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Abstract: In recent years, wind energy has been widely used as an alternative energy source as it
is a clean energy with a low running cost. However, the high penetration of wind power (WP) in
power networks has created major challenges due to their intermittency. In this study, an elitist
multi-objective evolutionary algorithm called non-dominated sorting particle swarm optimization
(NSPSO) is proposed to solve the dynamic economic emission dispatch (DEED) problem with WP.
The proposed optimization technique referred to as NSPSO uses the non-dominated sorting principle
to rank the non-dominated solutions. A crowding distance calculation is added at the end of all
iterations of the algorithm. In this study, WP is represented by a chance-constraint which describes
the probability that the power balance cannot be met. The uncertainty of WP is described by the
Weibull distribution function. In this study, the chance constraint DEED problem is converted
into a deterministic problem. Then, the NSPSO is applied to simultaneously minimize the total
generation cost and emission of harmful gases. To proof the performance of the proposed method,
the ten-unit and forty-unit systems—including wind farms—are used. Simulation results obtained by
the NSPSO method are compared with other optimization techniques that were presented recently in
the literature. Moreover, the impact of the penetration ratio of WP is investigated.
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1. Introduction

1.1. Research Background

In recent years, power system operators have been advised to use non-conventional energy
sources such as wind energy and solar energy. Although renewable energy sources have positive
environmental impacts, their exact output power is not evident to predict. For this reason, these sources
are mostly integrated with conventional sources, such as thermal units, to meet the balance between
load demand and power generation. However, mismanagement of thermal generating units leads
to high operation cost and unacceptable emission level. Moreover, high penetration of renewable
energy, especially wind energy, into the power system caused major challenges due to their intermittent
outputs. As countermeasures, decision makers in the power sector should use an optimal power
dispatch under wind power (WP) uncertainty for reducing both operational cost and emission. Due to
the dynamic characteristic of today’s network loads, it is necessary to schedule the generation units
according to power demand variations. To achieve the aforementioned tasks, the dynamic economic
emission dispatch (DEED) problem incorporating wind energy has become a key issue for power
system operators. The purpose of the DEED problem is to minimize simultaneously the total fuel cost
and total emission by finding the power production of thermal power plants according to the predicted
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load demands [1,2]. The DEED problem is equivalent to the static economic emission dispatch (SEED)
at each time interval mostly of one hour. Several constraints may be considered in the resolution of
the DEED problem, such as generator ramp-rate limits (RRL), prohibited operating zones (POZ) and
valve-point loading effects (VPLE). Unfortunately, POZ constraints, due to the vibrations in the shaft
bearing, cause discontinuities in the objective functions [3]. Moreover, VPLE constraints make fuel cost
function with ripples [2,3].

1.2. Related Works

In several works, classical methods—including dynamic programming [4], linear programming [5],
and interior point [6] methods—have been used to solve both SEED and DEED problems. However,
these techniques require initialization and are iterative and, as a result, the search process may converge
into local optima. Moreover, the quality of optimal solutions is affected by the differentiability and
continuity of the objective function. Metaheuristic-based techniques, such as genetic algorithm [7],
particle swarm optimization (PSO) [8], artificial bee colony (ABC) [9], bacterial foraging [10], simulated
annealing [11] and differential evolution (DE) [12] have been also suggested as other alternative
methods to handle the complexity of the DEED problem. In fact, metaheuristic algorithms offer the
possibility of modifying their control parameters, taking into account the complexity of the problem to
be solved. These algorithms derive their efficiency from the fact that they can escape local optima,
which are the main handicap in optimization problems.

In recent years, the uncertainty of wind power has been studied in many optimal dispatch
problems [13–18]. However, it has been seen that wind energy has barely been employed for minimizing
both the fuel cost and emission at the same time. The recent developments of the renewable energy
sources encouraged power system operators to seek suitable incorporation of wind energy for optimum
load dispatch. Hetzer et al. [13] developed an economic dispatch model incorporating WP where the
random characteristic of WP output is described by the Weibull probability distribution function (PDF).
In [15], the stochastic availability of WP output is described by penalty costs corresponding to the
overestimation and underestimation of the actual wind energy. Generally, these penalty costs are added
to the total production cost. In [19], the overestimation and underestimation costs of WP availability
are combined with the total fuel cost of thermal generators and then a hybrid PSO and artificial physics
optimization (APO) algorithm is used for minimization of the total cost. An improved version of the
chemical reaction optimization method is proposed in [3] for the SEED problem incorporating penalty
costs associated with wind energy availability. In [20], a scenario-based stochastic framework was
established for describing the stochastic DEED problem considering WP. Biswas et al. [21] presented
also a scenario-based method to model the randomness of WP in the optimal reactive power dispatch
problem. Unfortunately, scenario-based methods need a large number of scenarios for increased
accuracy of results. Some techniques presented in the literature for handling the power dispatch
problems are listed in Table 1.

