the
various stimuli linked to anthropogenic factors and, consequently, to the degree of environmental
quality, directly related to levels of pollutants and/or a trophic state (i.e., anoxia/hypoxia phenomena).

A sensitive species, ostracods are small crustaceans (from 500 to 1500 µm in length) which occupy
all aquatic environments (from the deep sea to inland freshwater ponds and wetland to terrestrial



Sustainability 2020, 12, 6954 3 of 22

environments) and are capable of secreting calcareous carapaces. Their distribution is controlled by
hydrological, biological, and sedimentological features. These organisms are useful for environmental
characterization on a local/regional scale and can indicate water depth, salinity, temperature, and other
ecological factors. Numerous authors have reported the use of ostracods for environmental and
paleoenvironmental studies as sentinels of anthropic impact and associated pollution and hypoxia
phenomena [31,32].

The effects of eutrophication on ostracod associations due to anthropic activities was studied
by [33,34]. Cronin and Vann [33], through the analysis of sedimentary records collected in the Patuxent
Estuary and Chesapeake Bay ecosystems, verified the migration of Loxoconcha spp. from the deep
channel into shallower water along the flanks of the bay due to a combination of increased nitrate loading
and fertilizer use. It also seems probable that the four- to five-fold increase in sedimentation due to
agricultural and timber activity may have contributed to an increased natural nutrient load, likely fueling
the early periods (1700–1900) of hypoxia prior to widespread fertilizer use. Twentieth-century anoxia
worsened in the late 1930s–1940s and again around 1970, reaching unprecedented levels in the past few
decades. Similar effects were found in the Gernika estuary (southern Bay of Biscay) during summer
periods waters [34].

The distribution of ostracods was investigated at sites with different pollution levels on the eastern
coast of Amurskii Bay within the limits of Vladivostok City and in the Gulf of Izmir. It was found
that pollution reduces species diversity and causes changes in community structure and, eventually,
the total extinction of ostracods. The study showed that Xestoleberis spp. is the most resistant to
anthropogenic pressure and could survive in areas where all other ostracod species have already
become extinct [35,36].

Analysis of cores collected in the Odiel Estuary (SW Spain) allows one to delimit the recent
evolution of this zone during the past decades and the influence of natural and anthropogenic factors
on the distribution of ostracods. In the upper estuary, coinciding factors such as acid waters, prolonged
subaerial exposure, and coarse sediments may explain the absence or disappearance of ostracod
assemblages during the industrial period (1966–1985) in the major part of this area. In the lower estuary,
sedimentary evolution and industrial wastes are the main factors influencing both distribution and
trends of populations. Finally, the main changes observed in the marine estuary are due to sedimentary
effects of the construction of two banks and dredging of the main estuarine channel [37–39].

Temporal changes in ostracods observed in sediment cores from Hiroshima and Osaka Bay (Japan)
provide valuable information regarding the influence of anthropogenic pollution. Results suggest
that industrialization and anthropogenic pollution caused a decrease in ostracod density and the
homogenization of ostracod assemblages in Hiroshima Bay [40]. Urbanization-induced eutrophication
recorded on a metazoan benthic community in Osaka Bay suggests that the total abundance of ostracod
decreased in the inner bay, likely due to bottom-water hypoxia by eutrophication. The variation
in species composition within the two bays may have decreased because of the effects of eutrophication,
i.e., the dominance of species that prefer food-rich environments [41,42].

Finally, some studies have focused on the response of these organisms to coastal human impact
in terms of water pollution by industrial, agricultural, and military processes, sewage and the resulting
eutrophication that may lead to hypoxia and, in extreme cases, may induce anoxia [43–45]. In this
context, ostracods are usually intolerant of hypoxia and respond by a reduction in diversity and
richness, and in some cases, populations become monospecific [5,46,47].

In this work, we examined the ostracod population in the GoT over the last 20 years by applying
an integrated, multidisciplinary approach to reconstruct and evaluate the recent history of the impact
of urbanization on communities of these small crustaceans. The main physicochemical parameters
commonly employed to define the trophic state (i.e., nutrients, chlorophyll a, temperature, and salinity)
were also taken into consideration to check the relationships with changes in population. In addition,
we compared the more recent data with the results published by Masoli [48] to verify changes
in association (appearance and disappearance) recorded over a time span of 50 years.
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The research also represents the first attempt at a large time analysis of the possible relationship
between ostracod assemblages inside a selected area of the GoT and modification in a close urban context.

The evaluation of their modifications and adaptations over time could represent a crucial factor
in setting out future recovery actions and could aid in implementing a sustainable urban plan,
often invoked as a “win–win–win” scenario to optimize economic, environmental, and social goals [49].

2. Materials and Methods

2.1. Study Area

The GoT is located in the northernmost part of the Adriatic Sea (Italy). It is an epicontinental
semi-enclosed shelf basin covering an area of approximately 500 km2 with a maximum water
depth of 25 m (average depth 17 m) and characterized by a very low bathymetric gradient. It is
affected by the significant contribution of continental waters coming from the Italian and Istrian
regions [50]. The primary freshwater input is represented by the Isonzo/Soča River (annual flow rate of
82 m3 s−1), and the contribution of several minor rivers (Timavo/Reka, Rosandra/Glinščica, Ospo/Osp,
Rižana, Badaševica, Drnica, and Dragonja) can be considered negligible or having only local effects.
Water circulation is driven by the interplay of various forcing factors: the general circulation of the
Adriatic Sea, winds (particularly the dominant Bora, N-NE direction), and buoyancy fluxes together
with tides. The GoT represents a site of shelf dense water formation that contributes to the North
Adriatic Deep Water.

