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Abstract: Investigating long-term drought trends is of great importance in coping with the adverse
effects of global warming. However, little attention has been focused on studying the detailed spatial
variability and attribution of drought variation in China. In this study, we first generated a 1 km
resolution monthly climate dataset for the period 1901–2100 across China using the delta spatial
downscaling method to assess the variability of the Standardized Precipitation Evaporation Index
(SPEI). We then developed a simple approach to quantifying the contributions of water supply
(precipitation) and demand (potential evapotranspiration, PET) on SPEI variability, according to the
meaning of the differentiating SPEI equation. The results indicated that the delta framework could
accurately downscale and correct low-spatial-resolution monthly temperatures and precipitation
from the Climatic Research Unit and general circulation models (GCMs). Of the 27 GCMs analyzed,
the BNU-ESM, CESM1-CAM5, and GFDL-ESM2M were found to be the most accurate in modeling
future temperatures and precipitation. We also found that, compared with the past (1901–2017),
the climate in the future (2018–2100) will tend toward significant droughts, although both periods
showed a high spatial heterogeneity across China. Moreover, the proportion of areas with significantly
decreasing SPEI trends was far greater than the proportion of those with increasing trends in
most cases, especially for northwestern and northern China. Finally, the proposed approach to
quantifying precipitation and PET contributions performed well according to logical evaluations.
The percentage contributions of precipitation and PET on SPEI variability varied with study periods,
representative concentration pathway scenarios, trend directions, and geographic spaces. In the past,
PET contributions for significant downward trends and precipitation contributions for significantly
upward trends accounted for 95% and 72%, while their future contributions were 57 ± 22%–149 ± 20%
and 95 ± 27%–190 ± 58%, respectively. Overall, our results provide detailed insights for planning
flexible adaptation and mitigation strategies to cope with the adverse effects of climate drought
across China.

Keywords: climate drought; standardized precipitation evapotranspiration index (SPEI); delta spatial
downscaling; drought trend; drought variation; China

1. Introduction

Several recent studies have suggested that ongoing warming is accelerating evaporation [1] and
creating more spatiotemporal heterogeneity in precipitation [2] than in the past. This process will result
in various complications due to drought for plant growth, crop yield, and other human activities [1,3–5].
China is home to multiple climate zones that host important agricultural regions and other societally
important activities [5] that are likely to be affected by increased drought. Therefore, it is essential to
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investigate the detailed spatiotemporal change in the trend and attribution of drought across China, so
as to develop sustainable plans for coping with the adverse effects of global climate change.

Several indexes have been employed to investigate long-term drought, including the standardized
precipitation index [6], the Palmer drought severity index [7], and the standardized precipitation
evapotranspiration index (SPEI) [8]. Unlike the standardized precipitation index, the SPEI considers
changes in both the precipitation and the potential evapotranspiration induced by temperature [9,10].
The SPEI also allows for multiple temporal scales, unlike the Palmer drought severity index. The time
scales of SPEI correspond to flexible climate drought research at different time scales, such as SPEI
at 1, 3, and 12 months for the monthly, seasonal, and annual studies [8]. Moreover, because of the
introduction of precipitation and evapotranspiration, SPEI can represent the surface moisture balance,
and allows us to separate and quantify the influence of moisture supply and demand on drought
variability [1,11]. This separation is useful for unraveling the future contributions of precipitation
versus those of potential evapotranspiration (PET) to future trends in SPEI, and then enhancing our
understanding of how global warming affects climatic drought.

At present, SPEI is often estimated globally through station observations [12–14] or climate
datasets released by climate research organizations [1,9,10,15–20]. However, the detailed spatial
patterns of SPEI cannot be obtained from these sources because of the current low densities of weather
stations and the low spatial resolutions (e.g., >50 km per grid cell) of climate datasets [21,22]. This
spatial uncertainty prevents the development of suitable adaptation and mitigation strategies at fine
spatial scales [23–25]. Therefore, there is an urgent need to generate a high-spatial-resolution climate
dataset for the estimation of SPEI. One feasible approach for creating such a dataset is to downscale
low-spatial-resolution climate proxy data to a high-spatial-resolution dataset using techniques such
as the delta downscaling method [26–28]. This method employs a low-spatial-resolution monthly
time series and high-spatial-resolution reference climatology as inputs; the high-spatial-resolution
climatology includes enough detail to account for topographical effects that are often missed by coarser
resolution data [28].

