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Abstract: In oil and gas plants, the cost of devices applicable for supervising and controlling systems
directly depends on the transmission and storage systems, which are related to the data size of process
variables. In this paper, process variables frequency-domain and statistical analysis results have been
studied to infer if there exists any possibility to reduce data size of the process variables without loss
of any necessary information. Although automatic control is not applicable in a shutdown condition,
for generalization of the obtained results, unscheduled shutdown data has also been analyzed and
studied. The main goal of this paper is to develop an applicable algorithm for oil and gas plants to
decrease the data size in controlling and monitoring systems, based on well-known and powerful
mathematical techniques. The results show that it is possible to reduce the size of data dramatically
(more than 99% for controlling, and more than 55% for monitoring purposes in comparison with
existing methods), without loss of vital information and performance quality.

Keywords: variable structure control; time series analysis; statistics; supervisory control system; data
size reduction

1. Introduction

In order to respond to increasing demand for safe and efficient oil and gas plant operation while
considering environmental regulations, the subject of “process control” has become increasingly
important in recent years [1]. In process control systems, some activities such as supervisory control,
data logging and performance monitoring, with their hierarchical relation illustrated in Figure 1, are
pursued based on available process variables [2]. These variables include pressure and flow rate of
fluids, temperature of flame or materials, liquid level in tanks, and other quantitative items [3]. Some of
these variables are measured by sensors, transferred on industrial networks, processed in distributed
or central control systems, and monitored in control consoles [4]. Management of the huge amount
of process variables of chemical process plants is recently categorized as a “BIG-DATA” concept [5].
Transmission and storage of these variables has considerable cost in many industrial plants, such as oil
and gas refineries, and so reduction of these expenses is vital for managers [6].
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Figure 1. A schematic of hierarchical connections of control, monitoring and historian systems.

The main motivation for this research originates from the important issue of “big data
management” in large-scale chemical plants. Subjects such as appropriate alarm management,
efficient decision-making, and simultaneously handling a large amount of received data in control
and monitoring systems imply that an applicable algorithm for reducing the size of stored data is
crucial. The presented methodology in this paper is a solution to ignore less important information
and just to keep and save the vital data for controlling and monitoring purposes, and also for future
studies and analysis. In addition, it should be highlighted that in large-scale chemical plants such as
oil and gas refineries, due to high sampling rates and also the large number of field instruments and
transmitters, the dedicated costs related to data storage capacity are too high. This issue also persuades
field engineers to develop applicable algorithms to decrease the volume of the online and stored data,
while not imposing negative effects on normal operational conditions of the plants.

Horch and Isaksson [7] have introduced a method for sampling rate assessment based on the
Harris Performance Index [8] for a control system. Adaptive sampling rate has been applied in [9,10] for
data size reduction in remote monitoring and control systems. In [11–13] real-time and in [14,15] offline
data compressing methods have been developed. Another work on this concept can be seen in [6], in
which the compression effect on archived data in a control system has been studied. For industrial
network performance enhancement, an effective method has been proposed in [16]. Although many
other works are in progress on principal component analysis (PCA), which can reduce data size in
control systems, the PCA method is not considered in this paper due to its high dependence on data
correlation and its inability to reduce data size in the case of non-correlated variables [17]. In addition,
the reliability of PCA-based methods depends on process condition stability [17]. Another limitation
for this method is transforming the main process values to some new variables which cannot be
interpreted by process engineers for process analysis [17]. Furthermore, some of the effects of variable
characteristics such as serial correlation of the results of PCA-based methods are still unknown and
should be investigated in future research [18]. As previously mentioned, signals and data handling
in oil and gas plants are a subset of “Big-Data Management”. According to [5,19–21], although the
study of chemical plants online and recorded variables can be categorized as a concept of BIG-DATA
management, most of the existing methods for handling BIG-DATA are not totally applicable to
chemical process controllers due to the following reasons. First, the proposed techniques are mostly
appropriate solely for monitoring, and not controlling, purposes. Secondly, the cloud data processing
needs outsourcing and hand-overing of data to a third party. In other words, this issue is not a routine
task in the chemical industries, especially in oil and gas plants, due to security and safety concerns.
Most of the established research noted here has focused only on one aspect of data size reduction in oil
and gas plant control and monitoring systems.