The sediment texture varies from medium to fine sands along the coastline and the delta of the
Isonzo and Tagliamento Rivers to muds in the mid-Gulf and sandy sediments in the western open part
of the GoT. Carbonate sediments dominate the sediments near the river’s mouth [51,52].

The GoT is a suitable site to study anthropic impact since, in spite of its relatively small extension;
it hosts two of the largest cargo shipping ports in the Adriatic Sea (Trieste and Koper). This coastal area
is affected by many potential sources of organic and inorganic pollutants, discharged not only by rivers
but also by sewers, industrial developments, and harbor-related activities including an oil-pipeline
terminal [53,54]. Moreover, the site has been recognized as an area where particular conditions related
to inputs of fluvial sediments or to meteo-marine conditions led to significant algal productions and
blooms, resulting in eutrophication and the subsequent hypoxic/anoxic conditions at the bottom,
at least until the mid-1980s [55].

2.2. Experimental Site

The experimental site is located in the GoT (13◦37′ E to 13◦44′ E and 45◦41′ N to 45◦44′ N).
Within this area, 44 samples were collected during two different summer cruises conducted
in 2004–2005 and 2013–2017, hereafter referred to as GTCrB and GTCrC, respectively (Figure 1).
Sampling was performed using a five-liter Van Veen grab and a KC Haps bottom corer characterized
by a sample area of 0.013 m2 with an effective depth penetration of 10 cm.

In order to assess the changes which have occurred in the GoT since 1967, we applied Geographic
Information System (GIS) to reconstruct the exact georeferenced location of the samples collected by
the “Istituto di Geologia e Paleontologia” (University of Trieste) during two summer cruises conducted
in 1965 and 1966, respectively (site GTCrA), and compared the qualitative analyses of ostracods
reported by Masoli [48] with those of ostracods recovered in 2004 and 2017 (Figure 1).

A schematic presentation of the methodology used in this study is shown in Figure 2.
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Figure 1. Location of the study area and sampling stations: the authors’ elaboration from Esri, HERE,
Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL,
Ordinance Survey, Esri Japan, METI, Esri China (Hong Kong), OpenStreetMap contributors, and the
GIS User Community. Bathymetric datasets come from the OGS SNAP data repository (source:
http://doi.org/cpz2).

Figure 2. Schematic presentation of the methodology used in this study: the authors’ elaboration.

The collected sediments were wet-sieved using a 63-µm mesh, dried, and weighed to determine
the content of the sandy fraction. The total sandy sediments were used to collect all live benthic
specimens, representative of the environmental conditions, and to avoid problems related to the

http://doi.org/cpz2


Sustainability 2020, 12, 6954 6 of 22

potential presence of the reworked fauna originating from deposits created in connection with the Early
Holocene marine transgressions and the Holocene climatic optimum as indicated by Uffenorde [56]
in the eastern part of the northern Adriatic Sea. Ostracod analysis took into account monographs
and papers from the Mediterranean literature [57–59]. Particular attention was paid to the papers
concerning the northernmost sector of the Adriatic Sea corresponding to the GoT [48,60,61].

A similarity percentage (SIMPER) analysis defined the main taxa responsible for the differences
between groups. These analyses were based on the Bray–Curtis dissimilarity, a measure that does not
take into account the absence of species but focuses on the composition of assemblage and the relative
abundances of taxa [62].

To characterize the biodiversity of assemblages, two faunal parameters were calculated: (1) species
diversity (S), the number of species in each sample, and (2) the Shannon–Weaver index (H), a measure
of entropy that takes into considerations the distribution of taxa among the total individuals [63]
(Table 1).

Table 1. Species Richness (S), Total Density (i.e., the Number of Individuals in Each Sample), and the
Shannon-Weaver Diversity Index Calculated for Benthic Living Ostracods in Each Sample.

Samples Taxa_S Individuals Shannon_H Samples Taxa_S Individuals Shannon_H

TG2004-1 13 41 2.4 RM2004-16 11 77 2.0
TG2004-3 8 16 2.0 RM2004-17 5 21 1.4

TG2004-13 19 53 2.7 RM2004-19 9 68 1.3
TG2004-18 14 57 2.2 RM2004-20 10 93 1.8
TG2004-21 14 110 1.9 DSC2017-01 6 9 1.7
TG2004-25 14 56 2.2 DSC2017-07 5 41 1.0
RM2004-1 8 16 1.6 DSC2017-10 7 8 1.9
RM2004-2 9 45 1.5 DSC2017-12 7 61 1.2
RM2004-3 11 76 2.1 DSC2017-13 8 31 1.3
RM2004-4 11 84 2.0 DSC2017-16 7 26 1.3
RM2004-5 5 6 1.7 DSC2017-17 5 13 1.4
RM2004-6 14 69 1.6 DSC2017-18 3 9 0.7
RM2004-7 6 44 1.2 DSC2017-19 4 15 0.7
RM2004-8 6 38 1.5 DSC2017-20 4 7 1.3
RM2004-9 14 64 1.9 DSC2017-21 3 4 1.0

RM2004-10 13 96 1.8 DSC2017-25 8 24 1.7
RM2004-11 11 99 1.9 DSC2017-32 4 4 1.4
RM2004-12 10 108 1.9 DSC2017-34 6 18 1.4
RM2004-13 8 26 1.8 DSC2017-38 1 1 0.0
RM2004-14 7 55 1.7 DSC2017-39 1 1 0.0
RM2004-15 6 19 1.5 RM2013-1 13 58 2.0

Multivariate analysis on the GTCrB and GTCrC ostracod assemblages was performed using
the Xlstat software Addinsoft (2020) (XLSTAT statistical and data analysis solution, New York, USA;
https://www.xlstat.com) except for the calculation of SIMPER and of diversity indices performed using
PAST software (PAlaeontological STatistic, version 4.02) [64]. Cluster analysis was run for the samples
(Q mode). The best results were reached using Ward’s method and the Bray and Curtis algorithm.

