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Abstract: This article proposes a mathematical model for integrating terminal operation strategies
with shipment scheduling. We are motivated by findings from the literature on the integrated design
of logistic systems. The objective of this research is to efficiently utilize the existing hub terminals
and transport network by considering the minimization of costs related to terminal congestion,
transport, and carbon dioxide (CO2) emissions. Cooperative behaviors of terminal managers and
fleet assignment managers are modeled in a bi-level problem framework. The total cost includes a
processing cost and transport cost, and CO2 related to the assigned fleets. We introduce a terminal
cost function to capture the relationship between unit processing cost with respect to hub delay,
which allows us to find the minimum cost path and efficiently distribute shipments to hub terminals.
The case study shows that the collaborative logistics outperforms a single routing strategy and
capacity expansions in minimization of both total cost and CO2 emissions.

Keywords: parcel delivery service; collaborative logistics; hub terminals; hub delay; queuing theory;
fleet assignment; CO2; smart logistics; and green logistics

1. Introduction

App-based mobile and online shopping services have driven the majority of the growth in
the parcel delivery market. These services require logistic companies to set operationally efficient
strategies to profit from the growth. Building new logistic terminals might be one solution to handle
increased demand from excessive shipments arriving at terminals that lead to various logistical
inefficiencies. However, land-use policies such as NIMBY (Not in my Backyard) and environmental
concerns might prohibit the construction of large-scale logistic terminals. Furthermore, investing
in large facilities poses significant difficulties such as municipal regulations and land prices [1,2].
Additionally, most capital projects require long gestation periods for decision making, administrative
work, construction, and recruiting, which conflicts with the rapidly changing delivery demands.
We contend that instead of investing in new logistic terminals, a smart logistic system can be more
efficient by assigning trucks optimally and through terminal capacity management. Capacity planning
devises the utilization of physical capacity to prevent exponentially growing shipment costs when
shipment arrivals approach handling capability [3].

Industry 4.0 enables smart logistics by supporting decision making with an accurate prediction
of demands and by providing flexible management [4]. The operation of hub terminals can be
demand-responsive by allowing flexible handling shipments capabilities since the terminal costs are
affected by terminal serves demands [3,5–8]. From the forecasted demand of a terminal, a hub terminal
manager can schedule processing capability in advance by utilizing smart warehouse technologies
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embedded in a Logistics 4.0 framework. [9] includes a comprehensive review of Logistic 4.0 applications
as an integrated section of Industry 4.0. Freight route decision making, which finds the best sequence
of terminals for shipment movement, can also be an efficient solution to minimize the marginal effect
on terminal cost [10–12]. In other words, some freight can be assigned to other terminals if a predefined
hub terminal is so congested that it increases marginal costs.

The process of logistics involves complicated activities such as item collection, transport, sorting,
warehouse activities, and last-mile delivery [13]. Improvements in communication and information
technologies have driven the functional integration of various logistic operations, which contributes to
cost reductions and service quality enhancements [4,9,10]. In [14], model integrating hub locations are
designed with fleet assignment problems, which also incorporates a single allocation of shipments
to capacitated hub locations. In [12], the holding costs of hub terminals are also included in the
optimization of shipment scheduling decisions, the hub locations, and network structure. The authors
of [14,15] designed a decision-making model for network organization and vehicle operations by using
mathematical programming.

Green logistics extends the integration of logistical operations with environmental impacts to
address the global mandate of reducing greenhouse gas emissions. Heavy-duty trucks for long-haul
trips and light-duty trucks for urban logistics comprise a significant portion of gas emissions [16]. In [17]
a comprehensive review of research on truck emission is provided and the importance of incorporating
multiple approaches such as engine technology, traffic flow regulation, and speed regulation of trucks
in green logistics is discussed. In [18], a supply chain framework is proposed that adopts blockchain
technology for communication and utilizes logistic information for efficient collaboration between
stakeholders. Their framework is a peer-to-peer collaborative logistics, which includes a vehicle
routing strategy that finds optimal routes for sustainable operations and maximizing utilization of
terminal capacity.

This paper proposes a methodology to efficiently utilize existing hub terminals by minimizing
congestion occurring inside them and by routing freight loads on a minimized costs path that is
a sequence of terminals. In addition, if it is necessary to improve the processing efficiency of a
terminal, the proposed method recommends a logistic system to improve it. By considering the
minimization of total travel distance and truck trips, we also analyze the impact of the proposed
method on CO2 emissions.

2. Notation

The following notation will be used:

h ∈ H hub terminal h of a set of Hub terminals (H)
s ∈ S sub terminal s of a set of Sub terminals (S)
l ∈ L transportation link l of a set of transportation links (L)

a terminal a in total terminal set a ∈ h∪ S
xh,xs, xl the arrival rate of shipments assigned to h, s, l

Ca
max the maximum processing rate of a terminal a

Ca
cri the current processing rate of a terminal a

C′acri required processing rate to process for not exceeding a predefined processing cost
∆a expanded processing rate (scheduled)
∆′a expanded processing rate (temporary) of terminal a
ρa(xa) the density function of terminal a
ωl maximum truckload for a truck transporting in link l
vl the number of trucks of a link l ∈ L