Sustainability 2020, 12, 639 3 of 22

The main goal of this article is to develop an applicable algorithm for oil and gas plants to
decrease the data size in the control and monitoring system. To this aim, three practical procedures
have been introduced in a pilot-scale hydrocarbon refinery to reduce communication, control and
storage costs. One method for decreasing the data size and consequently reducing the transmitted
data from sensors or input cards to controllers is decreasing the samples at a given time. In this paper,
at the first step, selected process variables have been analyzed in the frequency domain for all data
gathering periods, by modelling the signals using Fourier transform and fast Fourier transform (FFT)
in order to obtain an overall view of frequency components. Next, real signals have been analyzed
by the discrete wavelet transform (DWT) method to study frequency component variations in time.
We have also executed performance index analysis to verify the obtained results from FFT and DWT
analysis by the frequency indirect method in determining sampling rate and data compressing method
selection [22]. The performance index analysis technique is more useful for obtaining sampling rate
of those process values which cannot be calculated by frequency-domain analysis methods like FFT
or DWT. Frequency-domain analysis of process variables is beneficial because for a slow process
value, data may be compressed by a simple algorithm and saved in a smaller memory space in
comparison with uncompressed data [22]. Frequency analysis results can also be used for control
device selection [23]. Some efforts for sampling rate assessment have been made, like the method in [7],
by using a performance-index-based method in which an ARMA (auto-regressive moving average)
model of a control system was applied. One of the superior aspects of the ARMA model for sampling
rate assessment is the prediction of the future behavior of a system [24]. There are also ongoing works
to improve the predictive property of the ARMA model [25]. Predictive property is essential for a control
system to determine the best sampling rate not only according to the past events, but also to take into
account the future conditions. By doing frequency and performance index analysis, a new and useful
method for sampling rate selection has been introduced in this paper. In the next step, traffic model
of a well-known industrial network (Foundation Fieldbus) has been studied to determine how useful
the proposed approach in comparison with other methods is for the reduction of communication traffic
in industrial networks, where process variables were studied from a statistical characteristic point of
view. One of the most useful statistical criteria is correlation, which shows a relationship between process
variables [26]. It may be used for data removing and compressing without information loss. Finally, based
on Harris performance index benchmarking [8] and also other technical considerations, negative effects of
the proposed methods, for data size reduction on control system performance and safety, have been fully
studied. These methods can also be used for other chemical process plants [27], and in this article process
variables in a dehydration unit of a gas refinery have been used.

2. Details of the Selected Process Unit

The main function of a dehydration unit, considered in this case study, is to reduce moisture and
heavy hydrocarbon components of output gas in a gas refinery. The schematic of the unit and the
selected process variables are shown in Figure 2. The applied symbols used in Figure 2 are standard
ones recommended by ISA 5.1 1984 [28].

Gas enters Exchanger 1 at a nominal flow rate of 3.4 million cubic meters per day. The temperature
of the input gas varies in the range of +50 ◦C to +70 ◦C. Exchanger 1 reduces gas temperature to +20 ◦C.
Separator 1 separates condensed liquid from gas. Then, gas enters Exchanger 2 and its temperature
decreases to about +5 ◦C. Finally, it travels to Exchanger 3 and its temperature comes down to about
−15 ◦C. After separating remaining liquids from gas, it returns to Exchanger 2 and Exchanger 1 tube-side
for cooling the input gas to the unit, and then leaves the dehydration unit as refinery output gas.

In the normal operation mode of the mentioned unit, the input gas–water component dew point
is about +25 ◦C to +30 ◦C in summer and +15 ◦C to +20 ◦C in winter, and the dew point of output gas
is −14 ◦C in summer and −20 ◦C in winter. The dew point of heavy hydrocarbon components in the
input gas is +40 ◦C in summer and +30 ◦C in winter, while for the output gas it is −6 ◦C in summer
and −10 ◦C in winter.



Sustainability 2020, 12, 639 4 of 22

In the present study, some key process values which have been accessible and have had a main
role in the process functionality have been considered.
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Figure 2. Process flow diagram (PFD) of a typical dehydration unit in a gas refinery plant. (DPT, PT,
FT, TT, LT stand for differential pressure, pressure, flow, temperature, and level transmitters, FC and
LC stand for flow and level controllers, and FCV and LCV stand for flow and level control valves).

3. Archived Data Specification

In this paper, the studied data have been taken in an interval of 18 months. The first selected
period of time had the greatest changing rate in process values according to the long-term observations
and the second batch of data is from moments after an unscheduled shutdown occurrence. The fastest
and greatest changes in variables are when the output line pressure is low due to a large flow of gas
consumption on the consumer side. The sample rate for data gathering has been set to 5 Hz and we
have 27,391 (for normal operation) plus 25,586 (for shutdown condition) samples for each selected
process variable. Each sample has been saved as a double floating point variable in the data base [29,30].
Ensemble length and sample intervals are larger than what is recommended in [31].