Several studies have investigated climatic drought trends using SPEI over all or a part of China.
However, such studies were carried out based on either station observations [12–14] or climatic proxy
datasets with low spatial resolutions [15,16,20]. Because there is little information regarding the detailed
spatial patterns of trends in SPEI, the development of sustainable strategies at a fine geographic scale
to cope with the adverse effects of global warming in this region has been stymied. Furthermore,
because only a few studies have focused in detail on the attributions of long-term SPEI variation, there
is limited understanding of how global warming affects climatic drought in this region.

This study investigated the detailed spatiotemporal trends and attributions of drought across
China, using the annual SPEI driven by a high-spatial-resolution climate dataset. First, the monthly
temperatures and precipitation with a spatial resolution of 0.5 arcmin (approximately 1 km) from 1901
to 2100 were generated from climatological datasets with a resolution of 30 arcmin (approximately
55 km) using the delta downscaling framework. This downscaled dataset was then compared to
surface observations. Subsequently, the spatiotemporal trend in annual SPEI was calculated across
China. Finally, the contributions of moisture supply (i.e., precipitation) and demand (i.e., potential
evapotranspiration) to annual SPEI variability were assessed across China.

2. Data and Methods

2.1. Data Collection

Climate data with 30 arcmin spatial resolution, including monthly minimum, maximum, and
mean temperatures (Tmin, Tmax, and Tmean) and precipitation (PRE) amounts, were obtained from
the Climatic Research Unit (CRU, Norwich, UK) TS v. 4.02 dataset [22] and the Coupled Model
Intercomparison Project 5 (CMIP5) dataset, projected using 27 general circulation models (GCM) [26].
Currently, the CRU and CMIP5 datasets cover the periods 1901–2017 and 2018–2100, respectively.
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To downscale these datasets to higher spatial resolutions, a 0.5 arcmin reference dataset was obtained
from the WorldClim v. 2.0 dataset [29]. The reference dataset contains the averages of monthly data
for the period 1970–2000, generated from 9000–60,000 weather stations around the world using the
thin-plate splines interpolation method. The interpolation considered the covariates with elevation,
distance to the coast, and three satellite-derived covariates. Thus, this reference dataset includes
orographic effects and observed climate information for each month.

Observations of monthly Tmin, Tmax, Tmean, and PRE across China were obtained from the
National Meteorological Information Center of China (http://data.cma.cn/en), and were used to evaluate
the downscaled temperatures and precipitation. The dataset includes observations of 745 weather
stations (Figure 1) for the period 1951–2016.
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2.2. Spatial Downscaling Method

This study adopted the delta spatial downscaling framework to downscale the 30 arcmin CRU
and CMIP5 datasets to a new dataset with 0.5 arcmin resolution across China to bring it to the same
resolution as the reference data. Figure 2 illustrates the components and steps of the delta downscaling
for Tmean using the 30 arcmin CRU time series and 0.5 arcmin WorldClim climatology datasets.
The first step (Figure 2a) involves constructing a 30 arcmin CRU climatology for each month in the
period 1970–2000. The second step involves calculating the 30 arcmin anomaly for a specific month
relative to the long-term average for that month (Figure 2b). The Tmean anomaly was calculated as
the difference between the Tmean in a specific month and the long-term averaged Tmean for that
month. The PRE anomaly can be calculated as the ratio of the PRE in a specific month to the long-term
averaged PRE for that month. The third step involved spatial interpolation of the 30 arcmin anomaly
to the 0.5 arcmin WorldClim grid (Figure 2c). The final step (Figure 2d) involved transformation of
the 0.5 arcmin anomaly to the 0.5 arcmin Tmean for that month using the WorldClim climatology
for the corresponding month. This transformation reversed the creation of the anomaly; therefore,
addition was used for Tmean, while multiplication was used for PRE. It should be noted that the
bilinear interpolation method was applied for the interpolation of the anomaly, which has been found
to have good performance in the delta downscaling process [24,28].

http://data.cma.cn/en
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Figure 2. Illustration of delta downscaling, taking the mean temperature (Tmean) in June 2000 from
the Climatic Research Unit (CRU) as an example. (a)—Mean Tmean in June from 1970 to 2000 with 30′

from CRU, (b)—Anomaly with 30′, (c)—Anomaly with 0.5′, (d)—Downscaled Tmean in June 2000
with 0.5′.