COSTa(ρa) Processing cost with regard to shipment density of terminal a
COSTl(vl, dl) Transportation cost of link l
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fod shipment of an origin o, and destination d pair
vod the number of truck trips of a path k of an origin o, and destination d pair
uod

h a binary for shipment:1 if f od is assigned to terminal h or link a, otherwise 0
qod total shipments of an origin and destination pair
pb

a the basic unit cost of handling a shipment for less than Ca
cri (KRW/item)

p′a the extra unit cost of handling a shipment for exceeding Ca
cri (KRW/item)

pa the unit cost of handling a shipment (KRW/item)
pb

l the basic unit cost of transport a shipment of link l (KRW)
pd

l kilometer price for transport a shipment of link l (KRW)
ha the hourly wage for a worker
dl link length (km) of link l ∈ L

GHGVkT
t, l emission factor associated with total travel distance (VKT) of link l ∈ L

GHGidle
t emission factor for idling vehicles associated with truck type t ∈ T

3. Modeling Framework

3.1. Overview of the Modeling Framework

The objectives of the proposed method are to minimize total cost and greenhouse emissions by
optimizing processing rates of terminals and routing shipments to terminals. Figure 1 shows an example
of our proposed logistic system. There are four hub terminals, four sub terminals, seven Hub-to-Hub
transportation links, and eight Sub transportation links. It is assumed that the total cost consists of two
parts: transportation cost and terminal cost. The transportation network between terminals includes
Hub-to-Hub linehaul movements (doubled line), Hub-to-Sub movement, and Sub-to-Hub movement
(single line). The transportation cost of each movement is calculated based on truck types and travel
distance. For instance, a large truck (high cube trailers) has high auto operation costs per mile but a
larger load. The unit transportation cost is lower for enough shipments in a truck, which is reasonable
for Hub-to-Hub line haul transports shipments. Small trucks transport goods from Subterminal to
Hub terminal, Sub-to-Hub, and from Sub to Sub. The processing cost of terminals is also a critical
variable in our model. When the arrival rate of shipments of a terminal exceeds its processing rate,
the processing cost of shipment will increase due to excessive processing time. One of the possible
solutions is a reallocation of the shipments to other terminals (system optimum routing of shipments
to terminals). In other words, if the terminal H1 is busy, assigning some shipments of subterminal A
to H3 can reduce the congestion of H1 and decrease the total terminal cost. The other solution is to
improve the processing rate of a terminal (i.e., H1) by increasing the number of employees or adding
processing machinery, or automatic warehousing systems [19].

Figure 1. An Exemplary Network.
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Figure 2 describes our solution approach to the problem. The mathematical formulation is
postulated as a bi-level problem. The upper problem represents the behavior of a terminal planner.
The planner determines the processing rate of a terminal (Ca

cri) to minimize the total processing cost.
The optimal terminal processing rates are determined by considering the limitation of terminal capacity
(Ca

max), which is related to the size of a terminal, available workers, and land use. Limited space in
a central business district (CBD) region is an example. The lower problem models the behavior of a
shipment route manager who devises optimally routed shipments to terminals by considering terminal
costs and transportation costs. The solution algorithm in the lower problem searches a minimum cost
route for shipments, which is the minimized cost and greenhouse gas emissions under given demand
and supplies of terminals and transportation links. The outputs of the lower problem are assigned
shipments of both links and terminals. The number of shipments assigned to terminals is used to
characterize the behavior of the upper problem

Figure 2. Overview of the Proposed Bi-Level Problem.

3.2. Mathematical Formulation

The mathematical formulation of the proposed model is a bi-level non-linear programming
problem and is described as follows. The objective function of the upper-level problem Equation
(1) represents the total cost of terminal operations to find the optimal shipment processing rate of
terminals. The unit cost of shipment of a hub terminal COSTh is related to the shipment density of a
terminal and derived from queuing theory. The term f od

k is the number of shipments of path k of an
origin-destination pair (od), which implies that various paths exist for shipments from a single source,
meaning that the shipments can be allocated to multiple hub terminals. uod

kh is a binary associated to a
hub terminal and shipments of od path (od, k) that is 1 only if shipments of od path are allocated to a
hub terminal (h). Constraint (2) represents the shipment density which is the number of shipments
divided by the possible shipment processing rate. The term Ch

criis the current processing rate and
·
his the control variable that is the improvement of processing rate. Note that C′acri cannot exceed the

maximum value of processing rate Ch
max, Constraint (3). Constraint (4) is the non-negativity condition

of expanded service rate, and focuses on service rate increases. In other words, C′acri is always equal to
or larger than the service rate of the base scenario.

Once C′acri is computed, the lower problem assigns shipments to terminals and links. The objective
function considers the total cost and greenhouse gas emission (GHG). The first sub-objective function
(Equation (4)) is the formulation of finding a minimum cost path. This single pathfinding problem plans
an itinerary, with consists of at least one hub terminal. For instance, shipments form a subterminal
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(origin) to another subterminal (destination) might have a route either origin (S)-hub terminal (H)-hub
terminal (H)-destination (S) or S-H-S. This approach is also employed by [20] for routing shipments to
capacitated hub terminals. The cost includes the terminal processing cost for hub terminals and sub
terminals in addition to transportation costs.