4. Data Size Reduction Methods

4.1. Frequency Domain and Statistical Analysis

4.1.1. Frequency-Domain Method

Since process variables, which are used and recorded in modern control systems such as
programming logic controllers (PLCs), distributed control systems (DCSs) and Fieldbuses, are generally
digital [3], discrete Fourier transform (DFT) (fast Fourier transform (FFT)) and discrete wavelet
transform (DWT) are appropriate approaches as discrete frequency analysis methods. FFT is utilized
for an overall view of frequency components in a signal study time window [32] and the DWT method
is a time–frequency analysis and is localized in a time domain [33,34].
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In FFT analysis of selected process variables, signal concentrates in 0 Hz and decays rapidly in the
near neighborhood of 0 Hz for all process variables. Since most process variables can be estimated by a
second order differential equation, whose magnitude decays rapidly after the second pole, it is not
necessary to consider process values after the cut-off frequency [1,32]. Table 1 shows a 3 db cut-off

frequency for each process value and also a comparison between absolute mean values of a process
value (zero frequency component) and a maximum value of FFT analysis.

Table 1. Overall cut-off frequency of process values in FFT analysis.

Process Value Name Cut-Off Frequency (Hz) Absolute Mean Value
of Variable

Maximum Value
of FFT

DPT1 5.77× 10−5 0.1008 0.1008
DPT2 5.9× 10−5 0.1438 0.1438
DPT3 5.5× 10−5 0.1827 0.1828
DPT4 5.8× 10−5 0.1424 0.1424
FT1 5.5× 10−5 220.2619 220.25
LT1 5.0× 10−5 13.8186 13.82
LT2 5.46× 10−5 3.3918 3.392
LT3 5.48× 10−5 30.0275 30.03
PT1 5.54× 10−5 65.6893 65.7
TT1 5.4× 10−5 63.7867 63.8
TT2 5.5× 10−5 33.6374 33.635
TT3 5.4× 10−5 18.6766 18.675
TT4 6× 10−5 21.1327 21.135
TT5 5.4× 10−5 10.6754 10.675

Figure 3 shows a sample of a FFT curve of a process variable, which looks like a low-pass filter
transfer function [35]. It is obvious that the absolute mean value of each process variable is equal to
the maximum of frequency component magnitude in FFT analysis. The mean value of a signal is its
zero-frequency component magnitude [36]. So, the maximum of frequency component magnitude
occurs at zero frequency and this result validates FFT curves.
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It can be seen in Table 1 that a 3 db bandwidth of frequency components in FFT analysis is from
0 Hz to frequencies between 5× 10−5 Hz and 6× 10−5 Hz. This shows that the shortest period of change
in process values is about 5 h.

For further study, the mean value of each process variable has been removed. According to the
band-pass property of the frequency-domain pattern of the remaining signal, low and high cut-off
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frequencies and the peak values in the frequency domain, in comparison with the mean value of process
variables, have been stated in percentages in Table 2. In Table 2 it can be seen that 79% of process
values have about 0.0001 Hz bandwidth and only DPT3, DPT4 and PT1 have more than 0.0001 Hz
bandwidth, which has a small magnitude in comparison with the DC value (under 1%) and hence their
bandwidth is not important or influencing [3]. The worst case happens for LT1 which has a 0.0003 Hz
cut-off frequency and 7.81% of DC component magnitude as its peak magnitude. For LT1, according to
Nyquist rule [32], we need 0.7 h sampling interval as the shortest interval between the samples.

Table 2. Low and high cut-off frequencies for FFT analysis of process values deviation from mean value.

Process Value
Name

Low Cut-Off
Frequency (Hz)

High Cut-Off
Frequency (Hz)

Maximum Value of FFT as a Percentage of
Absolute Mean Value of Process Variable

in Time Domain (%)

DPT1 0.0001 0.0002 1.19
DPT2 0.0042 0.0048 0.97
DPT3 0.0002 0.0088 0.93
DPT4 0.0001 0.0089 0.70
FT1 0.0001 0.0002 1.23
LT1 0.0001 0.0003 7.81
LT2 0.0001 0.0002 10.62
LT3 0.0005 0.0007 0.47
PT1 0.0001 0.0048 0.05
TT1 0.0001 0.0002 0.16
TT2 0.0001 0.0002 0.53
TT3 0.0001 0.0002 1.43
TT4 0.0001 0.0002 7.59
TT5 0.0001 0.0002 1.78

Bandwidth difference between an original signal and a DC-removed signal originates from the
fact that bandwidth is obtained from cut-off frequencies according to finding a 3 db frequency drop
in comparison with the maximum value of the signal. For signals in which the DC component is
dominant, when the DC component is removed, the remaining signal will have a completely different
maximum amplitude value and therefore different 3 db frequencies. As a result of FFT analysis of
process variables and also based on Nyquist theorem, we found 5 h as the shortest sampling interval for
process variables with DC component and 0.7 h for process variables without DC frequency component
for change analysis. It is clear that both sampling intervals are too long for typical oil and gas processes
to take an action against fluctuation [1].

Generally, FFT analysis for overall frequency-domain analysis is perfect, and other frequency
analysis methods cannot give a complete view of the overall properties of a signal in the frequency
domain [33]. However, for the detection of frequency components which take place in a short time
and cannot be studied in FFT analysis, wavelet analysis may be performed. For wavelet analysis,
normally the mother function Daubechies 3 is selected. The reason for this selection is its fast vanishing,
orthonormality and also compactly supported property, which shorten calculation time for wavelet
transformation beside its relative smoothness [33].

