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Abstract: Considering the impact of science and technology resource allocation on regional innovation
output, based on the inter-provincial panel data of 30 provinces in China from 1998 to 2017, this paper
establishes a regional innovation output growth model, including science and technology resource
input and science and technology resource allocation, and investigates the spatial relationship between
regional innovation output and the allocation of science and technology resources, the effect of the
inter-subjective configuration structure and inter-regional space re-allocation on regional innovation
output. The research results show that there are obvious spatial autocorrelation agglomeration
characteristics of China’s regional innovation output and science and technology resource input.
The efficiency of the allocation of science and technology resources in the region is relatively low.
The application-oriented research subjects with enterprise-oriented research are more efficient in
investing in science and technology resources, and the promotion of regional innovation output
is more significant. The investment in science and technology resources in neighboring provinces
will have a significant inhibitory effect on the province’s innovation output. The regional mobility
of science and technology resources has a significant role in promoting regional innovation output
growth. The effect of science and technology personnel mobility on regional innovation output is
better than that of technology capital flows.

Keywords: science and technology resource allocation; spatial association; regional innovation;
spatial econometrics

1. Introduction

Long-term sustained economic growth is the result of technological advancement. In the past 40
years, China’s economy has achieved unprecedented development results, but there are still deficiencies
such as low quality, low efficiency, low innovation, and inefficient development of the real economy.
This urgently requires China to change its traditional economic growth model, change the structure of
economic growth, and improve the quality of economic development. In 2019, Premier Li Keqiang
emphasized in the Government Work Report, that the government would “increase support for basic
research and applied basic research, strengthen original innovation, and strengthen key core technology
research.” Economic growth in the new period requires the Chinese economy to change from past
factors and being investment-driven to an innovation-driven growth model, relying on innovation
as an engine of economic growth and improving production efficiency. Scientific and technological
innovation has gradually become the new normal for China’s ongoing economic growth.

In recent years, the intensity and scale of investment in science and technology resources in various
places have continued to expand. The national research and experimental development funding
input intensity increased from 1.66% in 2009 to 2.13% in 2017, and the proportion of research and
experimental development funding to Gross Domestic Product (GDP) continued to increase from 1995
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to 2017, from 0.57% to 2.13%. The investment in science and technology resources is increasing, but
China’s technological level has not increased significantly. Zhang et al. held that the overall level
of innovation in China’s industry is low, indicating that the potential of scientific and technological
resources has not been fully explored [1].

China’s early innovation subjects formed a path dependence on technology introduction and
imitation, but the proportion of scientific and technological resources in basic research was very low.
In 2017, the proportion of Research and Development (R&D) basic research expenditure was only 5.5%,
which greatly hindered innovation development. The China Regional Innovation Capability Evaluation
Report 2018 shows that with the regional agglomeration of China’s scientific and technological resources,
the distribution of scientific and technological resources has shown significant regional differences,
but the innovation capabilities and efficiency differences between regions also continue to expand.
Zhao [2] believes that administrative division and geographical distance are the main constraints on
the flow of production factors in China, and it is easy to waste innovation resources. China’s R&D
resources show a “Matthew effect” allocation pattern, leading to an imbalance in the distribution of
regional innovation capabilities in China, which basically forms a pattern that the eastern region ranks
ahead and the central and western regions lag behind, and the gap between the eastern and central
and western regions gradually widens. At present, it is unreasonable to study the allocation of science
and technology resources from the static level. Additionally, the biggest contribution of this research is
to study the flow of the resources of science and technology in space, thus for the regional innovation
spillover effect, rather than discussing the validity of resources configuration of input and output
efficiency of science and technology, and explore how to make science and technology resources of
enterprises, universities, research institutions achieve in the space between optimization, promote the
improvement of innovation, and reduce regional differences between innovation level.

The rest of this paper is arranged as follows: Section 2 reviews relevant studies on science and
technology resources, including studies on allocation efficiency of science and technology resources
and the spatial agglomeration degree of science and technology resources of different regional subjects.
Section 3 is about setting models, variable selection, and data sources. Section 4 includes a spatial
correlation test of scientific and technological resources. Section 5 is about the empirical test and result
analysis, including spatial measurement results within and between regions.