Chance-constraint programming has been also presented in the literature as suitable approaches
for solving stochastic optimization problems such as dispatch power problems, including WP [16–18].
Zhu et al. [16] formulated the SEED problem with WP as a chance-constraint problem (CCP) and
then a multi-objective evolutionary algorithm was used for its resolution. Hu et al. [18] developed
the chance-constraint model for the economic dispatch problem integrating thermal units, wind farm
and energy storage system. A CCP-based method was developed in [17] for handling with the
DEED in presence of wind energy. The total production cost and emission were combined in a single
objective function and then the problem was solved using GAMS software. However, the application
of metaheuristic techniques may provide more accurate solutions for this kind of problem. Jadhav et
al. proposed an improved version of the ABC algorithm for solving the SEED problem incorporating
WP, where the emission was converted to a carbon tax and then it was combined with the fuel cost to
form the single objective function [22]. The economic emission dispatch problem was converted into a
mono-objective problem in [23] in order to apply new global particle swarm optimization (NGPSO) for
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its solution. Hagh et al. [24] used an exchange market algorithm method for solving the stochastic
economic emission dispatch problem, where the fuel cost, penalty costs of WP and emission were
combined in one objective function. Unfortunately, most of the aforementioned methods did not
necessarily provide the real Pareto front and the compromise solution which are frequently requested
for the decision making. In addition, the solution programs need to run several times to get the
non-dominated solutions. In consequence, several multi-objective optimization algorithms such as
NSGA-II (non-dominated sorting genetic algorithm-II), MOPSO (multi-objective PSO) and MODE
(multi-objective DE) were used for solving this kind of problem [25]. These algorithms are mainly
based on the non-dominance principle and may provide the Pareto front in a single run. However,
some works demonstrated that MOPSO-based algorithms provide frequently the more accurate Pareto
front [25]. In fact, MOPSO adopts the non-dominated sorting principles to improve the solution
diversity. In addition, PSO and its variants use the experience acquired during the search for the
optimum solution in order to best guide the search process. Unlike GA and DE, PSO does not have
mutation and crossover operators, but it emulates the social behavior of organisms, which enables the
PSO-based techniques to efficiently provide the local solutions.

Table 1. List of some techniques used for dispatch problems.

Techniques Dispatch Problems

Dynamic programming [4] Static economic dispatch problem without valve-point loading effects
(VPLE) constraints

Interior point method [6] Nonlinear optimal power flow

Particle swarm optimization (PSO) [8] Static economic dispatch with VPLE constraints
Artificial bee colony (ABC) [9]

Genetic algorithm [7] Dynamic economic dispatch problem with VPLE constraints

Bacterial foraging [10]
Dynamic economic emission dispatch (DEED) problem with VPLE
constraints

Simulated annealing [11]

Differential evolution (DE) [12]

Here-and-now approach [14] Static economic dispatch problem including wind power and without
VPLE

Stochastic optimization technique [15] Static economic emission dispatch (SEED) problem considering wind
power

Chance-constraint programming [16] SEED problem considering wind power

Chance-constraint programming [17] DEED problem considering wind power

Chance-constraint programming [18] Static economic dispatch considering wind power and without VPLE

Scenario-based approach [20] DEED problem considering wind power

Scenario-based approach [21] Reactive power dispatch considering renewable energy sources and
with uncertainties in loads.

1.3. Aims and Contributions

Within this context, this paper presents an elitist multi-objective method to solve the DEED for
the wind-thermal system. In the optimization process, all cited operating constraints are considered
and the stochastic characteristic of the WP is represented by a chance-constraint which describes the
probability that the power balance cannot be met. The stochastic constraint is incorporated in the
system constraints in order to mitigate the penalty costs of WP. The resolution of the problem is carried
out mainly in two steps. Firstly, the stochastic problem is converted into a deterministic problem by
representing the random characteristic of the wind speed by the Weibull PDF. Then, the problem is
solved by an elitist multi-objective evolutionary algorithm. The proposed optimization technique,
called non-dominated PSO algorithm (NSPSO), uses a crowding distance comparison at the end of
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iterations of the classic PSO in order to facilitate the convergence to the real Pareto front. The Pareto
front is generated in one run of the solution program. The proposed method is tested on the ten-unit
and forty-unit systems including the wind energy source.