Figure 4a,b shows the time domain and wavelet analysis trend for one of the variables. As it
can be seen in Figure 4a,b, the most common background magnitudes (colored) in 2D diagrams are
zero. But in TT2, non-zero magnitudes start from step 13 (smallest frequency = 4.8828 × 10−4 Hz) and
continues up to step 9 (0.0078 Hz). In LT2, non-zero magnitudes start from step 13 to 1. It is clear that
non-zero magnitude components are observed in some moments, but not for the entire signal existence
duration. So, it can be stated that LT2 has instantaneous frequency components in greater frequencies
in comparison with TT2.
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Figure 4. Time domain and steps of discrete wavelet transform trends for (a) LT2 (b) TT2.

In wavelet output analysis, according to 2D diagrams, no important frequency component is
observed at high frequencies except for LT2, LT3, and TT1. In the next step, time-varied frequency
components obtained by wavelet analysis for each process value have been studied in detail. In this
study, for each step of the process value wavelet analysis, the maximum of absolute value of each
step output has been normalized by absolute of the process variable mean value. So, this method
shows the ratio of maximum value of a frequency component to the mean value of the process variable
(mean value of a process variable is the magnitude of zero frequency component which is generally
the dominant frequency in process industries).
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In Figure 5, the ratio of absolute maximum magnitude of process variable time-varied frequency
components to absolute of mean value of process variables has been depicted in percentage. It is
obvious that, except for LTs, especially for LT2, there are not too many dominant frequency components
greater than zero even for the absolute maximum of instantaneous frequency component magnitudes.
So, we can claim that there is no valuable frequency component for frequencies greater than zero for
process variables.
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a percentage of absolute mean of process values in normal operation for the worst case scenario.

Generally, measurements for control purposes rarely need precision above 10% of the absolute
value [3]. For each process variable, the greatest frequency component with its absolute maximum
greater than 10% of the process variable mean value is found (as showed in Figure 6), from which the
process variable bandwidth, and therefore best sampling rate, are calculated according to Nyquist rule.
In this paper, 10% precision for the absolute value of each process variable has been considered.
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In Figure 6, the best sampling rate can be obtained by doubling the frequency, which is written
above the bars, for related process variables. These sampling rates are slower in comparison with the
recommended refresh rate for process variables in the American Petroleum Standard API RP 554 [37]
for a proportional integral derivative (PID) loop controller, which is 50 Hz.

To validate the obtained results, data for an unscheduled plant shutdown have been studied. As it
can be seen in Figures 7 and 8, for FT1, which measures the main process variable that passes through
the whole unit, unscheduled plant shutdown data was changing much slower in comparison with
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normal operation mode. FFT analysis for unscheduled shutdown trends shows that 3 db bandwidth
for all process values is about 6 × 10−5 Hz. In addition, in Figure 9 it is obvious that from wavelet
analysis results for the fastest process variable (LT1), the greatest amplitude of frequency components
takes place at a frequency of 1 Hz. Magnitude of this frequency component, for ordinary operation, is
about 80% and for unscheduled shutdown is about 10% of the DC frequency component value.
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By performing FFT analysis, it can be observed that the frequency bandwidth of process values in
both normal operation and unscheduled shutdown cases is about 6× 10−5 Hz. However, by applying
wavelet frequency–time analysis for finding transient events, it can be said that the unscheduled
shutdown case has no process-variable transient changing (substantial transient frequency component
greater than 0 Hz component) faster than the normal operation case.

For a more precise study of the process variables in both the worst case of normal operation and
also occurrence of an unscheduled shutdown, an analytical support for the obtained results by applying
direct signal processing over the measured process variables and also proof for frequency component
analysis of signals have been presented. In the dehydration unit, the main process variable is the
flow rate of natural gas. So, this variable (FT1) has been selected to be modeled and also to provide
mathematical and theoretical calculations to find an exact and closed form of the frequency-domain
formula. In the normal operation case, the mathematical model of FT1 signal is a superposition of
two types of Poisson narrow triangular pulse trains, which are different in height as depicted in
Figure 7. For the unscheduled shutdown case, FT1 is a superposition of step functions, as can be seen
in Figure 8. For the first case (worst case of normal operation), the narrow triangular-pulses happening
distribution in the time domain is assumed as a Poisson distribution, because it satisfies three conditions
of Poisson processes stated by Chung and AitSahila [38]. Due to the Oppenheim, Willsky and Nawab
statement [32], for the Poisson triangular pulse train it can be said that it is the result of the convolution
of a triangle pulse and a Poisson impulse train in the time domain. The frequency-domain equation of
a triangle pulse is [32]:

Λ(t) =
{

1− |t|T |t| ≤ T
0 |t| > T

F
⇔ T sin c2 (πfT) (1)

And frequency-domain equation for Poisson impulse train is [39]:

Poisson Impulse Train (f) = β[1 + 2πβδ(f)] (2)

It is obvious that the convolution in time domain equals multiplying the frequency domain [32].
So, the frequency-domain definition of the Poisson triangular pulse train would be

Flownormal operation(f) = T sin c2 (πfT) ×β[1 + 2πβδ(f)]
= Tβ

[
sin c2 (πfT) + 2πβδ(f)

] (3)

By assuming T to be small enough, sin c2 term in Equation (3) will be very small and
Equation (3) becomes

Flownormal operation(f) = 2πβ2Tδ(f) (4)

which shows 0 Hz property of signal and corresponds with results of frequency analysis from FFT and
DWT of signals.

For an unscheduled shutdown signal, it can be seen that in the selected time window, the signal is
the superposition of step functions as shown in Equation (5),

Flowunscheduled shutdown(t)
= k0 − k1(u(t− t1)) − k2(u(t− t2)) − · · · − km(u(t− tm))

= k0 −
[∑m

n=1 kn(u(t− tn))
] (5)

while
k0 ≥

∑m

n=1
kn (6)

Hence, in the frequency domain we have [32]:

Flowunscheduled shutdown(f) = 2πk0δ(f) −
[ ∑m

n=1 kne−j2πftn
[

1
j2πf + πδ(f)

] ]
� π(2k0 −

∑m
n=1 kn)δ(f)

(7)
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By taking into account condition (6), the term in parentheses will be a positive value k and the
result reduces to Equation (8):

Flowunscheduled shutdown(f) = πkδ(f) (8)

From Equation (8), it is clear that the unscheduled shutdown signals also have a dominant 0 Hz
component and behave as a DC signal. This result corresponds with results of frequency analysis from
the FFT and DWT of the signal.

4.1.2. Adaptive Sampling Rate Method Investigation

In this method, the sampling rate of process variables varies based on the rate of their changes
(signal frequency-domain property) [10].

In existing control networks adopted for oil and gas plants, such as Foundation Fieldbus,
measurements and commands for controlling purpose are categorized as scheduled transmissions, for
which their transmission interval cannot be changed [40]. In addition, in control networks in other
type of plants, besides sending measurements and receiving commands from remote supervisors in an
adaptive sampling rate, control and monitoring systems include local main controllers which do not
use an adaptive sampling rate. This policy is generally being followed to increase the total reliability of
the plant [10].

It shows that the adaptive sampling rate has not been assessed as a reliable solution for control
purposes in critical plants.

4.1.3. Performance Index Based Analysis

Based on performance index for control loops introduced by Harris [8], an approach to obtaining
the almost-optimal sampling rate for controlling purposes has been developed by Alexander Horch
and Alf J. Isaksson [7]. In this article, the mentioned approach for performance-index calculation
has been used in a different way, in which its aim is finding the best sampling rate of control and
also data storage systems of process variables. To find the best sampling rate using a performance
index criterion, first, the fastest available sampling rate in a well-tuned controlling system can be
used and the performance index will be calculated. If the selected sampling rate is greater than the
needed value, the process variable time series present noisy behavior. So, the performance index
becomes less than one due to oversampling and also taking many samples during the system time
delay [6]. In the next step, samples will be picked up at a lower frequency, from the original ensemble
of data. So, the process variable time series demonstrate more predictability, and the performance
index will go up. By iterating the previous steps, and in each step picking up samples from the original
sample series at a lower frequency, the performance index will increase. The sampling period which
causes the performance index to become equal to one will be selected as the appropriate sampling
rate. For applying the proposed method over the selected unit, in the first step an auto-regressive
moving average (ARMA) model for the control loop in 1/80 of the basic sample rate (16 sec interval)
has been considered. For more details on ARMA structure refer to [41]. ARMA model parameters for
the subsystems studied in this paper are summarized in Table 3.

The performance index for 1/80 of the basic sample rate is equal to 2.06. The performance indexes
for other data-saving sampling rates have been summarized in Figure 10. As it has been depicted,
by decreasing the sample pick-up interval, performance index decreases, and for a specific interval
it is equal to 1. For each control system, it is not possible to have intervals greater than the delay
size between input and output. For LT2, due to controller sampling rate limitation and its wide
frequency band, frequency components more than the basic sampling rate frequency cannot be tracked.
As a result, curves after sampling rate frequency would be estimated by linear extrapolation.



Sustainability 2020, 12, 639 12 of 22

Table 3. Summarized auto-regressive moving average (ARMA) model parameters for the studied
chemical process.