The new dataset covers the period 1901–2100, where the dataset in the past period (1901–2017)
and future period (2018–2100) was downscaled from the CRU and CMIP5 datasets, respectively. This
study adopted three Representative Concentration Pathway (RCP) scenarios, i.e., RCP2.6, RCP4.5, and
RCP8.5, for the future data. In addition, the modeled temperatures and precipitation for 1950–2005
from 27 GCMs were also downscaled. These downscaled results were compared with the observations
from weather stations to select the best GCMs in projecting temperatures and precipitation. We then
downscaled future temperatures and precipitation from the three most accurate GCMs and calculated
the SPEI to reduce the uncertainty of future SPEI variations introduced by GCMs.

This study used the mean absolute error (MAE) and the Nash–Sutcliffe efficiency coefficient (NSE)
to evaluate the 0.5’ downscaled dataset, using the time-series observations of 745 national weather
stations for 1951–2016. Because of the different units of the temperature and precipitation, this study
used their averaged NSEs to compare the performances of 27 GCMs.



Sustainability 2020, 12, 477 5 of 17

2.3. SPEI Calculation

Precipitation and potential evapotranspiration (PET) are necessary inputs for calculating SPEI [8].
Several methods can be used to estimate PET, such as the Thornthwaite equation [30], the Hargreaves
equation [31], or the Penman–Monteith equation [32]. Beguería et al. [33] reported that, compared
with the Thornthwaite equation, the SPEI estimated by the Hargreaves equation is very close to that of
the Penman–Monteith equation. Moreover, Hargreaves and Allen (2003) reported that, compared with
the Penman–Monteith equation, the Hargreaves equation is more suitable for estimating PET in a dry
environment and with a long time step (≥five days) [34]. Therefore, to investigate long-term drought
variation across China in a warming environment, this study employed the Hargreaves equation to
calculate the PET based on the downscaled temperatures. Detailed information for calculating SPEI
can be found in Vicente-Serrano et al. [8] and Beguería et al. [33]. This study used SPEI with a 12 month
moisture balance to investigate the annual drought variation. Specifically, the SPEI for December of
one year was treated as the annual SPEI.

2.4. Trend Analysis

To detect the magnitude of the SPEI trend and the corresponding statistical significance in the
annual SPEI variation, the linear regression between the annual SPEI and the year was calculated.
The regression coefficient of SPEI represents the trend during a period, while the p-value of this
coefficient represents the trend’s significance, calculated at a 95% confidence level.

2.5. Attribution of SPEI Variation

To attribute the SPEI trend to PRE and PET in a period, we obtained the sensitivity coefficient
of SPEI related to the PRE and PET using a differential equation (i.e., ∂SPEI/∂PRE and ∂SPEI/∂PET),
which is similar to the attribution of PET for climate variables [35]. Thus, the contribution of SPEI
variability to either of these variables could be calculated by multiplying the long-term trend of the
variable by its sensitivity coefficient [36]. Accordingly, similarly to PET [37], the total contribution of
climate variability to SPEI variation could be calculated using the following differential equation:

dSPEI
dt

=
∂SPEI
∂PRE

×
dPRE

dt
+
∂SPEI
∂PET

×
dPET

dt
, (1)

where dSPEI/dt is the long-term trend of SPEI variation, and dPRE/dt and dPET/dt are the long-term
trends of PRE and PET variations, respectively.