2.3. GIS Analysis

Predictive distribution maps for critical species and the Shannon Index have been interpolated
in GIS using the Inverse Distance weighting method (IDW). The measured relative frequency values
surrounding the predicted location have been used to predict a value for any unsampled location in the
study area based on the assumption that things that are close to one another are more alike than those
that are farther apart. IDW is a weighted distance average and so the predicted value is limited to the
range of the values used in the interpolation.

Unlike other interpolation methods—Such as Kriging—IDW does not make explicit assumptions
about the statistical properties of the input data. IDW is often used when the input data do not meet
the statistical assumptions of more advanced interpolation methods.

https://www.xlstat.com
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IDW assumes that each measured point has a local influence that diminishes with distance. It gives
greater weight to points closest to the prediction location, and the weight decreases as a function
of distance raised to a power value (p = 2 in our case). The search neighborhood can be altered by
changing its size and shape and/or by changing the number of neighbors included. The maximum and
minimum number of neighbor measures to include has been set, and the neighborhood search has
been divided into sectors to account for any directional autocorrelation or trend in the data [65].

2.4. Nutrient Analyses and Multiprobe Data Acquisition

For nutrient analyses, surface water samples were collected with a horizontal Niskin bottle
(V = 5 L). For determination of dissolved nutrients (ammonia, N—NH4

+; nitrite, N—NO2
−; nitrate,

N—NO3
−; soluble reactive silicate, SRSi; and soluble reactive phosphorus, SRP), samples were collected

in HCl acid-washed polyethylene bottles (V = 100 mL) after filtration by means of GF/F fiber filters
(Millipore, 0.45 µm) and immediately frozen (T = −20 ◦C) until analysis. The nutrients were always
determined by means of the segmented flow technique (Bran + Luebbe AutoAnalyzer 3 and QuAttro)
following the methods reported by Grasshoff [66] and modified for the specific instrument. The specific
calculated method detection limits were 0.02 µM for N—NH4

+, N—NO2
−, N—NO3

−, and 0.01 µM
for SRP and SRSi. Certified standards (Inorganic Ventures Standard Solutions and MOOS-2, NRC)
were used to ensure accuracy of the procedures. In addition, analytical performance was periodically
checked through proficiency tests (PT) exercises organized by the European network of PT providers
(QUASIMEME programmes AQ1 and AQ2).

During sampling, water column vertical profiles of pressure (dbar), temperature (◦C), conductivity
(mS/cm), salinity, pH, dissolved oxygen (% saturation and mg L−1) (DO), and chlorophyll a (Chl a)
(as an estimate of phytoplankton biomass, µg L−1) from the surface to the bottom were collected on
board using Idronaut mod. 316 (2004-05; 2013) and Idronaut mod. 316 plus (2014-17) multiparametric
probes, which were calibrated following the manufacturer’s protocols. The data obtained were
processed using Idronaut software in order to verify the quality check.

All physicochemical data were processed in order to determine means, median, standard
deviations, standard error, and maximum and minimum values and were graphically displayed as
boxplots using the free PAST software version 2.06. Spearman correlation coefficients (r) indicate the
strength and direction of a linear relationship between variables; r was considered significant when the
p-value was <0.05. The trophic state was calculated by applying the trophic index TRIX [67]. This index
combines nutrients (Dissolved Inorganic Nitrogen (DIN) as a sum of N–NH4

+, N–NO2
−, N–NO3

−,
and TP expressed as µg L−1 of N and P, respectively), Chl a (µg L−1), and DO (absolute deviation from
% saturation).

3. Results

3.1. Ostracod Evolution

Fifty-two species were identified in the examined area: 37 and 24 species in GTCrB and GTCrC,
respectively, while [48,60] found 25 species in the same area (Table S1 in the Supplementary Materials).
Dominant species in the GTCrB samples are Aurila convexa, Carinocythereis whitei, Cytheridea neapolitana,
Leptocythere ramosa, Loxoconcha ovulata, Pseudopsammocythere similis, Pterygocythereis jonesii, Semicytherura
incongruens, while in GTCrC they are outnumbered by A. convexa, L. ovulata, Loxoconcha rhomboidea,
S. incongruens, Xestoleberis communis, and Xestoleberis dispar (Figure A1).

In the same area, [48,60] recorded the prevailing presence of Callistocythere adriatica, Callistocythere
flavidofusca, Carinocythereis carinata, Cushmanidea elongata, C. neapolitana, Loxoconcha tumida, Palmoconcha
turbida, P. jonesii, S. incongruens, X. communis, and X. dispar (Table S1).

The H index ranges between 0 (samples DSC2017-38 and DSC2017-39) and 2.7 (sample TG2004-13).
Higher values were recorded in samples from GTCrB with an evident drop in values in GTCrC (Table 1).
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The comparison between the different analyzed periods showed continuity over time in the
examined area of the following species: A. convexa, C. adriatica, C. neapolitana, P. jonesii, S. incongruens,
X. communis, and X. dispar.

The species Callistocythere flavidofusca, Cushmanidea elongata, Cytheretta subradiosa, Hiltermannicythere
turbida, Leptocythere multipunctata, Loxoconcha avellana, Loxoconcha tumida, and Schedopontocypris setosa
were found only in GTCrA.

The Q-mode cluster analysis performed on ostracod associations found in GTCrB and GTCrC
reveals the presence of three groups of samples (Figure 3).