2. Materials and Methods

2.1. Chance-Constrained DEED Problem

In the literature, the DEED problem was considered as a bi-objective optimization problem. It aims
to minimize simultaneously the total fuel cost and total emission by finding the power production of
thermal units according to the predicted load demands. The resolution of the DEED problem can be
accomplished by solving the SEED problem over a certain period of time subdivided into smaller time
intervals. The total fuel cost and emission over time horizon of T hours are described, respectively [2],
by Equations (1) and (2). In this study, T = 24 h.

CT =
T∑
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N∑
i=1

ai + biPt
i + ci

(
Pt

i

)2
+

∣∣∣∣di sin
{
ei
(
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i

)}∣∣∣∣ (1)
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λiPt

i

)
(2)

The two objective functions will be minimized subject to the constraints given in Equations (3)–(7).
Inequality (3) is the chance-constraint describing the stochastic characteristic of WP. It represents the
probability to meet the system load requirement at time t. Real power losses Pt

loss are calculated using
the B-loss formula [2]. In practice, the power generation of each unit i during two successive time
periods is confronted by its RRLs defined by Inequalities (4) and (5). The POZ constraints are described
as given in Equation (6). Maximum and minimum generations of both thermal units and the wind
energy source are stated in Equations (7) and (8), respectively.
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2.2. Probability Model of WP Output

The high penetration of WP into power networks has created major challenges due to the
intermittency of the wind speed. From the literature review, it is found that the wind speed is widely
described by two-parameter Weibull PDF [17]. The Weibull PDF and cumulative distribution function
are given, respectively, in Equations (9) and (10) [17].

fV(v) = (k/c)(v/c)k−1 exp
[
−(v/c)k

]
(9)
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FV(v) =
∫ v

0
fV(τ) dτ = 1− exp

(
−(v/c)k

)
, v ≥ 0 (10)

Parameters c and k in Equation (9) depend on the wind farm location. Mostly, they are in the
range of (5.0, 20.0) and (1.0, 3.0), respectively. Figure 1 depicts the impact of parameters c and k on
the Weibull PDF. It can be seen that the curve shape is influenced by the value of parameter k. It is
noteworthy also that if c increases, the curves move toward higher wind speed.

1 
 

 
Figure 1. Weibull probability distribution function (PDF): (a) For k = 1.7; (b) For k = 1.

In this paper, WP output as a function of the wind speed is described by the following equation.
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The cumulative distribution function (CDF) of the random Pw may be calculated as follows.
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Thus, constraint (3) can be modified as follows.
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2.3. Implementation of the Non-Dominated Sorting PSO Algorithm

The PSO algorithm emulates the social behavior of organisms [26]. In the PSO algorithm, the i-th
individual, called particle, is represented at each iteration k by its position Xk

i
=

(
Xk

i1
, . . . , Xk

in

)
and its

velocity Vk
i
=
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, . . . , Vk

in

)
.

From iteration k to the next iteration (k + 1), position and velocity are updated as given in the two
following equations.
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i = wVk

i + c1r1
(
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i
−Xk

i

)
+ c2r2

(
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−Xk
i

)
(14)
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Xk+1
i = Xk

i + Vk+1
i (15)

where w, c1 and c2 are the PSO parameters; r1 and r2 are random numbers in the range [0, 1]; pbestk
i and

gbestk are the best solution of the i-th particle and the best solution in the overall population at the k-th
iteration, respectively.

In order to adopt the PSO algorithm for multi-objective problems, several modifications of the
original PSO have been developed in the literature [27–30]. In this study, the non-dominated sorting
concept suggested by Deb et al. [28] for the non-dominated sorting genetic algorithm is incorporated
in the classical PSO algorithm.

At each generation t, an offspring population Qt is generated from the parent population Pt.
The two populations are combined in one population Rt as in Equation (16). Then, the obtained
population is sorted into different non-domination levels Fj as given in Equation (17). This process is
shown in Figure 2 and it is detailed in [28].