2. Literature Review

In recent years, as a national strategic resource, scientific and technological resources have attracted
the attention of academic circles. Some scholars have constructed index systems from different angles
and used different function models to measure the efficiency of scientific and technological resource
allocation. Feng et al. used the number of new product development as the output index of R&D
activities, the total amount of R&D funding and the number of technical personnel as input indicators,
and found that the efficiency of China’s industrial research and development is relatively low [3]. Zhu
and Xu used the stochastic frontier production function to take the sales revenue of new products
as the output indicator of R&D activities, R&D capital investment and R&D personnel as input
indicators, and calculated the innovation efficiency of China’s high-tech industry [4]. Zhang and
Shi measured the technical efficiency of new products through the directional distance function and
analyzed that China’s industrial R&D investment is inefficient [5]. Zhou [6] used the generalized
Cobb–Douglas production function and measured the accumulated capital of R&D as a variable to
measure the company’s knowledge capital. It was found that the accumulation of R&D activities such
as product and technological innovation has increased the productivity of enterprises. Fan used the
exploratory spatial data analysis (ESDA) analysis method to find that there is spatial autocorrelation
in the allocation efficiency of science and technology resources between cities and a phenomenon
of spatial agglomeration between similar values [7]. Li et al. [8] constructed an evaluation index
system for the allocation of regional scientific and technological resources and used the Gini coefficient
and Theil index to study the differences in the allocation of scientific and technological resources in
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various regions. Finally, using ESDA to study the spatial agglomeration characteristics of science
and technology resource allocation capabilities in various provinces, Shi et al. used the technology
input–output index system to use Data Envelopment Analysis’s (DEA’s) super-efficiency CCR model
and Malmquist index model to evaluate the efficiency of science and technology resource allocation
in 30 provinces in China [9]. Li and Wen [10] used the data of “financial resources” and “innovative
achievements” from 2009 to 2016 to construct a relevant evaluation index system. They all found
that China’s science and technology resource allocation capacity has improved, but the efficiency of
science and technology resource allocation across regions still has regional differences and continues
to expand.

Different innovation entities in the region have brought together the state of scientific and
technological resources, established a “government–market” joint allocation model, and developed
cooperatively through sharing to realize redistribution, promote regional innovation, promote scientific
and technological progress, and improve the operational efficiency of scientific and technological
activities [11,12]. Under the mechanism of open sharing of scientific and technological resources,
Dahlander [13] believes that scientific and technological innovation resources will not automatically
flow into enterprises, and enterprises need to establish a supporting culture, structure, and path to
encourage the sharing of scientific and technological innovation resources. Starting from the thinking
logic of collaborative innovation, Yue and Zhu established a rational cooperative innovation benefit
distribution mechanism to ensure resource sharing based on the basic principles of game theory [14].
Huang and Xie [15] carried out a quantitative measurement of the scientific and technological resource
agglomeration and collaborative innovation effects in the Yangtze River Economic Belt and found
that the agglomeration degree in Jiangsu, Zhejiang, and Shanghai is much higher than in other
regions. Regional differences are obvious, showing a gradient pattern of eastern, central, and western
regions. Although the Yangtze River Economic Belt as a whole has a certain degree of synergistic
innovation effects, the synergetic innovation effects within the central region and between the central
and western regions are low. Ye and Liu [16] believe that government support should be targeted, and
scientific research should be vigorously supported, and companies and markets should be allowed to
develop technology. This can not only avoid the inefficiency generated by heterogeneous research and
development but also help to solve the dilemma of China’s technological innovation.

The above literature expounds the allocation efficiency of science and technology resources from
different perspectives of establishing an index system, using a function model, and realizing the
collaborative sharing of science and technology resources. It can be found that most of the research
are based on the perspectives of various innovation subjects and spatial distribution patterns in the
region. Few scholars have studied the specific impact on regional innovation output from the aspect
of the spatial allocation of regional scientific and technological resources. With the rise of regional
innovation research, scholars’ research has gradually turned to the spatial correlation direction of
regional innovation, and this article integrates the resource allocation between different technological
innovation subjects in the region and the spatial correlation generated by the dynamic flow of scientific
and technological resources within the region. The analysis reveals the efficiency of scientific and
technological resource allocation in the regional innovation system and its impact on regional innovation
output. Specifically, using data from 1998 to 2017, based on global spatial autocorrelation and local
spatial autocorrelation, it analyzes the spatial correlation between innovation output and scientific and
technological resource input in 30 provinces in China, explores the spatial correlation between the
allocation of scientific and technological resources and regional innovation output in each province,
and focuses on the specific impact of the allocation of science and technology resources on regional
innovation output by the three major research and development areas of enterprises, universities, and
research institutions.
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3. Methodology