Subsystem A B C D

TT2 as output TT1 & FT1 as input (1, 1) [1, −0.9981] B1–78 = 0
B79 = −0.007830 [1, 0.7830] 1

TT2 as output TT1 & FT1 as input (1, 2) [1, −0.9981] B1–54 = 0
B55 = −5.4282e−4 [1, 0.7830] 1

LT2 as output TT1, FT1 & TT2 as input (1, 1) [1, −0.3786] B1–10 = 0
B11 = −0.0081 [1, 0.8698] 1

LT2 as output TT1, FT1 & TT2 as input (1, 2) [1, −0.3786] B1–10 = 0
B11 = 0.0438 [1, 0.8698] 1

LT2 as output TT1, FT1 & TT2 as input (1, 3) [1, −0.3786] B1–10 = 0
B11 = −0.0480 [1, 0.8698] 1

LT1 as output TT1, FT1 & TT2 as input (1, 1) [1, −0.9704] B1–8 = 0
B9 = −0.0333 [1, −0.4690] 1

LT1 as output TT1, FT1 & TT2 as input (1, 2) [1, −0.9704] B1–40 = 0
B41 = −0.0229 [1,−0.4690] 1

LT1 as output TT1, FT1 & TT2 as input (1, 3) [1, −0.9704] B1–4 = 0
B5 = 0.0181 [1, −0.4690] 1

DPT1 as output FT1 as input (1, 1) [1, −0.9291] B1–5 = 0
B6 = 0.0567 [1, 0.7887] 1
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By comparison of sampling intervals obtained in Figure 10 for selected process variables from
the performance index analysis with those obtained from wavelet analysis, it can be deduced that
performance index results have a smaller sampling period (greater sampling rate) than the obtained
results from wavelet analysis. Hence, they can capture more precisely the fast phenomena details and
changes. The obtained results have been summarized in Table 4.

Finally, although in this paper applicability of the proposed method has been presented for both
normal operation and unscheduled shutdown cases, it should be reminded that during shutdown or
startup condition all systems are in a manual state and, in fact, there is no need to apply the calculated
sample rates to the control systems.
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4.1.4. Combination of Frequency and Statistical Analysis Methods

By combining both wavelet and performance index methods, the flowchart for the developed
algorithm to find a sampling interval for the process variables is presented in Figure 11.Sustainability 2020, 12, 639 14 of 23 
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Figure 11. Flowchart for obtaining best sampling rate for control, monitoring and historian
purposes algorithm.
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Moreover, it should be noted that sampling rate plays a vital role in modern process control
systems. In other words, these systems are completely digital, and what connects real analog process
values to the digital world is sampling rate selection. An illustration of the sampling mechanism and a
comparison between conventional and proposed sampling-rate determination methods are shown in
Figure 12.Sustainability 2020, 12, 639 15 of 23 
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Figure 12. A schematic of analog signal digitizing by hierarchical sampling rate: from the fastest (for
controlling purpose) to the slowest (for historian purpose) sampling rates, a comparison between
conventional methods and the proposed method.

To find the best sampling rate in oil and gas plant process control and monitoring systems,
sampling rates obtained by conventional methods are compared with the sampling rates using the
proposed method as shown in Table 4.
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Table 4. Comparison of different sampling-rate selection methods.

Period of Sampling Rate (Sec)

Existing Methods
(Fixed Sampling Rates)

Methods Used in This Paper
(Flexible Methods)

Process
parameter

API 554
recommendation

Åström & Wittenmark,
recommendation [1]

Wavelet
analysis (10% criteria)

Performance
index analysis

Controller

TT2 0.02 0.005 ∞ 6
LT2 0.02 0.01 0.08 0.07
LT1 0.02 0.1 250 50

DPT1 0.02 0.005 16 5

Monitoring

TT2 1 1 ∞ 6
LT2 1 1 0.08 0.07
LT1 1 1 250 50

DPT1 1 1 16 5

Historian
Purpose

TT2 <60 1 ∞ 6
LT2 <60 1 0.08 0.07
LT1 <60 1 250 50

DPT1 <60 1 16 5

Figure 13 illustrates the size of data which were generated in 1.5 h from sampling rates obtained
by using the proposed method in this paper for all process values in a gas refinery dehydration unit,
compared to the conventional methods mentioned in Table 4. Numerical interpretation of Figure 13
can be seen in Table 5. It should be noted that for the outputs of the control system, such as control
valve commands, the sampling rate of the input of the control loop may be used, because the output
frequency spectrum of a control loop is the multiplication of the input spectrum and control loop
transfer function spectrum. The output frequency spectrum is like a low-pass filter [1]. As it can be seen
in Figure 13, for controlling purposes, the sampling interval calculated by the presented method would
reduce the data communication traffic and data processing load of the controller by more than 99.11%
in comparison with the API 554 method. For monitoring purposes, the presented technique will also
reduce data size by 55.42% in comparison with the API 554 method. However, for historian purposes,
the introduced method increases the size of data approximately 33.4 times. In comparison with the
Åström and Wittenmark method [1], in controlling purposes about 99.71% and for both monitoring and
historian purposes about 55.42% reduction in data size was observed. The reason for increasing data in
comparison with the API 554 method for historian purposes is because of the disability of the API 554
method in historian purposes, to show the process dynamics. According to the API 554 standard, for
the studies which may be done during the 30 days after data recording, the recorded data may be used
for process behavior and failure analysis. So, it should consist of process dynamics. Among all the
mentioned methods, only the presented technique can show process dynamics in historian purposes
properly. So, it is not a drawback if the size of the data collected by this method is greater than other
approaches for historian purposes.