Figure 3. Q mode cluster analysis (Ward’s method—Bray and Curtis algorithm): the dominant species
for each cluster are reported. Authors’ elaboration.
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The SIMPER analysis shows that more than 60% of the difference between clusters is defined by
S. incongruens (24.4% relative contribution), A. convexa (9.9%), C. neapolitana (9.9%), L. ovulata (8.6%),
and X. communis (8.3%) followed by lower contributions of Leptocythere ramosa (6.8%), P. jonesii (3.8%),
and Carinocythereis whitei (3.5%) (Table 2).

Table 2. Similarity Percentage (SIMPER) Analysis for Ostracod Assemblages Defined with Q-mode
Cluster Analysis: The Dominant Species for Each Cluster are Reported in Bold. Overall Average
Dissimilarity: 79.17.

Species Av. dissim Contrib.
%

Cumulative
% Cluster 1 Cluster 2 Cluster 3

Semicytherura incongruens (Müller,
1894),Ruggieri, 1959 19.3 24.4 24.4 5.7 63.3 22.9

Aurila convexa (Baird, 1850) 7.8 9.9 34.3 18.2 1.7 3.2
Cytheridea neapolitana Kollmann, 1958 7.8 9.9 44.2 4.3 4.3 25.4
Loxoconcha ovulata (O.G. Costa, 1853) 6.8 8.6 52.8 17.9 4.2 1.8

Xestoleberis communis G. W. Müller, 1894 6.6 8.3 61.1 16.0 1.0 0.1
Leptocythere ramosa (Rome, 1942) 5.4 6.8 68.0 8.4 3.6 13.0

Pterygocythereis jonesi (Baird, 1850) 3.0 3.8 71.7 0.1 2.7 8.7
Carinocythereis whitei (Baird, 1850) 2.8 3.5 75.3 0.7 3.1 8.6

Loxoconcha rhomboidea (Fischer, 1855) 2.2 2.7 78.0 4.2 2.3 0.0
Xestoleberis dispar G. W. Müller, 1894 1.9 2.3 80.3 4.3 0.4 1.1
Pseudopsammocythere similis (Müller,

1894),Carbonnel, 1969 1.8 2.3 82.6 1.1 2.0 4.6
Cistacythereis turbida (G. W. Müller, 1894) 1.4 1.7 84.3 0.5 1.9 3.1

Leptocythere bacescoi (Rome, 1942) 1.2 1.5 85.8 0.0 3.2 1.2
Cytheroma variabilis G. W. Müller, 1894 1.2 1.5 87.3 0.1 0.3 3.8

Loxoconcha affinis (Brady, 1866) 1.1 1.4 88.7 2.3 0.8 0.0
Callistocythere adriatica Masoli, 1968 1.1 1.4 90.2 2.5 0.0 0.5

Cluster 1 is dominated by A. convexa, L. ovulata, and X. communis. Relatively low numbers of
C. neapolitana, Loxoconcha affinis, and L. rhomboidea were recorded (specifically, within the samples
DSC2017-01, RM2004-5, and TG2004-21). S. incongruens dominates cluster 2, followed by very low
frequencies of C. neapolitana and C. whitei recorded in scattered samples. Although cluster 3 is
still dominated by S. incongruens, it includes high concentrations of several other species, such as
C. neapolitana, C. whitei, L. ramosa, and P. jonesii (Figure 3).

3.2. Physicochemical Variables

Table 3 lists the descriptive univariate statistic of the physicochemical variables considered in this
study in the periods from 2004–2005 and 2013–2017. Water temperature (T) showed typical patterns
of the Mediterranean area, with minimum values recorded at the beginning of March 2005 (5.99 ◦C)
and maximum values in June 2013 at 28.2 ◦C. Salinity (S) values generally depend on the degree of
freshwater inputs from the Isonzo River, which are strongly related to rainfall [68]. As a result, the early
spring and autumn displayed the lowest values with an outlier of 9.0 recorded in November 2014,
likely during a period of high discharge from the river. DO, expressed as % of saturation, ranged from
80.4 to 129%, whereas Chl a, which is a good estimate of phytoplankton biomass, ranged from
0.1 to 2.47 µg L−1; thus, the occurrence of significant algal blooms can be excluded for both periods
investigated. These results are comparable to those reported for the period from 1970 to 2007 in the
whole Northern Adriatic basin [69].

N-NO3
− was the predominant form of DIN. In fact, on average, it accounted for 86.5% and 77.1%

of total dissolved nitrogen for the periods from 2004–2005 and 2013–2017, respectively. The lowest
mean values were found in summer (0.41 ± 0.45 µM, 2004–2005), whereas in spring and autumn,
the N—NO3

− content increased due to riverine inputs. Certain European Directives give threshold
values for DIN (74/440/EEC; 76/464/EC; 78/659/EC; 80/68/EC; 98/15/EC). Taking into consideration
the whole data set, DIN did not exceed these values (DIN < 15 mg L−1 N-1072 µM N; N—NO3

−

< 25 mg L−1 N-403 µM N; and N—NH4
+ < 1 mg L−1 N-71 µM N). Finally, SRP ranged from <loq to

0.36 µM P.
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Table 3. Univariate Statistic for Physicochemical Parameters.