Rt = Pt ∪Qt (16)

Rt = ∪
r
j=1

(
F j

)
(17)

where r is the number of fronts.
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3. Results and Discussion

The performance of the proposed method for solving the DEED of a wind-thermal system is verified
by using two test systems which are the standard ten-unit 39-bus New England power system and the
forty-unit system. The single line diagram of the first system is shown in Figure 3. All aforementioned
constraints are considered for both systems. Generator cost and emission coefficients of system 1 are
shown in Table A1 in the Appendix. Generation limits and RRLs of all units of this system are given
in Table A2. All data of system 2 are taken from [24,25]. The hourly variation of the load is given in
Table A3.

Three cases are considered in this section.

(i) SEED problem without wind power.
(ii) DEED problem without wind power.
(iii) DEED problem with wind power.
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3.1. Case 1: SEED Problem without Wind Power

To prove the superiority of the proposed technique, the fuel cost and the emission are minimized
for the forty-unit system with VPLE. In this case, the total load is 10,500 MW. The optimization results
are shown in Table A4 in the Appendix. As seen in Table A4, the minimum fuel cost and emission
provided by NSPSO are USD 121,153/h and 389,953 ton/h, respectively. It is clear that these values are
better than those obtained by using the classical PSO algorithm. In addition, it can be verified easily
that all constraints are satisfied.

3.2. Case 2: DEED Problem without Wind Power

In this case, the performance of the proposed optimization algorithm NSPSO is tested on the
DEED problem without incorporation of WP. Initially, the NSPSO is applied to the ten-unit system with
constant load Pld = 1700 MW and a comparison with the classical PSO is provided. The convergence and
the Pareto set of solutions of both algorithms are shown in Figures 4 and 5, respectively. From Figures 4
and 5, it is clear that the proposed NSPSO provides the best results compared to the PSO algorithm. It is
noticed that the minimum cost and the minimum emission achieved by NSPSO for the static problem
are 9.9334 × USD 104/h and 1.1158 × 104 ton/h while are 9.9555 × USD 104/h and 1.1233 × 104 ton/h
for the PSO algorithm, respectively. From Figure 5, it is obvious that fuel cost and emission are
conflicting objective functions. In other words, if a power system operator or decision maker wants
lower production cost, more emissions of harmful gases will be emitted and vice versa.

To further study the effectiveness of the NSPSO, it is executed for the classical DEED problem
and obtained results are compared with other optimization techniques, such as improved bacterial
foraging algorithm (IBFA) and non-dominated sorting genetic algorithm (NSGA-II), used in other
research works for solving the same problem. The comparison results shown in Table 2 confirm that
the NSPSO outperforms these techniques despite POZ constraints not being taken into account in some
of them. The minimum total cost and minimum total emission achieved by the proposed technique are
USD 2,474,472.8 and 293,416.3 ton, respectively.
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Table 2. Comparison of the NSPSO with other meta-heuristic techniques.

Method Minimum Total Cost (USD) Minimum Total Emission (ton)

NSPSO 2,474,472.8 293,416.3

PSO 2,491,480.2 2.97696

IBFA [1] 2,481,733.3 295,833.0

NSGAII [2] 2.5168 × 106 3.1740 × 105

3.3. Case 3: DEED with Wind Power

In this case, the effect of the incorporation of wind energy into the power system is studied
through the DEED problem. The problem is solved by using the proposed method for various values
of the threshold tolerance. Due to the space limit, just the optimum solutions for α = 0.25 are presented.
Tables 3–5 show the optimum solutions for the dynamic economic dispatch, dynamic emission dispatch
and the DEED compromise solution, respectively. It is worth noting that the compromise solution
is provided using a fuzzy-based approach described in [2]. It is clear from these tables that the
optimum solutions respect the required constraints such as the generation limits and the ramp rate
limits. Nevertheless, the total cost and emission are reduced, respectively, from USD 2,474,472.8 and
293,416.3 ton (Table 2) to USD 2,433,467.20 (Table 3) and 283,538.16 ton (Table 4), when WP is considered.
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Table 3. Optimum solution for the dynamic economic dispatch (α = 0.25).