The second sub-objective function (Equation (5)) calculates GHG by referring to EMission FACtors
(EMFAC) developed by the Air Resources Board [21] in the United States. EMFAC is an official model
to estimate the emission inventories of on-road mobile sources for various emission scenarios. We select
Idle Emission (Idle Ex) and Running Emission (Run EX), as cities in California adopt those as the
GHG reduction target in 2035, as per guidelines found in the Regional transportation Planning and
Sustainable Communities Strategy (i.e., San Diego Association of Governments [22] and Southern
California Association of Governments [23,24]). The coefficient of Idle Emission (GHGidle

t ) of a truck is
related to emissions during cold starts which take 10 to 20 min to warm up engines. The coefficient of
Running Emission (GHGVKT

t,l ) is the rate of CO2 of link a for truck type t and its unit is ton per mile.
Truck type (t) for a link is predetermined as either a hub link or a sub link. Truck type t depends
on link type l. The assigned trucks on a link and their travel distances characterize the total vehicle
kilometers travelled (VKTl

t) of link l operated by truck type t. The link in Constraint (6) shows assigned
shipments on a terminal or transportation link. Constraint (7) converts the number of trips on a
link l (vl), which always rounds up a number to the smallest integer value greater than the number.
Constraint (8) is the total number of shipments constraint for o-d paths. Constraint (9) is related to the
density of shipments of a terminal. Constraint (10) is non-negativity of a path flow f rs

k . VKTl
t for GHG

emission is computed by Constraint (11).
(Upper problem)

argmin
C′acri

∑
h∈H

COSTh(ρ(xh))
∑
od

f oduod
h (1)

subject to

ρ(xh) =
xa

Ch
cri + ∆h

(2)

C′hcri = Ch
cri + ∆h

≤ Ch
max ∀ h ∈ H (3)

∆h
≥ 0∀ h ∈ H (4)

(Lower Problem)

min f 1 =
∑
h∈H

xhCOSTh(ρh(xh)) +
∑
s∈S

xsCOSTs(ρs(xs)) +
∑
l∈L

vlCOSTl(vl) (5)

min f 2 =
∑

t∈TGHGidle
t +

∑
l∈LGHGVKT

t,l ∗VKTl, t (6)

subject to
xa =

∑
od f oduod

a ∀ od, a ∈ H ∪ S∪ L (7)

vl =
∑
od

∑
l
b1, xl/ωlcuod

l

∀ od, l ∈ L
(8)

xa ≥ 0
∀ a ∈ H ∪ S∪ L

(9)

ρa(xa) = xa/C′acri
∀ a ∈ H ∪ S

(10)

VKTl
t = vl ∗ dl
∀ l ∈ L

(11)
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3.3. Cost Functions

The underlying assumption of the mathematical formulation is that there is an increased processing
cost at a terminal if the arrival rate of shipments exceeds a terminal’s processing rate (Ca

cri). In other
words, shipments’ processing cost per unit depends on the shipment density and processing capability
of a terminal. This study derives the unit terminal processing cost from M/M/1 queuing theory, which
estimates the average wait time from an arrival rate of shipments and a service (processing) rate of
a server (hub terminal), based on the assumptions that a random arrival rate follows the Poisson
distribution and the service adopts the first-come-first-served (FCFS) protocol. Other random arrival
distributions such as normal distribution may exist. Nevertheless, we apply the Poisson that allows us
to design a simple mathematical model, referring to [2,3,5,25]. We define ρa as the density of shipments
of terminal a, which is the ratio of shipments arrival rate (xa) divided by the critical processing rate
(Ca

cri), Equation (12). In queuing theory, Ca
cri is considered as a service rate, which represents the number

of items per hour processed by a server. From ρa and xa, we can estimate the average wait time Wa,
derived from the well-known Little’s Formula [26], Equation (13).

ρa(xa) = xa/Ca
cri

)
(12)

Wa =
ρa

xa(1− ρa)
(13)

We define Wa as the fixed value W, which is the target operation hour of handling shipments.
Our interest is to calculate the desired waiting time criterion of the service rate for terminal a (Ca

cri) that
allows shipment processing time not to exceed the criterion (e.g., 1 hour). Then, we consider C′acri as
an updated variable of Ca

cri to serve xa in the desired waiting time. By converting Equation (13) into
a quadratic form (Equation (14)) in terms of C′acri, we can find the required processing rate to handle
arriving shipments at a given time, as Equation (15).

Wa
(
C′acri

)2
−WxaC′acri − xa = 0 (14)

C′acri =
Wxa +

√
(Wxa)

s + 4Wxa

2La
(15)

Figure 3 indicates the average waiting time according to the arrival rate of shipments (xa) and the
processing rate ( Ca

cri). Let us assume that a terminal can process shipments at a rate of 650 items per hour.
When the arrival rate of shipments approaches the current processing rate Ca

cri, the average waiting
time of a shipment increases rapidly. If the arrival rate is higher than the processing rate, the possible
solution is to increase the processing rate to handle the shipments in time. The dashed lines are
examples of an average waiting time with respect to the shipment arrival rates. The intersection points
between the black line at 1 hour wait time and the dashed line indicate the required processing rate to
handle the shipments at the arrival rate of associated x points. For instance, to handle 770 shipments
per hour in less than an hour, a processing rate (C′acri) of 780 boxes per hour is required.