2004–2005 T S Chl a O2 N—NO2 N—NH4 N—NO3 P—PO4 Si—SiO2 TN TP
(◦C) µg L−1 (%) µM µM µM µM µM µM µM

N 117 117 117 117 112 114 116 114 117 117 117
Min 5.99 28.7 0.10 82.9 0.01 0.01 0.08 0.01 0.15 5.11 0.17
Max 26.8 38.4 2.00 112 1.56 2.00 22.9 0.19 12.1 34.3 4.49

Mean 14.5 37.0 0.59 98.4 0.40 0.74 3.12 0.07 3.20 12.8 0.82
Std. error 0.54 0.15 0.04 0.57 0.04 0.04 0.36 0.00 0.21 0.52 0.06

Stand. dev 5.80 1.62 0.45 6.13 0.45 0.44 3.93 0.04 2.30 5.66 0.63
Median 13.6 37.4 0.50 98.1 0.21 0.71 1.90 0.06 2.60 11.2 0.66

25 prcntil 9.24 36.8 0.20 93.7 0.07 0.36 0.74 0.04 1.48 9.18 0.53
75 prcntil 18.5 37.9 0.80 104 0.53 1.04 4.29 0.09 4.42 14.6 0.93

2013–2017 T S Chl a O2 N—NO2 N—NH4 N—NO3 P—PO4 Si—SiO2 TN TP
(◦C) µg L−1 (%) µM µM µM µM µM µM µM

N 90 90 90 89 88 90 90 87 86 88 86
Min 7.89 9.00 0.10 80.4 0.02 0.02 0.02 0.01 0.18 1.84 0.01
Max 28.2 38.3 2.47 129 2.83 13.9 59.0 0.36 83.3 89.1 3.26

Mean 17.2 34.6 0.70 101 0.38 1.75 6.88 0.06 8.38 18.1 0.14
Std. error 0.60 0.44 0.05 0.92 0.06 0.22 1.09 0.01 1.16 1.77 0.04

Stand. dev 5.71 4.16 0.43 8.69 0.56 2.11 10.4 0.07 10.8 16.6 0.35
Median 16.9 36.1 0.68 101 0.19 0.99 4.35 0.03 5.97 12.1 0.08

25 prcntil 12.3 33.1 0.35 95.5 0.05 0.47 1.88 0.01 2.69 9.50 0.06
75 prcntil 22.2 37.2 0.83 107 0.41 2.16 6.68 0.07 10.1 19.6 0.12

The DIN–SRP molar ratio is commonly used to detect whether N and P act as factors capable of
limiting primary production [70]. In this work, the ratio was always higher than 16, suggesting that
the system is P-limited [71].

Several criteria are commonly used to define the trophic state in aquatic systems. The TRIX index
was set by [72], and according to these authors, the quality varied from high, characteristic of a system
with low productivity and low trophic level (TRIX: 2–4), to poor, typical of a highly productive system
with high trophic levels (TRIX: 6–8). In this work, TRIX ranged from 2.19 to 4.06 (average based
on seasonal aggregated data), which is consistent with a low trophic level and good water quality,
especially during summer periods.

Pearson linear correlations between variables are shown in Figure 4, where the significant
correlations (p < 0.05) are boxed. A strong negative correlation of S with oxidized nitrogen (N—NO3),
SRSi, TP, and TN was observed, especially during the period from 2013–2017, whereas Chl a contents
were scarcely correlated with nutrients, thus indicating that nutrient inputs are not sufficient to
cause significant primary productivity. Nutrients are positively correlated amongst themselves,
suggesting their common origin.

Figure 4. Pearson linear correlations between physicochemical variables. Significant correlations
(p < 0.05) (positive in blue and negative in red) are boxed. Color intensity and the size of the circle are
proportional to the correlation coefficients. Authors’ elaboration.
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The results obtained for some physicochemical parameters (T, S, Chl a, N—NO3
−, and SRP)

in the two periods were compared in order to check if a significant increase or decrease had occurred:
these factors can influence the distribution, richness, and diversity of benthic organisms. For these
purposes, we applied the Kruskal–Wallis test for equal medians. The results showed a significant
increase in T, Chl a, and N-NO3

−, whereas S and SRP significantly decreased.

4. Discussion

Recent numerous works have highlighted the variations and impact on ecosystems of recent
growing urbanization at a global level. Urbanization may filter out species that are not preadapted to
urban conditions, with a subsequent decrease in abundance or diversity at the small (local) scale [8,73].

Alternatively, the loss of species less adapted to urban environments could be (over)compensated
by an increase in species efficient in exploiting urban resources [2,3,74]. Both phenomena may cause
biotic homogenization if local communities are colonized by the same species, in turn increasing the
compositional similarity of urban species assemblages and, consequently, reducing species richness
of urban areas on a large scale [2,75]. The relationship between the growth of cities and the impact
of human activities on adjacent marine areas is still currently difficult to analyze. Yasuhara et al. [5]
and Wilkinson et al. [45] recorded how, in marine realms, the predominant cause of degradation
noticed in microfossil records was nutrient enrichment and the resulting symptoms of eutrophication
including hypoxia.

In particular, in the Adriatic Sea, changes were caused by eutrophication and anoxia due to
human activities including agriculture, wastewater disposal, and diversion of river outflow [12,13].
In this sense, ostracods are usually intolerant to hypoxia and respond with a reduction in diversity and
richness, and in some cases, populations become monospecific [46,47].

In the northern Adriatic ecosystems and the GoT area, a review of numerous long-term studies
on river discharges, oceanographic features, plankton, fish, and benthic compartments collected
since the 1970’s revealed significant changes in mechanisms and trophic structures [55,76]. In detail,
a gradual increase in eutrophication phenomena, characterized by significant hypoxic events at the
bottom, was recorded during the 1970s until the mid-1980’s [77–79], followed by a reversal of the trend,
particularly marked in the 2000s [69,80]. This trend was attributed to a combination of the reduction
in anthropogenic impact, mainly due to a substantial decrease of the phosphorus loads and of climatic
modifications, resulting in decline in atmospheric precipitations and, consequently, of runoff [81,82].

The long-term data set (1986–2010) of phytoplankton abundance, used to investigate the temporal
variability of the phytoplankton community at a coastal site in the GoT, appears to confirm previous
analysis. The interannual variability of the phytoplankton community shows two major periods
in terms of abundance and community composition. The first one, 1986–1994, characterized by the
highest abundances of microalgae and the dominance of phytoflagellates and the second period,
1995–2007, showed lower abundances and a collapse of the phytoplankton. Lastly, an apparent new
increase in abundances has been recorded in recent years (2008–2010). The observed long-term changes
could be related to the more general oligotrophication of the northern Adriatic Sea [80,83].