Table 5. Data generated by each method for different applications in control and monitoring systems.

Method
Purpose Controlling Monitoring Historian

Proposed approach 43,336 43,336 43,336
API 554 approach 4,860,000 97,200 1260

Åström & Wittenmark recommendation 14,742,000 97,200 97,200
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For verification of previous studies, data gathered in an unscheduled shutdown have been studied.
The results show that for TT2, LT1, LT2 and DPT1 frequency-band widths are almost zero for all cases.
This observation shows slower changes for an unscheduled shutdown case, compared to the normal
operation worst-case signals. The obtained results verify the theoretical frequency-domain analysis of
process variables and the slow rate of changes, presented in Section 4.1.1.

4.2. Traffic Model Analysis

Industrial networks can be modelled as a queuing system. This is possible because published
packets on the network can be assumed to be arriving customers, and the length of a packet as the
serving time of the server.

Foundation Fieldbus as an industrial network sample can be defined in Kendall’s notation as
a D/D/1 traffic model. D stands for Deterministic (Figure 14) [40,42]. As a result, the time of packet
transmission starting and its duration are known and cannot be changed.

Whereas a macrocycle is the least common multiple of the entire loop times on a given link [43],
it will be possible to take the length of a macrocycle for the control system studied in this paper as
500 s. For existing fieldbus systems, such as the Delta-V system, we have a maximum 5 s length for the
macrocycle [44] and this value could be revised according to the results of this paper. This extension
of the macrocycle time is possible because for variables DPT1, DPT2, DPT3, DPT4, FT1, LT1, LT3,
PT1, TT1, TT2, TT3, TT4 and TT5, the publishing period can be 500 s instead of 5 s. Using the
proposed macrocycle in the presented manuscript and also the introduced methods in [16] for data
obtaining after applying the sample-rate changing method in Section 4.1.4, it is possible to make a larger
capacity for the Foundation Fieldbus network. For example, for the studied dehydration unit, saving
about 82% of the occupied communication time is feasible. It should be noted that the time-saving
calculated for the Foundation Fieldbus system is in comparison to the traffic for data after applying
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the enhanced sampling rate, not in comparison with the API 554 method sampling-rate selection.
As a result, installing more transmitters on a Fieldbus network segment instead of 32 devices, which is
the maximum capacity for a H1 segment [45], would be possible.
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4.3. Correlation Analysis

In this section, a correlation analysis of process variables has been presented. From linear
correlation, we cannot judge non-linear correlation. So, as a complementary test of this method, a visual
check of scatter diagrams of each pair of process values, which have correlation factors between +0.8
and −0.8, has been performed and no meaningful correlation in that range has been detected. In this
study, correlation analysis between process variables in two cases (normal operation and unscheduled
shutdown) has been done.

These correlations and process-variables coupling in an oil and gas plant are often due to the laws
of fluid mechanics which relate them to each other. By the aspect of the control system which has been
considered in this paper, there is good linear correlation for DPT1, DPT2, DPT3, DPT4, PT1 and FT1
and also between TT3 and TT5 in a normal operation case. Moreover, there is a linear correlation for
DPT1, DPT2, DPT3, DPT4, PT1 and FT1 and also for TT3, TT4 and TT5 in an unscheduled shutdown
case. As a result, the removal of 4 process variables in a normal operation case and 5 process variables
in an unscheduled shutdown case is acceptable.

Using the presented method in this section (for normal operation case), 55.56% (and if its
association with changing sampling-rate method is used, 99.19%) of the data resources in the control
system can be saved in comparison with the API 554 technique. For an unscheduled shutdown case,
even removing redundant data is more effective to reduce data size, because instead of 5 variables,
6 variables are removed.

The results of using only this method and also associated with other methods for data monitoring
and storage, and traffic (networking) systems, can be seen in Table 6.
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Table 6. Summary of data size reduction for control, monitoring and data storage obtained by different methods.