Variable processing rates imply that a service manager can control the processing time by increasing
the temporary service rate at the amount of ∆′s if the shipments arrival rate at a terminal is beyond
the maximum processing rate (Ca

cri). However, handling shipments beyond the scheduled processing
rate may bring additional costs (p′a) due to several factors such as demurrage, unskilled servers,
insufficient sorting machine, and overtime allowance, as indicated in Equation (17), which increases
the total processing cost at a terminal, Equation (16). Additional cost due to the excessive demand can
be estimated by the average hourly wage (ha) over the processing rate of unscheduled works ∆′a.

total processing cost = pb
a ×min

(
Ca

cri, xa
)
+ p′a ×max

(
0, C′acri −Ca

cri

)
(16)
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where
p′a = ha/∆′a (17)

From the total processing cost and the associated arrival rate, we can also estimate the unit cost of
processing as Equation (18).

unit cos t, pa =
total cost

xa
(18)

Figure 3. The Average Waiting Time According to the Arrival Rate of Shipments (xa) and the Processing
Rate ( Ca

cri).

Figure 4 indicates how exceeded demands affect the unit shipment costs with respect to the
processing rate of unscheduled work (∆′a). The processing rate of scheduled work (∆a) is assumed to
130 boxes per hour for the figure. If ·′a is the same with the processing rate of ·, the unit cost of handling
shipment does not change. However, a lower ·′a increases the unit cost. The unit cost is a non-linear
and non-convex function with respect to the arrival rate of shipments, therefore, it is impossible to have
a global optimum solution for the mathematical problem with this function. Thus, we approximate
the function into a piecewise linear function, which has the same mechanism as the rectified linear
activation function, also known as ReLU. If an arrival rate of shipments is less than the critical service
rate, the unit cost of terminal processing is a base rate. Otherwise, a processing cost increases linearly,
as shown in Equation (19). π is empirically determined from our experiments based on Equation (16).

COSTa = ca + max
(
0, (xa − Ca

cri

)
×π) (19)

This function is not able to guarantee a solution because of the non-differentiable point at Ca
cri.

However, the gradient descent method-based heuristic solutions can solve the problem by regulating
the derivative at the point. Furthermore, the probability to fall into the exact non-differentiable point is
very small [27].

The transportation cost consists of basic cost (pb
l ) and the kilometer cost (pd

l ). There are
transportation cost differences between Hub-to-Hub link and Sub-to-Sub link. Linehaul trucks
of Hub-to-Hub transport assumed to be 11-ton high cube trailer, carry larger shipments than trucks for
Sub-to-Sub link (5-ton box truck). Consolidating shipments inside a Hub terminal reduces the unit
transportation cost of a shipment. However, larger trucks are only efficient when enough shipments
are loaded. If the number of shipments between hub terminals are lower than our criterion, we assume
that smaller trucks (5-ton box trucks) transport those shipments. For the Sub-to-Hub and Sub-to-Hub
links, it is assumed that 5-ton box trucks are used. Similarly, if links connected to subterminals have
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shipments lower than a truckload, unit transportation cost might be higher than full-load, which
assume that twice of both pb

l and pd
l

COSTl(vl, dl) =

{
pb

l + pd
l × dl i f vl ≥ ωl

p′bl + p′dl × dl otherwise
(20)

Figure 4. Unit Cost of Shipment Processing With Respect to the Processing Rate of Unscheduled Work.

4. Solution Algorithm

The proposed bi-level mathematical programming formulation is a non-convex problem, and the
constraint set and the objective function are non-differentiable. However, the objective function and
constraints are linear and differentiable. Note that even bi-level linear programming is an NP-Hard
problem [28,29] and solving the proposed model is a challenging task. Converting mathematical
programming into a graph helps to solve the problem. Figure 5 shows an example of the graph
representation of the logistic system. There are four terminals (two terminals and two hubs) and three
transportation links in the example. To consider the increased cost due to excessive demand, we also
disaggregate a terminal node into a set of sub-nodes and a link, which is a simple schematic format
of the processing flow of a logistic terminal as used in [3,7]. For instance, we convert the Hub 1 (H1)
node into a link with a node for inflow (H1in) and a node for outflow H1out, we use a tuple for a
link (H1in, H1out). Although the computational complexity increases due to the increased number of
nodes, this representation enables us to find a path for minimizing total cost with dynamic costs for
terminal processing and transportation simultaneously. Shipments origin from in-node(Ain) and pass
through a processing link of subterminal (link1) for transportation, as indicated in Figure 5. Shipments
travel on links from 2 to 6 and arrive at the in-node of terminal B (Bin).

Figure 6 illustrates our graph representation of Figure 1. A node for sub terminals is connected to
hub terminals and is not permitted for direct transportation between sub terminal nodes, which reflects
current logistic systems of the case study. Hub nodes are mutually connected with hub links. Back to
the example of Figure 1, shipments having route (A-H1-H4-D) will be rerouted when the processing
cost of a link (H1in, H1out) is so high due to excessive shipments to process that detouring to H3
is cheaper.

The lower problem assigns the demand of hub terminals based on the minimum cost paths.
Since the transport cost is based on basic cost and distance cost according to fleet types and travel
distance, we can also minimize the second objective function simultaneously. Due to the unknown
unit of monetized gas emission value and computational complexity, we regard the number of fleet
trips and travel distances of the associated trucks as a proxy for greenhouse gas emissions. Then the
upper problem updates the critical processing rate Ca

cri by increasing expanded processing rate (·a) that
lowers the processing cost for excessive demand of a terminal, Equation (21). The value of ·a during
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the current iteration is determined by the difference between the assigned shipment xa, i of the current
iteration and base critical processing rate (Ca

cri, 0), as shown in Equation (22). There is a scalar step-size
modifier α that ranges from 0 to 1 for maintaining the feasibility of the search direction. From our
experience, we select 0.02.