However, because of the complexity involved in calculating SPEI, obtaining the differential of SPEI
with respect to PRE or PET is very difficult. Consequently, in this study, we developed an alternative
approach to quantifying the contributions of PRE and PET. First, Equation (1) was treated as a linear
regression equation, as follows:

∆SPEI = a× ∆PRE + b× ∆PET, (2)

where ∆SPEI, ∆PRE, and ∆PET are the interannual variations in the time series, and a and b are the
regression coefficients—specifically, ∂SPEI/∂PRE and ∂SPEI/∂PET, respectively. Then, according to the
interannual variation values of SPEI, PRE, and PET in the time series, a and b could be fitted using
Equation (2). Moreover, the R2 and the p-value were used to evaluate the performance of the fitting.
Finally, the contribution of PRE (or PET) was calculated by multiplying the long-term trend of PRE (or
PET) by its ∂SPEI/∂PRE (or ∂SPEI/∂PET) using Equation (1). Furthermore, to evaluate the rationality
of this approach, the sum of the contributions of PRE and PET was compared with the actual SPEI
trend calculated using the relationship of the annual SPEI and year. Thus, the percentage contribution
of each variable was calculated as follows [37]:
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PC(x) =
C(x)

C(PRE) + C(PET)
, (3)

where x is the PRE or PET, C(x) is the contribution of x, and PC(x) is the percentage contribution of x.

3. Results

3.1. Evaluation of Downscaled Temperatures and Precipitation

Table 1 compares the raw/downscaled and observed monthly Tmin, Tmax, Tmean, and PRE
for 1951–2016. The comparison shows that (1) the downscaled values had lower MAEs and higher
NSEs than those of the raw values, (2) downscaled temperatures and PRE from the CRU had better
performances than those from the GCMs, and (3) of the 27 GCMs, BNU-ESM, CESM1-CAM5, and
GFDL-ESM2M performed best in the prediction of temperatures and PRE. Therefore, the delta
downscaling framework is appropriate for use in this study. These data were therefore employed to
calculate the annual SPEI from 1901 to 2100.



Sustainability 2020, 12, 477 7 of 17

Table 1. Statistic information between raw/downscaled and observed monthly minimum, mean, and maximum temperatures (i.e., Tmin, Tmean, and Tmax,
respectively) and precipitation (PRE) using 745 national weather stations during the 1951–2016. This evaluation was carried out for the datasets of the raw/downscaled
CRU and 27 general circulation models (GCMs).

Tmin (◦C) Tmean (◦C) Tmax (◦C) PRE (mm)

Raw Downscaled Raw Downscaled Raw Downscaled Raw Downscaled

MAE NSE MAE NSE MAE NSE MAE NSE MAE NSE MAE NSE MAE NSE MAE NSE

CRU 1.62 0.89 1.14 0.96 1.38 0.87 0.84 0.97 1.88 0.74 1.22 0.92 15.13 0.63 13.60 0.76
ACCESS1.0 2.21 0.86 1.83 0.93 2.11 0.86 1.69 0.94 2.59 0.76 2.26 0.84 29.02 0.12 23.27 0.30

BCC-CSM1.1 2.20 0.86 1.86 0.92 2.11 0.86 1.69 0.93 2.59 0.76 2.29 0.83 28.77 0.13 22.94 0.35
BCC-CSM1.1 (m) 2.20 0.86 1.87 0.92 2.11 0.86 1.69 0.94 2.59 0.76 2.30 0.83 29.27 0.12 23.29 0.30

BNU-ESM 2.19 0.86 1.82 0.93 2.10 0.86 1.67 0.94 2.57 0.77 2.24 0.85 28.52 0.20 22.78 0.40
CanESM2 2.18 0.86 1.81 0.93 2.10 0.86 1.67 0.94 2.58 0.76 2.26 0.84 29.03 0.12 23.12 0.32

CESM1-BGC 2.21 0.86 1.87 0.92 2.13 0.86 1.71 0.93 2.61 0.76 2.30 0.83 29.33 0.12 23.33 0.32
CESM1-CAM5 2.18 0.86 1.81 0.94 2.09 0.86 1.66 0.94 2.58 0.76 2.25 0.84 28.88 0.13 23.03 0.37