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 WP

1 152.19 135.00 143.75 60.00 73.00 160.00 130.00 98.50 25.23 46.13 30.89

2 150.07 137.64 191.51 60.00 121.47 152.07 130.00 120.00 20.00 16.13 32.42

3 152.45 135.00 271.51 110.00 171.47 145.20 130.00 120.00 20.00 12.62 17.80

4 154.32 135.00 268.30 145.34 217.31 155.92 123.12 119.74 50.00 39.69 31.44

5 153.35 136.00 297.97 168.14 227.50 160.00 130.00 118.81 49.26 44.39 32.52

6 196.18 135.00 329.35 218.14 243.00 144.52 130.00 120.00 71.22 55.00 32.33

7 151.82 199.68 340.00 255.06 237.69 160.00 123.16 120.00 80.00 55.00 30.84

8 166.04 226.41 340.00 300.00 243.00 160.00 130.00 120.00 80.00 53.27 14.60

9 224.73 306.41 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 32.63

10 252.51 386.41 340.00 300.00 243.00 160.00 130.00 120.00 80.00 54.27 32.46

11 272.99 466.41 340.00 300.00 243.00 160.00 130.00 120.00 80.00 46.38 32.33

12 308.76 470.00 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 32.49

13 272.91 463.03 327.97 300.00 232.48 160.00 130.00 103.97 79.81 55.00 29.48

14 195.22 383.58 311.62 300.00 243.00 159.38 129.81 119.01 76.49 42.81 31.80

15 152.33 303.58 301.25 300.00 243.00 129.41 130.00 120.00 78.15 44.18 31.32

16 161.55 223.58 221.25 250.00 233.79 160.00 130.00 120.00 55.00 14.18 27.29

17 150.68 145.58 218.55 239.01 243.00 144.51 129.86 119.07 51.30 44.18 32.04

18 151.05 213.33 297.55 249.74 232.67 154.08 126.38 117.79 54.29 45.89 31.88

19 178.47 293.33 300.00 299.74 243.00 160.00 130.00 87.79 53.17 55.00 32.57

20 212.61 373.33 340.00 300.00 243.00 160.00 130.00 117.79 80.00 55.00 32.50

21 231.14 308.96 339.73 299.43 243.00 160.00 125.76 119.94 76.99 54.78 32.20

22 152.08 232.02 262.12 249.43 239.68 160.00 130.00 120.00 52.59 44.88 31.91

23 153.27 152.02 182.12 235.39 189.68 110.00 100.00 120.00 80.00 14.88 25.64

24 152.08 135.00 117.01 185.39 156.80 100.04 130.00 90.00 80.00 31.39 30.48

Cost (USD) 2,433,467.20

Emission (ton) 331,251.40

Table 4. Optimum solution for the dynamic emission dispatch (α = 0.25).

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 WP

1 165.58 135.60 88.56 73.46 133.09 119.92 92.78 92.31 78.23 54.01 21.60

2 165.52 136.28 95.30 91.47 136.97 132.32 100.62 116.64 79.97 55.00 21.75

3 165.70 157.99 115.67 117.19 163.79 159.98 129.38 119.54 79.96 54.98 21.76

4 195.69 197.85 138.87 139.11 203.33 160.00 130.00 120.00 80.00 54.95 21.69

5 216.08 213.04 149.59 155.70 219.00 160.00 129.69 120.00 79.93 55.00 21.62

6 245.43 250.33 182.85 189.66 242.54 159.60 129.70 119.86 79.89 55.00 21.76

7 265.32 270.48 202.15 209.58 241.34 160.00 130.00 120.00 80.00 55.00 21.73

8 284.88 287.09 225.55 227.96 242.92 160.00 129.76 119.96 79.97 55.00 21.71

9 326.49 317.64 268.44 277.96 243.00 157.18 130.00 120.00 80.00 54.67 18.91

10 340.26 355.82 340.00 268.08 243.00 160.00 130.00 120.00 80.00 51.92 11.95

11 384.79 366.58 340.00 300.00 243.00 160.00 130.00 120.00 78.17 55.00 14.91
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Table 4. Cont.