Ca
cri, i = Ca

cri, 0 + ∆a, i (21)

∆a, i = α×max
(
0, xa, i −Ca

cri, 0

)
(22)

The iterative process continues until there is no improvement in the value of the objective function.

Figure 5. An Example of the Graph Representation of the Logistic System.

Figure 6. The Graph Representation of the Proposed Method.

5. Case Study

The proposed model is applied to a parcel delivery logistic system in Korea, which is shown in
Figure 7. There are 9 hub terminals and 213 sub terminals. We used an actual road network shown
in in Figure 7a to calculate travel distances of the shortest time path between terminals. Figure 7b
is an abstract representation of the network, used in the mathematical formulation. The green line
represents a line haul transportation link between hubs and the gray line indicates a link from hub to
sub and sub to hub that are currently used as sub–hub terminal relationships. The links (dashed gray
line) recharacterize the relationship between sub and hub terminals to minimize total cost, as shown in
Figure 7. In addition, the abstract network also includes the processing link of terminals.
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Figure 7. Overview of Terminal Locations and Network of the Case Study. (a) Actual road network
and Terminals; (b) Abstracted logistic network.

The parameters used in the case study are shown in Table 1. From the obtained actual operational
data, we select three types of shipment costs. Eleven-ton high cube trailers can carry shipments between
hub terminals up to 1400 boxes with a basic cost of 79.6 KRW and distance-based price of 0.38 KRW.
It is assumed that 5-ton box trucks transport shipments between hub and sub terminals. The truckload
of a 5-ton truck is assumed to be 550 boxes. The dataset also indicates if a sub is connected to a hub
terminal, as shown in Figure 7b. The costs of shipment processing in a terminal is estimated based on
the obtained data and our assumptions. The basic processing cost is 75 KRW and π is estimated from
the minimum hourly wage (ha, 8,590 KRW) and the processing rate of unscheduled condition (∆′a).
∆′a is assumed as 50% of the regular processing rate. To calculate greenhouse gas emissions, we employ
emission coefficients for trucks in EMPAC 2017. CO2 Run Exhaust is calculated from the total travel
distance. Moreover, emissions regarding idling (Idle Exhaust) are based on the number of trips.

Table 1. Parameters of the Case Study.

Cost Type Parameters
Basic Cost km Price Truckload Low Demand

Penalty(KRW/Box) (KRW/Box/km) (Box/Truck)

Transport cost

sub–hub, hub–sub
(current) 132.9 0.53 550 2x

sub–hub, hub–sub
(not current) 199.4 0.79 550 2x

hub–hub 79.6 0.38 1400 hub–sub cost

Parameters Basic cost
After capacity

(per box, π)

Terminal cost

processing cost (hub) 75 KRW 0.02 KRW
processing cost (sub) 75 KRW 0.02 KRW

working hour 8 h
processing margin 0.15

CO2Run Exhaust (ton/km) CO2 Idle Exhaust (ton/trip)

Greenhouse Gas
Emission (CO2)

Hub-to-Hub 0.002664 0.00446
sub–hub, hub–sub 0.001001 0.000156
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Table 2 describes the baseline conditions and assumptions of hub terminals. This study refers
to the capacity of hub terminals of [30], but the terminal index is encrypted. We infer the capacity
of hub terminals according to the assigned shipments from origin–destination demands (1.09 daily
million shipments, and 9.452 od pairs) and its route information. This study converts the daily unit of
demand and terminal capacity into hourly rate and demand based on the underlying working hour
assumption (8 h per day). The base processing rate is assumed as 85% of the maximum processing rate
(0.15 processing margin shown in Table 1). The shipment arrival rate of the base case is computed from
the hierarchical relationship between sub and hub terminals, which also affects processing cost from
Equation (19).

Table 2. The Baseline Conditions and Assumptions of Hub Terminals.

Terminal ID Base Processing
Rate (Box/Hour)

Maximum Processing
Rate (Box/Hour)

Shipments Arrival
Rate (Box/Hour)

Processing Cost
(KRW/Box)

1 28,258 32,500 43,717 384.2
2 50,865 58,500 48,901 75.0
3 7870 9051 4990 75.0
4 63,581 73,125 56,610 75.0
5 9184 10,563 10,882 109.0
6 14,129 16,250 16,110 114.6
7 6358 7312 2677 75.0
8 14,553 16,738 18,742 158.8
9 14,129 16,250 14,278 78.0

Figure 8 indicates the distribution of origin–destination shipments. Figure 8a represents the entire
origin and destination demand, which indicates that a significant portion of shipments is associated
with the Seoul Metropolitan Area (SMA). Busan, Daejeon, and Gwangju also have a large number of
shipments, most of which also relate to SMA.

We analyze the proposed model by comparing it with other strategies in addition to the base case
(Table 3). Scenario 1 is a strategy only focusing on improving processing rate at allocated shipments if it
exceeds the processing rate of the base case. In other words, this strategy minimizes the total terminal
costs by updating processing rates while satisfying the maximum processing rate constraint in the
upper problem of the proposed mathematical formulation. Scenario 2 only devises a minimum cost
routing strategy under the given processing rates of the base case. Scenario 3 includes the complete
problem by considering both Scenarios 1 and 2 simultaneously.