In particular, oligotrophication in the GoT can be ascribed to a reduction in outflow from the
Isonzo River observed during the period from 1986 to 2010, with occurrence of dry years in the latter
part of the period in 2003, 2005, 2006, and 2007 [81,84].

However, occurrence of significant atmospheric phenomena due to climate change is indicated
by the increase in N-NO3

− and the decrease in salinity: long drought periods are followed by heavy
rainfalls that increase Isonzo River discharge for short periods [81]. Concomitant with dry periods,
the phytoplankton community time series showed the absence of some spring (2005 and 2007) and
autumn (2005, 2006, and 2007) blooms, highlighting the possible direct relationship between the
external input and the productivity of the ecosystems. [80,83].

Analysis of the molluscan community composition in the Bay of Panzano cores [4,28] recorded
how frequent past hypoxic events intensifying pressure from fishing and climatic factors can replace
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contamination as the main drivers of community change, leading to the most pronounced shifts
in molluscan community composition. In the second half of the 20th century, disturbances from fishing
and hypoxia intensified with the benefit of opportunistic species. In particular, the shift in abundance
and the increase in the size of the opportunistic species Corbula gibba recorded in the Bay of Panzano
and the loss of formerly abundant, hypoxia-sensitive species in and around 1950 coincided with the
higher preservation of organic matter and higher frequency of seasonal hypoxia [85,86].

Results from the foraminiferal record in the same cores confirm eutrophication as the most
significant driver of community shifts [26].

Finally, direct biological observations showed that seasonal mass mortalities in the Adriatic Sea
in the late twentieth century negatively affected predators and substrate-destabilizing bioturbators,
including burrowing shrimps, infaunal echinoids, holothurians, predatory asteroids, and muricid
gastropods. The recovery of these taxa in the wake of hypoxic events in the northern Adriatic Sea is
delayed and occurs over several years [87].

To verify the effects of urbanization on ostracod fauna over the last 50 years, the experimental site
was carefully chosen at the center of the innermost part of the GoT. Moreover, presence within the area
of the MPA (EUAP 0167), established in 1986 by a decree from the Italian Ministry of the Environment,
which has entrusted its management to the WWF Italy onlus Association (D.M. November 12, 1986)
and, from 2013, was included in the SCI (Site of Community Importance) list (directives 79/409/EEC
and 92/43/EEC) (http://www.riservamarinamiramare.it), afforded the opportunity to analyze potential
ostracod response in environmental subjects to varying degrees of environmental stress.

Sediments in the GoT are also dispersed regularly in concentric bands with respect to the mouth of
the main rivers with dominant sedimentation in the experimental site, mainly characterized by sandy
pelite and very sandy pelite [51]. All samples examined are additionally included at a reduced depth
range so both these parameters can be considered irrelevant in the distribution of ostracod association.

Analysis of ostracod fauna showed a clear quantitative/qualitative decrease from GTCrB to GTCrC.
The only exception is sample RM2013-1 collected in the MPA, which shows values comparable with
GTCrB associations (Table S1). The Shannon index values further confirm the above data with a clear
decrease in all recent samples except for RM2013-1 (Figure 5).

Figure 5. Shannon Index interpolated in GIS using the Inverse Distance weighting method (IDW):
Authors’ elaboration.

http://www.riservamarinamiramare.it
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The indications coming from the analyzed species over a time span of 20 years (GTCrB and GTCrC)
records in both samplings a dominance of species tolerant to high organic matter concentrations and
oxygen deficiency such as C. neapolitana, L. ramosa, and Loxoconcha spp. [88].

In addition, in GTCrB, the dominant fauna is represented by the species S. inconguens, C. neapolitana,
L. ramosa, P. jonesi, and C. whitei, and in GTCrC samples, the trend towards homogenization is further
amplified with the domain of few different opportunistic ostracod faunas represented by A. convexa,
Loxoconcha spp., and Xestoleberis spp. [5,33,45,89] (Figure 6A,B). In addition, Salvi et al. [43] recorded
the presence of living specimens of X. communis and X. dispar in stressful environmental conditions
such as the Ex-Military Arsenal of the La Maddalena Harbor; both species were found to be dominant
at GTCrC.

In GTCrA, even when cautiously viewed through the lens of qualitative analysis, the ostracod
association from 1967 differs from those found recently. The number of species reported by Masoli [48,60]
is numerically lower than GTCrB, but the association shows the presence of species no longer found
in recent samples (C. flavidofusca, C. elongata, C. subradiosa, H. turbida, L. multipunctata, L. avellana,
L. tumida, and S. setosa) (Table S1). Among these, C. subradiosa and Loxoconcha spp. are also recognized
in the literature as among the most tolerant to environmentally stressful conditions [35,90].

Figure 6. Cont.
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Figure 6. Diffusion of the main opportunistic species in GTCrB (2004–2005) (C. neapolitana, L. ramosa,
and S. incongruens) (A) and GTCrC (2013–2017) (A. convexa, L. ovulata, and X. communis) (B), interpolated
in GIS using the Inverse Distance Weighting Method (IDW): Authors’ elaboration.