CMCC-CM 2.20 0.86 1.84 0.93 2.12 0.86 1.71 0.93 2.60 0.76 2.30 0.82 28.78 0.17 22.88 0.38
CNRM-CM5 2.22 0.86 1.85 0.92 2.13 0.86 1.73 0.92 2.62 0.76 2.31 0.83 29.07 0.13 23.20 0.33

CSIRO-Mk3.6.0 2.20 0.86 1.83 0.93 2.12 0.86 1.71 0.93 2.62 0.76 2.29 0.83 29.07 0.12 23.33 0.28
EC-EARTH 2.20 0.86 1.85 0.92 2.12 0.86 1.71 0.93 2.61 0.76 2.31 0.82 29.26 0.08 23.20 0.32

FIO-ESM 2.21 0.86 1.87 0.92 2.13 0.86 1.71 0.93 2.61 0.76 2.33 0.82 29.13 0.12 23.24 0.32
GFDL-CM3 2.23 0.85 1.85 0.92 2.12 0.86 1.72 0.93 2.60 0.76 2.24 0.85 28.53 0.17 22.84 0.33

GFDL-ESM2G 2.19 0.86 1.82 0.93 2.10 0.86 1.68 0.94 2.58 0.76 2.28 0.83 29.08 0.12 23.24 0.33
GFDL-ESM2M 2.19 0.86 1.81 0.93 2.09 0.86 1.67 0.94 2.56 0.76 2.23 0.84 29.04 0.12 23.12 0.37
GISS-E2-H-CC 2.20 0.86 1.85 0.92 2.12 0.86 1.72 0.92 2.61 0.76 2.29 0.83 28.95 0.13 23.03 0.33

GISS-E2-R 2.20 0.86 1.84 0.92 2.12 0.86 1.70 0.93 2.61 0.76 2.30 0.83 28.87 0.13 22.99 0.35
GISS-E2-R-CC 2.22 0.86 1.83 0.93 2.11 0.86 1.69 0.94 2.58 0.76 2.24 0.85 29.06 0.12 23.32 0.28

HadCM3 2.21 0.86 1.84 0.93 2.13 0.86 1.72 0.93 2.61 0.76 2.28 0.84 29.14 0.13 23.18 0.32
INMCM4 2.22 0.86 1.88 0.92 2.13 0.86 1.72 0.93 2.59 0.76 2.29 0.83 28.95 0.12 23.13 0.35

IPSL-CM5A-LR 2.23 0.86 1.88 0.91 2.13 0.86 1.72 0.92 2.59 0.76 2.28 0.83 29.03 0.12 23.04 0.32
MIROC4h 2.18 0.86 1.83 0.92 2.10 0.86 1.68 0.94 2.59 0.76 2.29 0.84 28.89 0.12 23.05 0.35
MIROC5 2.21 0.86 1.82 0.93 2.12 0.86 1.70 0.93 2.62 0.76 2.25 0.85 29.05 0.12 23.45 0.30

MIROC-ESM 2.23 0.86 1.87 0.92 2.14 0.86 1.74 0.92 2.62 0.76 2.31 0.82 29.26 0.10 23.47 0.28
MIROC-ESM-CHEM 2.23 0.85 1.89 0.91 2.15 0.85 1.75 0.92 2.63 0.76 2.34 0.82 28.85 0.12 23.12 0.32

MRI-CGCM3 2.23 0.86 1.88 0.91 2.15 0.85 1.74 0.92 2.63 0.76 2.31 0.83 29.07 0.15 23.17 0.37
NorESM1-M 2.19 0.86 1.83 0.93 2.10 0.86 1.67 0.94 2.59 0.76 2.26 0.84 29.51 0.08 23.47 0.30

Note: Raw and downscaled values had spatial resolutions of 30′ and 0.5′, respectively. MAE and NSE are the mean absolute error and Nash–Sutcliffe efficiency coefficient, respectively.
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3.2. Spatiotemporal Trends of SPEI

Figure 3 shows the annual SPEI variation from 1901 to 2100 for China. The past SPEI presents a
non-significant decreasing trend, whereas the future SPEI exhibits a non-significant decreasing trend
under RCP2.6, as well as significant decreasing trends of 0.398/decade under RCP4.5 and 0.969/decade
under RCP8.5.
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Figure 3. Annual SPEI changes during the past (1901–2017) and future (2018–2100) periods. The
future trajectory under each RCP scenario is the averaged result of BNU-ESM, CESM1-CAM5,
and GFDL-ESM2M.