Table 3. Scenarios for the Comparative Analysis.

Scenario Strategy Formulation

Scenario 1 Processing rate improves upper problem
Scenario 2 Routing strategy (minimum cost path) lower problem
Scenario 3 All strategies bi-level problem

Figure 9 shows assigned shipments to transport links for the base case and the proposed method.
Figure 9a visualizes the base case, which indicates that terminal 4, located in Daejeon, plays an
important role as a hub terminal. 32.3% of total shipments are handled through the hub terminal 4
in the base case. Our proposed method (Scenario 3) assigns 42.7% of shipments to hub terminal 4,
implying the overall design of the logistic system more likely to be a hub-and-spoke system. In addition,
Figure 9b describes that the optimized logistic system connects shipments from local sub terminals
to near a hub terminal that is not busy to minimize transportation cost and utilize the capacity of
hub terminals efficiently. More sub–hub links connecting to Hub Terminals 7, 8, and 9 exist in the
proposed method than the base case. Links having shipments less than a truckload induces higher
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transport costs. The proposed method consolidates those shipments to adjacent local hub terminals,
then transport to other hubs. These results are consistent with the routing design of [30,31].

Figure 8. The Spatial Distribution of Origin–Destination Shipments. (a) Shipments OD volumes of
Korea (b), Shipments from Seoul Metropolitan Area, (c) Shipments origin from Gwangju Metropolitan
city, (d) Shipments origin from Busan Metropolitan city.

Figure 10 shows the results of the total cost of each scenario. The proposed method reduces the
total cost from 93.7 KRW to 82 million KRW per operation hour. Most of the improvements in the total
terminal cost come not only from the enhancement of the processing rate of selected terminals but also
from the terminal selections. The proposed method allocates shipments to less congested terminals,
thus ensuring that it utilizes the supply of terminals efficiently. Scenario 2 also decreases the total
terminal cost by increasing the processing rate. Although Scenario 3 also improves the efficiency of the
logistic system, applying only the routing strategy (Scenario 3) increases the total transport cost since
some shipments are assigned to less congested terminals, thereby inducing longer travel distances.
The routing strategy only finds a single route that is a minimum cost under the link conditions of
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terminal and transport. Besides, the sole routing strategy cannot guarantee the equilibrated solution:
thus, the updated route may or may not induce congestion of the selected terminal, which cannot
improve the efficiency of the logistics system effectively.

Figure 9. The Result of Assigned Shipments to Transport Links. (a)Base Case, (b) Proposed Method
(Scenario 3).

Figure 10. Comparison of The Total Costs From The Scenario Results.

Table 4 shows the details of the results of the hub terminals. Scenario 3 distributes the shipments
over the hub terminals. It is noteworthy that only improving the processing rate could not decrease the
unit processing cost due to the maximum processing rate constraints. This requires the logistic system
manager to devise a routing strategy. However, Scenario 2 cannot effectively reduce the unit processing
cost, either. Incorporating both improved service rates and routing strategies can decrease the unit
cost meaningfully (Scenario 3). The reduced number of shipments lowers the processing cost of hub
terminal 1 to 75 KRW/box. The number of shipments of hub terminal 1, where the processing cost is
the highest processing in the base case, decreases to 24,321 boxes from 43,717 under the maximum
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service rate (32,500 boxes per hour) which is bounded to the maximum processing rate. However, hub
terminal 2’s shipments increase from 48,901 boxes to 62,649; this is because even increased cost could
save the total cost passing hub terminal 2.

Table 4. The Details of the Results of the Hub Terminals.

HUB ID
Shipments Arrivals

(Boxes/Hour)
Processing Rate

(Boxes/Hour)
The Unit Processing Cost

(KRW/Box)
Scenario1 Scenario2 Scenario3 Scenario1 Scenario2 Scenario3 Scenario1 Scenario2 Scenario3

1 43,717 43,717 24,321 32,500 28,258 32,500 299.3 384.2 75.0
2 48,901 48,113 62,649 50,865 50,865 58,500 75.0 75.0 158.0
3 4990 4990 4990 7870 7870 7870 75.0 75.0 75.0
4 56,610 35,570 43,938 63,581 63,581 63,581 75.0 75.0 75.0
5 10,882 10,317 10,882 10,563 9184 10,563 81.4 97.7 81.4
6 16,110 13,511 16,056 16,110 14,129 16,045 75.0 75.0 75.2
7 2677 2677 2677 6358 6358 6358 75.0 75.0 75.0
8 18,742 18,742 18,749 16,738 14,553 16,738 115.1 158.8 115.2
9 14,278 14,228 14,271 14,278 14,129 14,271 75.0 77.0 75.0

Table 5 describes the possible combinations of terminal selections and the ratio of shipments of
origin–destination pairs. The pattern that most of O–D pairs have in the base case is S-H-H-S, which is
an origin subterminal that is connected to a hub terminal, and the shipments are carried to the other
hub terminal for the destination sub terminals. The routing strategy of Scenarios 2 and 3 reduces the
number of hub terminals in the path. Consequently, the ratio of S-H-H-S for both scenarios is lower
than the base case, while the pattern that has only one hub in the middle of the path (S-H-S, S-H-S,
H-H-S) is more frequently assigned, which tends to be a hub-and-spoke logistic system.