Considering the length of time which passed between the samples being taken (1967, 2004–2017)
and in the absence of intermediate sampling activities to indicate with certainty the precise evolution
of ostracod associations over the last 50 years, it is at any rate possible to summarize the response of
ostracod associations to the anthropic evolution of the area:

(1) Since the nineteen-sixties, ostracods have been exposed to a potentially compromised environment
due to the possible increase in anoxia phenomena [4,91], with few prevailing species tolerant
to environmentally stressful conditions. The data from the ostracod associations recorded by
Masoli [48,60] show a compromised environmental situation with few dominant species including
the opportunistic species C. subradiosa, Loxoconcha spp., and Xestoleberis spp. present in almost all
samples analyzed;

(2) Analysis of ostracod assemblages indicate a slight recovery in qualitative and quantitative terms
in the early 2000s, with the majority of species found being adapted to high nutrient supply and
tolerant to hypoxia. However, the ostracod association confirms environmental stress caused
by frequent crises linked to the recurrence of mucilage and hypoxic events documented in
particular in the second half of the 20th century [77–79] as highlighted by the studies of molluscan
and foraminiferal associations in the Bay of Panzano [4,28,86]. The small number of ostracod
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species found in GTCrB (S. inconguens, C. neapolitana, L. ramosa, P. jonesi, and C. whitei) and their
characteristics of opportunism and resistance to environmental stress testify to an environment
subject to a strong meiofauna depletion (Figure 6A). In fact, ostracod abundance recovers slowly
after the cessation of hypoxia, unlike that of other benthos. One reason for this low level of
year-round abundance may be that ostracods do not have a planktonic juvenile stage; therefore,
their ability to migrate is very low [41,92]. Analyses of the ostracod associations found in the Bay
of Panzano confirm the abovementioned environmental crises with a clear qualitative/quantitative
decrease over the last 50 years (N. Pugliese personal communication, June 2020);

(3) Recent ecological studies reported significant modifications of the environmental conditions in
the GoT due to climatic fluctuations and changes in anthropogenic pressure as follows: 1—a
warming of surface waters at the regional scale [50,55]; 2—a marked decrease in the freshwater
outflow during the 2000s due to a reduction in precipitation [93] and an increased river load of N
coupled with decreased P loads due to enforcement of environmental law [10,81]; 3—an increased
DIN/PO4 ratio in the waters due to the reduction of riverine TP and to a limitation of N uptake by
phytoplankton [94,95]. These changes have led to a situation of marked oligotrophy where the
reduced nutrient content (detergent phosphate limitations; improvement of the sewage filtration
systems in the urban area of Trieste in response to the community infringement procedure to
which the Friuli Venezia Giulia Region has been subjected since 2004) linked to ongoing climate
change phenomena could have induced a further, more serious crisis in ostracod associations
after the anoxia crises of previous decades (Table A1).

In fact, from GTCrB to GTCrC, an evident decrease in ostracods is recorded together with
modification of ostracod associations despite the presence of a marine protected area in the experimental
site since 1986 (Figure 6A,B).

The prevailing presence of the species A. Convexa, Loxoconcha spp., and Xestoleberis spp. in GTCrC
samples, all characterized by a high degree of opportunism and resistance to environmental stress,
could confirm the recent rise in oligotrophic phenomena (Figure 6B, Table A1).

The rapid disappearance of Phanerogams, accelerated in 2015, and the strong decrease in the
phytoplanktoncommunity in the latewinter-earlyspringbloom observed in recent years (2010–2017) [80,83],
from the GoT in general and in the experimental site in particular, could represent further evidence of
the changed environmental conditions linked to increasing anthropic stress and/or climatic change.

Finally, it must be underlined how the best environmental conditions in recent samples have been
recorded in the MPA. This is not entirely surprising since meiofauna are commonly early colonists and
that the most mobile and sensitive taxon rapidly colonize sediments where favorable conditions are
restored [96].

5. Conclusions

Analysis of ostracod associations found in the GoT during the period from 2004–2017 showed
how, over the last 20 years, there has been a decline in environmental conditions with a clear decrease
in qualitative/quantitative values. In particular, in GTCrB, a higher number of species was observed
than in GTCrC, with a clear decrease in living specimens, but in both cases, we highlighted a trend
towards homogenization in the examined area with the domain of few species in most samples,
and in some cases, samples were found to be monospecific. Most of the species recovered have
characteristics of opportunism and tolerance to environmentally stressful conditions. A. convexa,
C. neapolitana, Loxoconcha spp., S. incongruens, and Xestoleberis spp. are all known to be hypoxia-tolerant
or opportunistic and are able to survive in areas of severe environmental conditions such as the polluted
Ex-Military Arsenal of La Maddalena Harbor.

The study on ostracod assemblages found in GTCrA, even when exercising caution with regards to
a purely qualitative analysis, also records environmentally stressful conditions with the presence of few
species often recognized in the literature as among the most tolerant to poor environmental conditions.
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These data are in agreement with the analysis performed in the GoT on other taxa (Mollusks and
Foraminifera), thus confirming the possible environmental crisis linked to recurrence of mucilage and
hypoxic events, documented for the GoT between the 1980s and the first decade of the 21st century.

The decrease in ostracods in GTCrC might be related to the rapid disappearance of Phanerogams,
accelerated in 2015, and to the marked decrease in the phytoplankton community in recent
years (2010–2017) due to an improvement of the oligotrophic conditions, markers of the changed
environmental conditions linked to increasing anthropic stress and/or climatic change.

In addition, our work may extend the knowledge about sensitive and more tolerant species
(surviving post-disturbance “winners”) and can help pinpoint and define the spatial extension of past,
present, and potential future mortalities and/or disappearance linked to growing anthropization. In the
same way, the roles individual species play help better gauge potential effects on ecosystem integrity,
function, and resilience.

The best environmental conditions in recent samples have been recorded in the MPA, therefore
indicating that the preservation of large and connected patches of natural habitats is the most effective
measure to halt further urbanization-driven biodiversity loss.