Figures 4 and 5 map the spatial patterns of the trend and the significance of annual SPEI variations
during both the retrospective and future periods, while Table 2 lists the corresponding minimum
(Min), maximum (Max), mean (Mean), standard deviation (Std), coefficient of variation (CV), and
percent area (PA) of the zones with significant trends across China. Overall, the spatial magnitude
and significance of the annual SPEI trends varied with the study periods, RCP scenarios, and GCMs.
Moreover, the PA of the significantly downward trends was far greater than that of the upward
trends for each period and GCM, except for the future trend from CESM1-CAM5 under RCP2.6.
Specifically, for 1901–2017, significant decreasing and increasing trends were detected, with means of
0.09 and 0.07/decade, accounting for PAs of 16.70% and 6.15%, respectively. Based on the mean of the
trends from the three most accurate GCMs, 2018–2100 had areas of both significant decreasing and
increasing trends, with means of 0.12 ± 0.02 and 0.11 ± 0.02/decade under RCP2.6, 0.16 ± 0.02 and
0.12 ± 0.01/decade under RCP4.5, and 0.17 ± 0.04 and 0.12 ± 0.03/decade under RCP8.5. In addition,
they accounted for PAs of 6.95% ± 2.54% and 7.26% ± 10.80% under RCP2.6, 26.40% ± 11.60% and
7.62% ± 10.03% under RCP4.5, and 53.70% ± 8.42% and 4.59% ± 5.00% under RCP8.5, respectively.

The CV indicated that the GFDL-ESM2M under RCP2.6 and RCP8.5 showed the smallest and
largest spatial variations (3.01% and 43.87%), representing upward and downward trends, respectively.
The difference between the maximum and the minimum indicated that the most extreme (0.29/decade)
and moderate (0.02/decade) spatial variations were detected in RCP8.5 from CESM1-CAM5 and RCP2.6
from GFDL-ESM2M, respectively. In addition, the spatial patterns of the annual SPEI trends and their
significance in future sub-periods (i.e., 23 year and 30 year spans) are presented in Figures S1–S6, and
the corresponding statistics are listed in Tables S1–S3. The significant trends during these sub-periods
also exhibit strong spatiotemporal variations.
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Table 2. Spatial characteristics of annual SPEI trends (/decade) in the past and future periods.

1901–2017

2018–2100

BNU-ESM CESM1-CAM5 GFDL-ESM2M

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Min 0.05 0.05 0.09 0.09 0.09 0.09 0.00 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
Max 0.17 0.11 0.21 0.13 0.36 0.17 0.27 0.18 0.18 0.23 0.29 0.24 0.38 0.31 0.15 0.11 0.30 0.28 0.38 0.12

Mean 0.09 0.07 0.12 0.10 0.18 0.11 0.13 0.10 0.13 0.13 0.15 0.13 0.20 0.15 0.10 0.09 0.14 0.12 0.19 0.10
Std 0.03 0.01 0.03 0.01 0.07 0.01 0.03 0.02 0.02 0.03 0.05 0.03 0.08 0.05 0.01 0.00 0.04 0.03 0.08 0.01

CV (%) 29.63 11.65 21.78 6.52 36.13 11.86 23.06 17.62 17.95 21.28 31.80 22.33 40.55 36.32 9.81 3.01 30.12 27.79 43.87 8.16
PA (%) 16.70 6.15 9.08 1.86 33.60 0.82 45.34 3.79 7.63 19.70 32.57 19.14 62.17 9.94 4.13 0.22 13.02 2.89 53.58 0.04

Note: Min, Max, Mean, Std, CV, and PA represent the minimum, maximum, mean, standard deviation, coefficient of variation, and percent area, respectively. ↓ and ↑ indicate significant
decreasing and increasing trends at 95% significance level, respectively.
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3.3. Attribution of SPEI Variation