Table 5. The Comparisons of the Possible Combinations of Terminal Selections and the Ratio of
Shipments of Origin–Destination Pairs

Path Category
Scenario

Base 1. Processing Rate 2. Routing 3. Complete

S-H-H-S Two hubs 45.0% 45.0% 30.9% 34.1%

S-H-S
Single hub

10.4% 10.4% 22.9% 19.7%
S-H-H 16.5% 16.5% 13.2% 13.8%
H-H-S 18.6% 18.6% 15.4% 16.5%

H-S
Two points

3.3% 3.3% 5.9% 4.8%
S-H 0.0% 0.0% 5.6% 4.9%
H-H 6.3% 6.3% 6.2% 6.2%

Total 100% 100% 100% 100%

From the total traveled distances of the trucks and the number of the assigned truck trips in Table 6,
we also calculate total greenhouse gas emissions. The total GHG (CO2) decreases to 82.70 tons per
hour in Scenario 3 from the base case at 92.10. The reduced travel distance of both hub–hub trips and
sub–hub trips takes a significant portion of the CO2 reductions. The number of truck trips between hub
terminals also decreases to 123 at the amount of 10 truck trips per hour, which reduces CO2 from idling
of 11-ton high cube trailers. There is also a decline in the number of sub–hub trips from 479 to 418.

Sensitivity analysis aids in understanding how the model solution is affected with a change in its
various inputs that might be either external or internal. In [32], the importance of the simulation-based
sensitivity analysis is shown by randomly changing selected parameters functioning to logistic facilities.
In our research, transportation cost and terminal cost are critical parameters in the optimization,
which have a tradeoff relationship. For sensitivity analysis of the two parameters to the proposed
model, we vary the transportation cost and terminal processing cost by a linear multiplication from 1
to 3 at intervals of 0.5, which generates a total of 1600 cases for the simulation analysis. For example,
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a value of multiplication factor 2 implies that the basic transportation cost and distance-based cost of a
box are two times more expensive than the base case.

Table 6. The Comparisons of GHG Emission of The Scenarios.

Component Link Type Scenario

Base 1. Processing Rate 2. Routing 3. Complete

total travel distance
(kilometers/hour)

hub–hub 22,555 22,555 20,822 20,756
sub–hub 31,315 31,315 26,136 26,806

the number of truck
trips (trips/hour)

hub–hub 133 133 119 123
sub–hub 479 479 437 418

CO2 RunEx
(ton/hour)

11-ton HC trailer 60.09 60.09 55.47 55.30
5-ton box truck 31.34 31.34 26.16 26.83

CO2 IdleEx
(ton/hour)

11-ton HC trailer 0.59 0.59 0.53 0.55
5-ton box truck 0.07 0.07 0.07 0.07

Total GHG (CO2, ton/hour) 92.10 92.10 82.20 82.70

Figure 11 visualizes the results of the sensitivity analysis for the proposed method. Figure 11a
indicates the relationship between terminal cost and transportation cost. The total cost increases
with respect to the price increases. It is noteworthy that the mathematical solution does not provide
the optimal solution due to the single pathfinding problem, as mentioned in Section 3.2. However,
as indicated in Figure 11a, the iterative bi-level problem provides reliable solutions, which shows a
consistent trend of the total costs with increasing the value of associated parameters. From Figure 11a
and 11b, we can observe the continuous points that suddenly increased costs, which are correlated
to the maximum processing rate of a hub terminal, Ca

max. This reaffirms the tradeoff relationship
between the two parameters. As transportation costs increase, more shipments go to a closer terminal.
Then, the shipments arrival rate becomes higher than Ca

max, consequently, terminal cost suddenly
increases. Figure 11c supports the findings of tradeoff relationships. Although the unit transportation
cost increases, the total transportation cost is stable since the proposed bi-level program minimizes
transportation costs by routing shipments to terminals to save transportation costs. Figure 11d is the
result of CO2 emissions. Since total travel distances are associated with the CO2 emission, CO2 emission
decreases with higher transportation costs.

Figure 11. Cont.
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Figure 11. The Results of The Sensitivity Analysis. (a) Total cost (Million KRW/h), (b) Total terminal
cost (Million KRW/h), (c) Total transportation cost (Million KRW/h), (d) Total Co2 emissions (T/h).

6. Discussion

A number of studies in the literature show the importance of integrating terminal management
with fleet assignment problems since those elements can be mutually effective [7,10,14,15,18,31,33,34].
Terminal size and location problems with minimized transport costs or greenhouse gas emissions
are one such example. In addition to the existing terminals, some logistic managers might wish
to add completely new terminals on a certain location or choose to relocate the terminal. Building
a new terminal is not trivial and relocating terminals can be even more challenging since those
solutions involve complex decision-making processes with considerations of land-use policy and land
price. Furthermore, current parcel shipping services experience dynamically changing spatiotemporal
distribution of demand that massive infrastructure investment that takes place over a long period
of time cannot address. Thus, sustainable logistics requires a smart and flexible utilization of the
existing supply.