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 WP

12 394.93 395.50 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 21.77

13 356.63 356.77 332.55 299.30 242.81 159.97 129.92 120.00 79.87 54.87 21.76

14 323.38 324.57 265.26 272.00 242.98 159.96 129.66 119.67 79.89 55.00 21.76

15 287.40 287.15 224.63 226.75 243.00 160.00 129.69 119.79 79.84 55.00 21.61

16 234.54 235.52 170.56 176.75 238.93 160.00 130.00 120.00 55.00 55.00 21.75

17 218.58 217.50 160.73 158.17 224.54 159.47 129.03 119.99 54.93 55.00 21.71

18 253.80 256.98 191.47 190.38 242.58 159.98 130.00 120.00 54.89 55.00 21.69

19 293.70 291.55 231.14 234.04 243.00 159.96 129.96 119.98 54.95 54.95 21.73

20 301.23 340.24 311.14 284.04 243.00 160.00 130.00 120.00 80.00 55.00 20.92

21 322.36 316.67 269.77 275.90 242.94 159.92 130.00 119.88 79.79 54.99 21.76

22 244.56 236.67 189.77 225.90 243.00 160.00 100.00 120.00 80.00 55.00 21.62

23 165.11 157.07 109.77 175.90 193.00 160.00 125.62 120.00 80.00 55.00 21.75

24 170.50 137.02 116.29 125.90 143.00 148.23 107.99 104.65 80.00 55.00 20.17

Cost (USD) 2,552,118.86

Emission (ton) 283,538.16

It is clear from Tables 3 and 4 that the production cost is USD 2,466,582.70 for dynamic economic
dispatch and it is increased to USD 2,552,118.86 for dynamic emission dispatch, while emission is
331,251.40 ton under dynamic economic dispatch, and it decreases to 283,538.16 ton under dynamic
emission dispatch. It is worth noting that the minimization of emission under economic dispatch
is not considered and economic aspects are not considered under emission dispatch. To avoid
the above-mentioned conflicts, the compromise solution given in Table 5 may be selected as the
optimum solution.

Table 5. Best compromise solution for the DEED problem (α = 0.25).

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 WP

1 150.11 135.64 77.13 113.31 123.76 125.26 94.02 86.25 64.89 52.62 31.51

2 150.13 135.00 83.51 110.89 167.96 128.21 95.09 94.21 78.68 55.00 32.57

3 151.74 138.19 130.19 125.09 172.81 159.16 124.66 119.95 76.13 55.00 32.23

4 155.27 144.41 176.07 172.92 222.81 154.32 130.00 120.00 80.00 55.00 29.37

5 166.61 189.98 188.18 184.09 219.69 159.73 128.33 119.41 80.00 49.56 32.59

6 208.48 220.78 203.56 225.51 243.00 159.56 128.76 119.74 80.00 53.65 32.10

7 255.24 245.79 220.35 275.51 243.00 129.32 130.00 89.74 80.00 55.00 30.94

8 220.71 300.02 277.02 269.20 243.00 157.83 100.00 119.74 80.00 37.67 28.59

9 274.93 289.02 326.95 294.78 243.00 155.08 129.49 117.97 80.00 48.61 32.35

10 298.85 369.02 310.79 300.00 243.00 160.00 130.00 120.00 80.00 55.00 32.26

11 287.06 449.02 340.00 300.00 243.00 160.00 130.00 120.00 80.00 55.00 27.25

12 338.40 463.32 334.81 297.73 239.12 157.06 128.35 118.05 77.85 54.55 30.57

13 312.20 383.32 340.00 300.00 243.00 159.68 129.85 120.00 79.20 53.61 32.44

14 274.94 310.29 295.01 293.28 242.08 159.90 130.00 119.61 80.00 54.76 32.49

15 225.34 250.11 288.03 262.93 242.66 160.00 121.27 119.74 80.00 53.24 29.71
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Table 5. Cont.

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 WP

16 150.21 203.99 251.89 232.77 228.27 153.00 126.88 116.35 51.72 55.00 26.48

17 159.48 168.06 203.71 195.09 243.00 160.00 129.39 116.88 55.00 55.00 32.33

18 210.39 236.26 241.82 243.83 232.79 153.36 130.00 86.88 55.00 54.52 30.67

19 248.46 249.38 264.83 293.83 243.00 160.00 130.00 110.55 55.00 55.00 23.65

20 290.34 310.01 340.00 293.29 243.00 157.66 130.00 120.00 74.49 55.00 30.54

21 285.72 296.94 302.19 293.47 242.59 159.99 130.00 119.57 79.11 54.62 28.42

22 213.06 223.41 222.19 243.47 213.47 160.00 129.62 117.53 80.00 41.53 30.95

23 156.28 143.41 184.23 193.47 163.47 160.00 99.62 120.00 80.00 37.35 24.93

24 151.87 135.00 115.93 145.17 182.97 133.97 129.62 90.00 50.00 43.52 30.02

Cost (USD) 2,466,582.70

Emission (ton) 298,159.46

Table 6 shows the effect of the threshold probability α on the minimum production cost,
the minimum emission and compromise solution of the DEED problem incorporating wind energy.
It is clear that the minimums of the two objective functions decrease as the probability α, that power
balance described by Equation (13) cannot be met, increases, because the larger α signifies using more
WP and reducing the demand of thermal energy.