Before determining the contributions of PET and PRE to the SPEI variability, the linear regression
relationship of their interannual variations expressed using Equation (2) was evaluated (Figure S7).
The determination coefficient (R2) and p-value at each grid across China suggested that Equation (2) is
a good fit for the data and that the SPEI variation could be completely separated into the PET and PRE
variations. The contributions of PET or PRE were calculated based on the regression coefficients at each
grid point. Figure 6 shows the comparison between the actual SPEI trends and the total contributions
of PET and PRE to SPEI variability during the past and future periods across China. The statistic result
showed that the total contribution is very close to the actual SPEI trends, suggesting that this approach
to calculating the PET and PRE contributions to SPEI variability is reasonable.
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periods across China. The total contribution under each RCP scenario is the averaged result of
BNU-ESM, CESM1-CAM5, and GFDL-ESM2M.

Figure 7 maps the spatial patterns of percentage contributions of PET and PRE to significant
SPEI trends (p-value < 0.05), while Table 3 lists the corresponding geographic statistic information.
The results indicate that (1) the downward and upward trends were dominated by PET and PRE,
respectively; (2) PC(PET) for downward trends and PC(PRE) for upward trends in the future period
are greater than those in the past period; (3) PC(PET) for downward trends and PC(PRE) for upward
trends increased with the increased temperatures that occurred in the higher-emissions scenarios;
(4) PC(PET) for downward trends was greater than PC(PRE) for upward trends in the past period,
while the PC(PET) was less than the PC(PRE) in the future period; and (5) as emissions and global
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temperatures increased, the PC(PET) for upward trends and PC(PRE) for downward trends became
weaker. In addition, their percentage contributions exhibited deep spatial heterogeneity (Figure 7).
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Table 3. Spatial characteristics of averaged percentage contributions (%) of PET and PRE on significant
SPEI trends in the past and future periods.

1901–2017
2018–2100

RCP2.6 RCP4.5 RCP8.5

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

PC(PET) 95 28 57 ± 22 5 ± 27 111 ± 9 −44 ± 42 149 ± 20 −90 ± 58
PC(PRE) 5 72 43 ± 22 95 ± 27 −11 ± 9 144 ± 42 −49 ± 20 190 ± 58

Note: ↓ and ↑ indicate significant SPEI decreasing and increasing trends at 95% significance level, respectively.
PC(PET) and PC(PRE) are the percentage contributions of PET and PRE, respectively. The future values are the
averages of BNU-ESM, CESM1-CAM5, and GFDL-ESM2M.
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4. Summary and Discussion

Although many studies have investigated the SPEI variation over China [12–16,20], little attention
has been focused on the detailed spatial variability and attribution of SPEI. This is largely because
previous studies employed climate data from low-density stations or low-spatial-resolution reanalysis
data, in addition to the computational complexity of differentiation in the equations used to calculate
SPEI. This study generated a 1 km resolution monthly climate variable dataset to assess SPEI variability
from 1901 to 2100 and developed a simple and reliable approach to differentiating and quantifying the
contributions of PET and PRE on SPEI variability. The results could aid the development of sustainable
regional and local scale strategies to cope with the adverse effects of global warming and understanding
of how global warming affects drought.

This study applied the delta downscaling framework to generate the 1 km resolution monthly
climate dataset (Figure 2). The evaluation results suggest that this framework can accurately downscale
and correct low-spatial-resolution temperatures and PRE time series (Table 1). Accordingly, detailed
spatial patterns and attributions of SPEI variations were mapped across China, and valuable information
was detected, such as location and PA. Unlike other studies that adopt geo-statistical interpolation
methods (e.g., ordinary kriging and inverse distance-weighted interpolations) to obtain geographic
analyses of climate factors [38,39], we could elucidate detailed orographic effects on climate and
SPEI variations because of the 1 km reference climatology in the delta downscaling framework.
The accuracy of the downscaled temperature dataset was highly dependent on the accuracy of the
reference climatology. Although the downscaled dataset was of high quality, there was still a gap
between the downscaled data and the observed data. Therefore, a new and better reference climatology
should be generated using observed data across China. However, the current publicly available climate
data for China are insufficient to construct a reference climatology better than the WorldClim dataset
used in this study. In ongoing research, we are devoting efforts to collecting more public and private
climate data to construct a better reference climatology dataset and subsequently generate a more
accurate downscaled dataset for China.