This study addresses the inherent limitations of logistics management. A smart logistics company
operating a parcel shipping service may prefer a collaboration between a terminal manager and a
routing manager. We assume that a smart logistics company is capable of managing shipments data
via an open communication technology such as blockchain [18]. This enables the terminal manager to
interact with a fleet manager to optimize the logistic system. A terminal manager wishing to utilize
existing facilities efficiently might avoid the system due to marginal costs arising from unscheduled
congestion of inner terminals. Consequently, they first try to control the processing rate as long as the
terminal’s capacity is maintained. For instance, a terminal manager plans to increase the processing
rates of shipments by applying automatic processing machinery or adding temporary workers if
congestion is expected. Then, the manager requests the route manager to plan an itinerary and fleet
types of shipments to minimize both terminal costs and transport costs as well as gas emissions.
The route manager obtains shipment data to identify the minimum total cost itinerary of shipments,
then provides the terminal manager with the itinerary, who then recalculates the operation plan
of terminals.

We propose a smart logistic system design by formulating a bi-level problem that reflects the
behavior of the collaborative consumption of existing supply between a terminal manager and a
fleet router. It is reasonable for parcel shipping companies that own terminals and operate fleet
assignment together, to assume these collaborations for better efficiency. The case study of a parcel
delivery logistic system in Korea also shows that cooperation between two managers reduces total
travel cost and greenhouse gas emissions significantly. Our comparative analysis indicates that a
single approach, such as terminal operations and routing planning, can also improve the overall
efficiency of a system. Terminal operations (processing rate control) with current routing strategy
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reduces total cost approximately 5.8%. Without the processing rate control, only routing planning
has limited effectiveness where the reduction of total cost is only about 0.53%. This is because the
simple route plan may have a bouncing effect on the arrival rate of shipments, meaning that some
other terminals, currently uncongested, may overflow when a fleet manager sends shipments to the
terminals. The manager in our integrated model undertakes an iterative process where they increase
the service rate of a terminal, and the route manager finds a minimum cost path until they find the
solution. This iterative process is modeled in bi-level programming to find the optimal allocation of
shipments and recommended processing increases of each terminal. This finding also supports the
importance of integrated logistics operations, which have been discussed in other research efforts.

Sensitivity analysis shows that the proposed bi-level approach can offer a reliable and stable
solution with the increased transport costs and terminal costs. The results of the sensitivity analysis
imply that the proposed method can control the tradeoff relationship between those two cost elements.
In the situation where transportation costs increase, the proposed method minimizes total cost by
calculating an itinerary that minimizes transport costs; consequently, the total terminal costs increase
due to the growth of shipments to near hub terminals. Another finding is that the minimized total
transport costs in the higher unit cost of transport can also decrease the total CO2 emissions.

7. Conclusions

The efficiency of a logistics system can be improved by optimization models. This study designs a
method to manage terminals operations and routing strategy efficiently. The result of the case study
implies that the smart usage of hub terminal capacity improves the efficiency of a logistic system.
In addition, green logistics should incorporate the collaboration between terminal management and
routing strategy to enhance efficiency and sustainability.

In addition to the findings, this paper includes academic contributions to existing research by
incorporating costs related to hub delay into the integrated model of both hub terminal and routing
strategy. To capture congestion effects of hub delays with respect to the excessive demand, our study
employs queuing theory that estimates average waiting time under shipment density and derives
the unit processing cost of a hub terminal. We applied an M/M/1 queue model, whose arrivals are
assumed to sampled from a Poisson distribution, for a mathematical model that is also used in [5].
However, there are other candidates for the choice of the stochastic distribution of arrivals and service
times [7,35,36]. Accordingly, our future research efforts aim to identify the best queue model for the
processing cost to better capture actual impacts of arrival rate and processing rate on waiting time.
Furthermore, our method simplifies terminal operation cost, which is supposed to relate with many
factors such as loading, unloading bulk, sorting, processing, batch, and so on.

This research also has contributions to solution methodology. By interpreting processing activities
of a terminal cost as elements of a graph, we transform the mathematical programming problem
into a minimum pathfinding problem, which solves the non-linear mixed-integer programming in
reasonable computational time. In addition, this network solution approach allows us to combine the
route solution into the estimation of greenhouse gas emissions.

In this study, we assume that all shipments of a local sub terminal are assigned to a single path,
which is modeled for a collaboration between a terminal operator and a fleet manager; thus, the solution
cannot be equilibrated since an updated path could induce marginal cost onto the assigned terminals.
However, current research shows the potential to model collaborations between multiple participants,
which enables a system to find the system-optimum solution. The system optimum (SO) solution
can be computed by applying the traditional system optimum assignment technique, which finds an
equilibrated solution in a marginal cost function. The SO solution might bring various alternatives
where its properties (e.g., time and cost) are not identical; consequently, a logistics company can
consider various preferences of participants in their delivery service design.

In addition, future research should incorporate the detailed components of a cost function, which
we assumed as a single entity in transportation and terminal costs. For example, transportation
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costs might be affected by legal constraints, such as a driver’s maximum working hours, resting
behaviors, right of way, and parking availability during legally defined off-time. Moreover, for the
actual implementation, it is necessary to identify the shipments arrival distribution, which we assumed
to be a Poisson distribution. Although the Poisson distribution assumption offers a convenient
mathematical solution, the shipment arrivals could be distributed differently. Furthermore, the model
can be more accurate if we consider an actual shipment handling process in a terminal, such as
inventory holding [1,37], sorting [15,19], and loading and unloading [7]. Our study conducted a
sensitivity analysis to quantify the tradeoff relationship between transport costs and terminal costs.
A more comprehensive scenario-based sensitivity analysis can be envisioned with various parameters
and other assumptions such as shipments arrival distributions and fleet routers’ behavior.
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