3.1. Model

Research on scientific and technological resources and regional innovation growth is generally
based on the knowledge production function, and key points are adjusted accordingly during the
research [17]. The most important feature of the knowledge production function is that the input
scale of R&D resources is the determinant of knowledge production. The more R&D investment,
the faster the knowledge stock increases, thereby promoting technological progress and productivity
improvement [18]. Not only the scale of investment in scientific and technological resources but also
the efficiency of scientific and technological resource allocation are important factors affecting regional
innovation and growth. Under the condition that the scale of investment in scientific and technological
resources remains the same, if there is a mechanism that enables science and technology resources to
flow back from lower productivity companies to higher productivity companies, and then from the
slower areas of innovation to the leading areas of innovation and development, the level of innovation
development of the entire country will also show an upward trend.

Therefore, referring to the existing research, this paper chooses the knowledge production function
of Griliches [19] and Jaffe [20] as the basic measurement model. Regional innovation is mainly affected
by the scale of science and technology resource input and the efficiency of science and technology
resource allocation. The input factors mainly include R&D capital investment and R&D personnel,
and an innovative production function (Equation (1)) is obtained.

Yit = Ait ×Kα
it × Lβ

it ×Dit
γ (1)

where Y is the innovation output, A is the efficiency of the allocation of scientific and technological
resources, K is the investment in research and development capital, L is the investment in research
and development personnel, and D is the environmental factor affecting regional innovation, mainly
considering foreign direct investment [16].

Take the natural logarithms on both sides of Equation (1) and replace the corresponding variable
symbols to obtain the following regional innovation growth regression model (Equation (2)).

ln INNOit = c + β0 × ln RDEi,t−1 + β1 × ln RDPi,t−1 + β2 × ln FDIit + µit (2)

Among them, INNOit is the innovation output in province i and year t; RDEit is the investment of
science and technology capital in province i and year t; RDPit is the input of science and technology
personnel in province i and year t; and FDIit is the level of foreign direct investment in province i
and year t; β0, β1 and β2 respectively represent the output elasticity of science and technology capital,
science and technology personnel, and foreign direct investment.

First, considering the role of the allocation of scientific and technological resources within the
province to the growth of regional innovation, different R&D subjects focus on different research
objects in scientific and technological activities. The scientific and technological innovation activities
of universities and research institutions can provide a theoretical basis for corporate innovation, and
there are significant internal links between the three types of innovation subjects [17]. The coordination
and allocation of scientific and technological resources among different subjects is very important to
improve the level of regional innovation output. Therefore, we establish the following measurement
model (Equation (3)).

ln INNOit = c + β0 × ln RDEi,t−1 + β1 × ln RDPi,t−1 + β2θ × ln SRDEθ,i,t−1 + β3θ × ln SRDPθ,i,t−1+

β4 × ln FDIit + µit, θ = C, X, Y
(3)

where C, X and Y represent the enterprise, university, and research institution; SRDEθit and SRDPθit
respectively represent the technological capital and personnel share occupied by θ innovation
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subject; β2θ and β3θ are the allocation efficiency of science and technology resources of different
research subjects.

Further, in examining the impact of the cross-regional allocation of scientific and technological
resources on regional innovation output, we introduced the flow of technology capital and the flow of
technology personnel. The regional flow of science and technology resources connects decentralized
economies into a whole, making some resources with low innovation output into a production process
with high innovation output, realizing the reconfiguration of science and technology resources. At the
same time, the free flow of scientific and technological resources will lead to competition among regional
innovation activities. In order to attract more high-quality scientific and technological resources and
enable scientific and technological resources to be used more effectively, regions must continue to
improve the innovation environment [21]. Thus they have an impact on regional innovation activities
and innovative changes in output. Therefore, the measurement model is extended to the following
model (Equation (4)).

ln INNOit = c + β0 × ln RDEi,t−1 + β1 × ln RDPi,t−1 + β2θ × ln SRDEθ,i,t−1β3θ × ln SRDPθ,i,t−1

+β4 × ln FRDEi,t−1 + β5 × ln FRDPi,t−1 + β6 × ln FDIit + µit, θ = C, X, Y
(4)

where FRDEit and FRDPit are the scientific and technological capital and personnel input flowing
into the province each year, β4 and β5 are the effects of regional flow of scientific and technological
resources on regional innovation output, and the plus and minus signs indicate the efficiency of the
allocation of technological resources across regions.