Compared with past SPEI, the future SPEI has a significant decreasing trend (Figure 3), indicating
a greater drought risk. During both past and future periods, significant drought displayed high spatial
heterogeneity across China (Figures 4 and 5). The PA of significantly downward trends was far greater
than that of upward trends in most cases, especially for northwestern and northern China. These
results suggest that an accelerated potential water loss from the surface to the atmosphere in these
areas may occur through the end of this century. Therefore, China may see substantially increasing
aridity in the future, which will threaten natural vegetation, crop yields, and water resource security.
Furthermore, the strong spatial heterogeneity in SPEI trends (Table 2) suggests that detailed adaptation
and mitigation strategies should be developed at fine geographic scales.

This study attributed the drought variability to moisture supply and demand based on the
SPEI. Thus, the annual SPEI trend was divided between the PET and PRE contributions using
Equations (1)–(3). This differs from Cook et al. [1] and Sun et al. [11], who investigated the effects of
PET (or PRE) on SPEI anomalies using constant PRE (or PET). Therefore, their investigations could
aid understanding of how PET and PRE affect the SPEI fluctuation or magnitude, and this study
contributes to understanding the causes of long-term and significant trends in SPEI. According to
the calculated percentage contributions, this study first clarified the percentage contributions of PET
and PRE to significant SPEI variations for 1901–2017 and 2018–2100 across China. Overall, the results
suggest that the percentage contributions vary with study periods, RCP scenarios, directions of trends,
and geographic space (Table 3 and Figure 7). The fact that the downward and upward SPEI trends
were respectively dominated by PET and PRE conformed to expectations, owing to the definition of
SPEI [33]. The future contributions of PET (PRE) on downward (upward) SPEI trends will be greater
than the past, which should be attributed to the fact that the future temperature and precipitation over
China will be greater and more extreme than the past [18,40]. These quantified contributions of PET
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(PRE) on significant SPEI trends are beneficial for planning targeted strategies to cope with the adverse
effects of drought.

Owing to the complexity involved in calculating SPEI, this study adopted the alternative approach
to quantifying the contributions of PRE and PET. The proposed approach performed well according
to the evaluations (Figure S7 and Figure 6), and could be used in other regions. However, there is
a slight gap between the total contributions calculated by this approach and the actual SPEI trends
(Figure 6). This gap is attributable to the fact that the proposed approach does not employ the actual
differential method to determine the SPEI. This may limit the accuracy of this approach. Furthermore,
this approach focuses on the attribution of annual SPEI trends. However, according to its introduction,
this approach has the potential to be expanded to the intra-annual scale, such as monthly, weekly,
and daily scale. This expansion depends on the calculation of SPEI and the results of fitting, such as
Equation (2), at the intra-annual scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/2/477/s1:
Table S1: Spatial characteristics of annual SPEI trends (/decade) for 2018–2040, Table S2: Spatial characteristics of
annual SPEI trends (/decade)for 2041–2070, Table S3: Spatial characteristics of annual SPEI trends (/decade) for
2071–2100, Figure S1: Spatial patterns of trend magnitude in annual SPEI variations during the beginning of the
century (2018–2040), Figure S2: Spatial patterns of trends in mid-century annual SPEI variations for 2041–2070,
Figure S3: Spatial patterns of trends in annual SPEI variations during the end of the century (2071–2100), Figure
S4: Spatial patterns of trend significance in annual SPEI variations at the beginning of the century (2018–2040),
Figure S5: Spatial patterns of trend significance in annual SPEI variations during the middle of the century
(2041–2070), Figure S6: Spatial patterns of trend significance in annual SPEI variations during the end of the
century (2071–2100), Figure S7: Spatial patterns of determination coefficient (R2) for the linear regression equation
(∆SPEI = a × ∆PRE + b × ∆PET) of the interannual variations in SPEI and PRE/PET for the past (1901–2017) and
future (2018–2100) periods. p-value of the equation at each grid over China is less than 0.05, indicating a 95%
significance level.
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