Table 6. Effect of the threshold tolerance.

α
Dynamic Economic Dispatch Dynamic Emission Dispatch Compromise Solution

Cost (×106

(USD))
Emission
(×105 ton)

Cost (×106

(USD))
Emission
(×105 ton)

Cost (×106

(USD))
Emission
(×105 ton)

0.25 2.433467 3.31251 2.552118 2.83538 2.466582 2.98159

0.3 2.376280 3.07791 2.506736 2.70929 2.427758 2.80227

0.35 2.360207 3.02358 2.470134 2.65313 2.394421 2.72884

The penetration ratio of WP is investigated also in this study. The maximum value of WP
penetration is given as follows.

Pmax
w = ηPD (18)

where PD is the total demand power and η is the ratio of WP penetration.
Table 7 shows the effect of WP penetration ratios on the total fuel cost and the total emission for

total demand power equal to 1500 MW. It is clear that if the ratio increases, fuel cost and emission
decrease due to the reduction in outputs of thermal units.

Table 7. Effect of wind power (WP) penetration ratio on the SEED (PD = 1500 MW).

Ratio η 5% 10% 15% 20%

Cost (USD/h) 83,865 82,007 80,312 78,579

Emission (ton/h) 7570 7190 6818 6481

4. Conclusions

In this study, a PSO-based multi-objective optimization technique is proposed to solve the DEED
problem incorporating wind energy. To avoid the penalty costs corresponding to the overestimation
and underestimation of the wind farm output, the uncertain characteristic of the wind power is
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represented by a chance-constraint in the DEED model. The latter describes the probability that energy
balance cannot be met. In order to adopt the PSO algorithm for the multi-objective DEED problem,
the non-dominated sorting concept is incorporated in the classical PSO method. The proposed method
referred to as NSPSO is successfully tested for the static economic emission dispatch problem. Then,
its effectiveness for solving the stochastic DEED problem is evaluated. The fuel cost with VPLE and
emission is minimized simultaneously where all constraints cited in the problem formulation are
considered. Simulation results show that NSPSO outperforms other optimization techniques used
for solving the same problem. Moreover, the effect of the penetration ratio on the objective functions
is studied.

It can be concluded that the proposed algorithm can provide a variety of solutions for the decision
makers in a single run. The NSPSO algorithm has the ability to optimize simultaneously more than
two objective functions. Therefore, other functions can be added to the problem, e.g., total losses and
voltage deviation.
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Nomenclature

CT Total fuel cost in USD
ET Total emission in ton
N: Number of thermal units
ai, bi, ci, di and ei Cost coefficients
αi, βi, γi, ηi, and λI Emission coefficients
Pt

i Generation in MW of unit i at time t
Pt

ld Total demand power in MW at time t
Pr(•) Probability of event (•)
α Probability that the energy balance constraint cannot be met
Pt

w Wind power output at time t
Pt

loss Total losses in MW at time t
N Number of thermal units
Pmin

i and Pmax
i Minimum and maximum limits of generation of unit i, respectively

Rdown
i and Rup

i Down-ramp and up-ramp limits of the of the i-th unit in MW
Pdown

i,k and Pup
i,k Down and up limits of the k-th POZ of unit i, respectively

zi Number of POZ for the i-th unit
fV(•) Probability density function (PDF)
FV(•) Cumulative distribution function (CDF)
v Wind speed in m/s
V and PW Wind speed and wind power random variables
k and c Shape and scale factors of the Weibull distribution function, respectively
vin, vout and vr Cut-in, cut-out and rated wind speeds in m/s, respectively
wr Rated wind power output in MW
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Appendix A

Table A1. Generator cost and emission coefficients.