Regional innovation growth in a region is not only affected by the scale and allocation efficiency
of science and technology resources in the region. Due to the spillover effects of science and
technology resource activities, the mobility of science and technology resources, and the effects of policy
demonstration [22], there is a spatial correlation of innovation output in various regions. Additionally,
similar to public goods, innovation output also has positive externalities. Innovation output in other
provinces can be used by the province through diffusion effects or spillover effects. Compared with
traditional economic resources, scientific and technological resources usually carry more technical
knowledge during the flow process, promote the flow and application of new technologies between
regions, and strengthen the linkage of innovation output between regions. With the implementation of
the innovation-driven strategy, the proportion of science and technology investment in GDP has been
included in the scope of provincial government performance evaluation. The science and technology
investment policy of one province will be affected by the scale of science and technology investment of
other provinces, which will, in fact, increase the connection between different provinces and strengthen
the space dependence of different provinces. When there is spatial dependence, spatial measurement
is needed to explain the relationship between variables to avoid over-interpretation or neglect [23].
Spatial econometric models mainly include the spatial lag model (SLM) and the spatial error model
(SEM). When the spatial effect between variables appears to be critical to the model and results in
spatial autocorrelation, SLM is used; when there is autocorrelation in the error terms of the model, SEM
is used [24]. In order to analyze the impact of the spatial spillover effect of the investment in scientific
and technological resources on the level of regional innovation, the variable of the technological
resource spillover level is introduced in Equation (4), and the SLM model is set as Equation (5).

ln INNOit = c + ρ
30∑

j=1
ωi j ln INNO jt+β0 × ln RDEi,t−1 + β1 × ln RDPi,t−1 + β2θ × ln SRDEθ,i.t−1 + β3θ × ln SRDPθ,i.t−1

+β4 × ln FRDEi,t−1 + β5 × ln FRDPi,t−1 + β6 × ln WRDEi,t−1 + β7 × ln WRDPi,t−1 + β8 × ln FDIit + µit, θ = C, X, Y
(5)

The SEM model is set as Equation (6).

ln INNOit = c + β0 × ln RDEi,t−1 + β1 × ln RDPi,t−1 + β2θ × ln SRDEθ,i,t−1 + β3θ × ln SRDPθ,i,t−1 + β4 × ln FRDEi,t−1

+β5 × ln FRDPi,t−1 + β6 × ln WRDEi,t−1 + β7 × ln WRDPi,t−1 + β8 × ln FDIit + µit, θ = C, X, Y,µit = λ
30∑

j=1
ωi jµit + εi j

(6)
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where ln WRDEit =
30∑

j=1
ωi j lnRDE jt, ln WRDPit =

30∑
j=1
ωi j lnRDP jt, i , j; i = j,ωi j = 0. ln WRDEit and

ln WRDPit indicate that the i provinces are affected by the technological capital and personnel input
of other provinces, and measure the impact of spatial spillover effects of investment in science and
technology resources on regional innovation output. Notably, ωi j is an element of the n× n weight
matrix used to reveal the spatial linkages among all geographic units and is the key set distinguishing
the spatial econometric model from the conventional models. n is the number of regions.

The spatial weight matrix can represent the interdependence and correlation between regions.
Selecting a reasonable spatial weight matrix is very important for analyzing the spatial spillover effect
of regional innovation output. For research needs, this paper establishes spatial weight matrices from
three perspectives of geographic proximity in order to better analyze the spatial spillover effect of
regional innovation output.