Future study on cores collected in selected areas of the GoT will increase the understanding of the
repercussions of anthropogenic activities over time on ostracod assemblages as well as will identify
additional indicator species, through seasonal sampling, that can be used to better define (a) possible
causes of the recent decline in ostracod associations, (b) the status and vulnerability of the ecosystem,
and (c) evaluation of remediation activities to mitigate the negative impact of urbanization.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/17/6954/s1,
Table S1: List of recognized living ostracod species (%) recovered in GoT during 2004–2017. x indicates the species
found by Masoli, 1967.
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Appendix A

Table A1. Univariate Statistic for Dominant Ostracod Species (%) and Physicochemical Parameters
(2004–2005 and 2013–2017 years): The Increasing Values from GTCrB to GTCrC of the Dominant
Ostracod Fauna (Red Color) and the Corresponding Declining of the Nutrient Values (Phosphorus and
Phosphates) (Blue Color) are Reported.

2004–2005 N Min Max Mean Stand. dev Median 25 prcntil 75 prcntil

A.convexa (%) 27 0.00 60.00 6.86 13.98 1.19 0.00 7.14
C.whitei (%) 27 0.00 17.14 5.23 4.37 6.06 0.00 8.47

C.neapolitana (%) 27 0.00 45.71 16.27 15.57 13.58 0.00 27.16
L.ramosa (%) 27 0.00 58.54 14.54 14.58 11.11 0.00 25.42
L.ovulata (%) 27 0.00 66.67 13.97 17.92 5.00 2.17 22.22
P.jonesi (%) 27 0.00 37.50 5.05 8.07 2.44 0.00 8.57

S.incongruens (%) 27 0.00 83.33 32.89 27.47 32.31 8.70 57.50
X.communis (%) 27 0.00 35.00 5.16 9.96 0.00 0.00 5.13

T (◦C) 117 5.99 26.8 14.5 5.80 13.6 9.24 18.5
S 117 28.7 38.4 37.0 1.62 37.4 36.8 37.9

http://www.mdpi.com/2071-1050/12/17/6954/s1
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Table A1. Cont.

2004–2005 N Min Max Mean Stand. dev Median 25 prcntil 75 prcntil

Chl a mg L−1 117 0.10 2.00 0.59 0.45 0.50 0.20 0.80
O2 (%) 117 82.9 112 98.4 6.13 98.1 93.7 104

N-NO2 µM 112 0.01 1.56 0.40 0.45 0.21 0.07 0.53
N-NH4 µM 114 0.01 2.00 0.74 0.44 0.71 0.36 1.04
N-NO3 µM 116 0.08 22.9 3.12 3.93 1.90 0.74 4.29
P-PO4 µM 114 0.01 0.19 0.07 0.04 0.06 0.04 0.09
Si-SiO2 µM 117 0.15 12.1 3.20 2.30 2.60 1.48 4.42

TN µM 117 5.11 34.3 12.8 5.66 11.2 9.18 14.6
TP µM 117 0.17 4.49 0.82 0.63 0.66 0.53 0.93

2013–2017 N Min Max Mean Stand. dev Median 25 prcntil 75 prcntil

A.convexa (%) 17 0.00 92.31 25.04 31.80 11.11 0.00 57.76
C.whitei (%) 17 0.00 26.19 1.54 6.35 0.00 0.00 0.00

C.neapolitana (%) 17 0.00 38.10 3.90 9.49 0.00 0.00 4.00
L.ramosa (%) 17 0.00 25.00 5.20 8.91 0.00 0.00 9.58
L.ovulata (%) 17 0.00 59.09 19.40 20.31 13.33 0.00 37.50
P.jonesi (%) 17 0.00 4.76 0.28 1.15 0.00 0.00 0.00

S.incongruens (%) 17 0.00 100.00 18.75 32.44 3.45 0.00 26.78
X.communis (%) 17 0.00 87.50 25.83 29.62 7.69 0.00 50.00

T (◦C) 90 7.89 28.2 17.2 5.71 16.9 12.3 22.2
S 90 9.00 38.3 34.6 4.16 36.1 33.1 37.2

Chl a mg L−1 90 0.10 2.47 0.70 0.43 0.68 0.35 0.83
O2 (%) 89 80.4 129 101 8.69 101 95.5 107

N-NO2 µM 88 0.02 2.83 0.38 0.56 0.19 0.05 0.41
N-NH4 µM 90 0.02 13.9 1.75 2.11 0.99 0.47 2.16
N-NO3 µM 90 0.02 59.0 6.88 10.4 4.35 1.88 6.68
P-PO4 µM 87 0.01 0.36 0.06 0.07 0.03 0.01 0.07
Si-SiO2 µM 86 0.18 83.3 8.38 10.8 5.97 2.69 10.1

TN µM 88 1.84 89.1 18.1 16.6 12.1 9.50 19.6
TP µM 86 0.01 3.26 0.14 0.35 0.08 0.06 0.12

A. Aurila convexa. Left valve, lateral exterior view. Scale bar = 100 µm;
B. Callistocythere adriatica. Left valve, lateral exterior view. Scale bar = 20 µm;
C. Carinocythereis whitei. Right valve, lateral exterior view. Scale bar = 100 µm;
D. Cytheridea neapolitana. Right valve, lateral exterior view. Scale bar = 100 µm;
E. Loxoconcha ovulata. Left valve, lateral exterior view. Scale bar = 100 µm;
F. Loxoconcha rhomboidea. Left valve, lateral exterior view. Scale bar = 100 µm;
G. Pterygocythereis jonesi. Left valve, lateral exterior view. Scale bar = 100 µm;
H. Semicytherura incongruens. Left valve, lateral exterior view. Scale bar = 20 µm;
I. Xestoleberis communis. Left valve, lateral exterior view, sample UC09. Scale bar = 20 µm.

Figure A1. SEM photomicrographs of the GoT dominant ostracod taxa.
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