Decreasing Percent

Controlling Monitoring Historian Traffic of Industrial Network

Sampling rate
changing method

99.11% of API 554
method

99.71% of Åström
& Wittenmark

method

55.42% of API 554
method

55.42% in
comparison with

Åström &
Wittenmark method

No decrease
compared with API

554 method

55.42% decrease
compared with

Åström &
Wittenmark method

Associated with Hodson [16] method
in comparison with existing methods

in Foundation Fieldbus in Delta V
system: 82%

Linear correlation
method

99.19% of API 554
method,

associated with
sampling rate

method

55.56% of API 554
method, using

only this method.

59.67% of API 554
method,

associated with
sampling rate

method

55.56% of API 554
method, using only

this method.

No decrease in
comparison with
API 554 method,
associated with
sampling rate

method

No decrease in
comparison with all
methods, using only

this method.

Associated with Hodson [16] and
sampling rate change method in

comparison with existing methods in
Foundation Fieldbus in Delta V

system: 85%
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5. Effect of Proposed Data Size Reduction Methods on Control System Performance and Plant Safety

For the implementation of data size reduction methods in industrial oil and gas plants introduced
in the previous sections, it is essential to determine that the proposed techniques have no negative
effect on control system performance and plant safety. Related to “process safety and control” concerns,
three reasons can be mentioned:

(A) It should be ensured that any important change in the selected process variables is not missed,
which enables the control/safety system to take an on-time and accurate reaction as a response.
Hopefully, by applying a time–frequency analysis method (DWT method), finding drastic changes
in the process variables is possible. As a result, by choosing a fast enough sampling rate, based
on the presented methodology and according to time–frequency analysis, a suitable scheme can
be designed to guarantee not to miss important changes in the selected process variables.

(B) Another issue which may cause the missing of important changes in the process variables is the
high volume of calculations between two consecutive sampling times. To prove this concept, the
Harris performance index is a reliable benchmarking tool [8]. Two essential factors that affect the
Harris performance index are sampling rate and controller dead-time [7]. So, for each method,
the effects on these two factors are evaluated to find out whether they have any side effects on the
control system performance.

5.1. Sampling Rate Changing Method

Because sampling rate is fixed, it needs minimum processing power and it cannot cause
significant delay due to increasing processing time. So, this method has no side effect on control
system performance.

5.2. Traffic Enhancement Method

From a delay point of view, there exists no difference compared to the Foundation Fieldbus
network, which is widely utilized in oil and gas plants. So, it has no negative effect on control
system performance.

5.3. Correlation Analysis Method

By selecting the fastest sampling rate among linear correlated process variables, no negative effect
on sampling rate of process variables will appear.

For delay analysis in this method, it can be stated that one real analog input is used as a main
process variable. Then, by utilizing a linear equation like Equation (9), other variables which have
linear correlation with the selected one are calculated.

Correlated Process Variable = (Coefficient×Main Process Variable) + Y_Intercept (9)

In industrial PLCs which are known as the main controllers in oil and gas plants, the program
runs in a scanning manner. Each duration of the program running from start to end is called a scan
time. Scan time depends on the number and types of instructions in the program, the interrupts and
their duration, and the CPU type. Its typical duration can be from 5 ms to 20 ms or even more [46]. So,
for investigating the delay effect of analog input by removing by correlation analysis method, time of
multiplication and summation together in Equation (9) should be stated as a percentage of a typical
scan time. This concept has been studied on a S7-400 CPU in a SIEMENS SIMATIC PLC system [47].
Floating-point math instructions have 0.3 µs duration, which is 0.006% of total scan time. This fact
shows that the correlation-based method of data size reduction has no considerable effect on control
system delay.
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(C) Finally, there are many safety associated systems/equipment generally embedded in chemical
plants, such as emergency shut down (ESD), safety and relief valves, which ensure a safe operation
even if failures occur in the regular “control and monitoring” system.

Thus, it can be concluded that the method presented in this paper to reduce the data size in typical
oil and gas plants does not have a negative impact on the total performance of the control system and
also plant safety.

6. Conclusions

In this paper, several process variables in a gas refinery dehydration unit in the frequency domain
and also statistical, traffic and correlation points of view have been analyzed to find applicable methods
of data size reduction. To check the general characteristics of the presented method, a normal operation
worst-case and an unscheduled shutdown case have been studied. Adaptive sampling rate in oil
and gas plants has been assessed and recognized as an improper method due to lack of reliability in
industrial networks and also slow rate of change across many process variables.

In comparison with common techniques, by applying the introduced method, data size reduced
to more than 99% for controlling purposes and more than 55% for monitoring objectives. In addition,
there was no data size reduction for historian purposes, compared to the API 554 method. Using Harris
performance-index benchmarking, it has been demonstrated that the data size reduction methods
proposed in this paper have no negative effect on the control system performance and plant safety.
Moreover, by applying the proposed methods, cost and size of the control system storage facilities,
network hardware, and also input signal devices can be dramatically reduced, without significant data
loss. Furthermore, as a future research plan, non-linear correlation analysis of the process variables
can be considered to increase the efficiency of the presented methodology.
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