Unit ai bi ci di ei αi βi γi ηi λi

1 786.7988 38.5397 0.1524 450 0.041 103.3908 −2.4444 0.0312 0.5035 0.0207

2 451.3251 46.1591 0.1058 600 0.036 103.3908 −2.4444 0.0312 0.5035 0.0207

3 1049.9977 40.3965 0.0280 320 0.028 300.3910 −4.0695 0.0509 0.4968 0.0202

4 1243.5311 38.3055 0.0354 260 0.052 300.3910 −4.0695 0.0509 0.4968 0.0202

5 1658.5696 36.3278 0.0211 280 0.063 320.0006 −3.8132 0.0344 0.4972 0.0200

6 1356.6592 38.2704 0.0179 310 0.048 320.0006 −3.8132 0.0344 0.4972 0.0200

7 1450.7045 36.5104 0.0121 300 0.086 330.0056 −3.9023 0.0465 0.5163 0.0214

8 1450.7045 36.5104 0.0121 340 0.082 330.0056 −3.9023 0.0465 0.5163 0.0214

9 1455.6056 39.5804 0.1090 270 0.098 350.0056 −3.9524 0.0465 0.5475 0.0234

10 1469.4026 40.5407 0.1295 380 0.094 360.0012 −3.9864 0.0470 0.5475 0.0234

Table A2. Unit operating limits in MW.

Unit Pmin
i Pmax

i Rdown
i Rup

i

1 150 470 80 80

2 135 470 80 80

3 73 340 80 80

4 60 300 50 50

5 73 243 50 50

6 57 160 50 50

7 20 130 30 30

8 47 120 30 30

9 20 80 30 30

10 10 55 30 30

Table A3. Hourly loads.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Load (MW) 1036 1110 1258 1406 1480 1628 1702 1776 1924 2022 2106 2150

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Load (MW) 2072 1924 1776 1554 1480 1628 1776 1972 1924 1628 1332 1184

Table A4. Optimum generation in MW (case 1).

Units
Best Cost Best Emission

NSPSO PSO NSPSO PSO

1 113.9975 113.6956 444.5290 439.2442

2 111.2700 108.5791 118.8684 118.8350

3 97.7987 97.5901 119.5250 119.1685

4 78.6822 180.8286 120.0000 120.0000

5 87.7614 89.4804 171.0041 171.3165
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Table A4. Cont.

Units
Best Cost Best Emission

NSPSO PSO NSPSO PSO

6 39.3092 135.9100 99.6506 100.0000

7 61.0281 262.3170 126.4088 123.6008

8 84.7192 286.7468 293.3165 293.0055

9 282.9047 289.1561 298.0365 298.3546

10 129.1357 128.6181 296.4214 297.2705

11 165.2336 165.0649 136.1537 137.1096

12 94.1237 95.2535 298.0555 298.7171

13 125.0462 127.4267 300.0000 299.9239

14 393.5936 393.9443 435.5130 437.5409

15 304.3556 303.7451 428.8594 428.4812

16 395.9528 392.3604 424.3950 425.0628

17 489.8036 486.7798 418.5687 420.6127

18 489.6818 480.9941 438.3276 438.2479

19 512.0610 517.3487 441.5894 443.2781

20 512.6642 511.1498 437.8936 436.2938

21 523.1834 523.5155 433.7515 434.5389

22 523.1455 532.7049 432.6224 431.5904

23 521.7535 536.3904 432.0455 431.4084

24 523.5970 528.3499 437.9027 439.7005

25 525.0606 523.1002 433.8896 434.0663

26 535.5420 546.2872 437.0916 435.3730

27 11.6919 13.9834 440.2194 439.3075

28 10.0623 18.6982 28.2081 27.6326

29 10.0201 13.3795 28.3884 27.9565

30 95.7998 83.7703 28.3276 30.0000

31 199.9715 182.6645 98.9027 99.7623

32 200.0000 196.3166 171.4707 170.4029

33 200.0000 199.0675 171.9558 171.7829

34 203.7138 186.6948 169.5057 169.1000

35 170.1866 181.6321 200.0000 200.0000

36 202.3923 195.0869 200.0000 199.8316

37 120.0000 119.0675 200.0000 199.9375

38 113.7251 114.3643 102.1179 103.9197

39 120.0000 108.4289 103.8253 103.8042

40 521.0316 529.5086 102.6590 103.8210

Cost (USD/h) 121,153 122,362 129,911 129,945

Emission (USD/h) 389,953 4.10112 176,299 176,305
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