3.1.1. Adjacency Matrix

Economic and innovative development is closely related to its spatial location. In geographically
adjacent areas, there is a clear correlation between innovation activities. The geographical proximity
spatial weight matrix is mainly divided into two types: one is the “adjacent matrix” which is a
spatial weight matrix constructed according to the adjacent relationship between regions. The specific
definition method is as follows, assuming thatωi j is an element in the space weight matrixωwhose
coordinates are (i, j). If there is a common boundary or node between i and j, the corresponding
elementωi j in the spatial weight matrix is assigned a value of 1; otherwise, the assignment value is
0 [25]. So the adjacent matrix is set as Equation (7).

ωi j =

{
1, there is a common boundary or node between i and j
0, there is no common boundary or node between i and j

(i , j) (7)

3.1.2. Distance Matrix

The spatial effect of regional innovation activities is not limited to the neighboring regions. The
innovation strategy of a province can be observed by all provinces, and the magnitude of its impact is
inversely proportional to the distance between the two provinces [25]. “Distance matrix” is a distance
weight matrix according to a distance function between regions. This paper chooses the inverse square
space matrix of distance proposed by Anselin (1995) [26] to illustrate the effect of the innovative
interaction relationship between regions that decays with increasing distance. Specifically, we measure
geographic proximity as the reciprocal of the distance between areas i and j. So the distance matrix is
set as Equation (8).

ωi j =


1

d2
i j

, i , j

0, i = j
(8)

where di j represents the Euclidean distance of provinces i and j, measured by ArcGIS ver. 10.6
(American ESRI Corporation, Redlands, CA, USA).

In terms of geographic distance, this article also refers to the method of Jiao et al. [17] and adjusts
based on Equation (8) to establish a new spatial weight matrix (Equation (9)).

ωi j =


Wi j(d)

30∑
j=1

Wi j(d)
, i , j

0, i = j

(9)

where Wi j(d) = 1
d2

i j
, and di j represent the Euclidean distance of provinces i and j, measured by ArcGIS

ver. 10.6.
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Of course, some scholars have also established a technical distance spatial weight matrix [27], but
Qu and Lee [28] believe that this type of spatial weight matrix is seriously endogenous, so this paper
does not adopt such a spatial weight matrix.

3.2. Data Source

In this paper, panel data from 30 provinces in China from 1998 to 2017 were used as samples.
Because Tibet has a lot of missing data, it was deleted. A very small number of annual data in other
provinces were all assigned a value of 0.10 [29]. The original data comes from the China Statistical
Yearbook, the China Statistical Yearbook of Science and Technology, provincial statistical yearbooks,
and relevant databases of the State Intellectual Property Office. The data of each variable is processed
as follows:

(1) Explained variable: Regional Innovation Output (INNO). Expressed by the number of invention
patent applications [30]. In developing countries, innovation capabilities are at the stage of imitation
and learning, and patents can better reflect the value of innovation activities [31]. The number of
invention patent applications rather than grants is used to reflect the degree of innovation output
in China’s provinces because the patent application itself reflects the process of R&D activities and
the cost of holding it regardless of whether the patent is authorized or not [32]. Moreover, in the
Chinese context, the amount of invention patents granted is greatly affected by human factors such as
government patent agencies.

(2) Core explanatory variables: (i) Input of scientific and technological resources, including
technology capital investment (RDE) and technology personnel investment (RDP). There are two
main methods for measuring technology capital investment: one is the internal expenditure of R&D
funds, and the other is the R&D capital stock. To accurately measure the impact of technological
capital investment on regional innovation output, a calculation of R&D capital stock is needed. This
paper draws on Yu [31] estimation method of R&D capital stock to obtain the R&D capital stock of 30
provinces in China from 1998 to 2017 (Equation (10)).

RDEit = (1− δ)RDEi,t−1 + (1− 0.5δ)KRit (10)

Among them, KRit is the internal expenditure of R&D expenditures in province i and year t, and δ
is the depreciation rate (10%).

(ii) Allocation of scientific and technological resources among R&D subjects. It is expressed
as the ratio of the investment in scientific and technological capital and the input of scientific and
technological personnel in enterprises, universities, and research institutions to the total investment in
regional scientific and technological personnel [17]. There are many indicators for measuring the input
of scientific and technological personnel in a region, such as the number of scientific and technological
activities, the number of scientists and engineers, and the full-time equivalent of R&D personnel.
Among them, the full-time equivalent of R&D personnel can most accurately describe the human input
of scientific and technological activities [33]. (iii) The flow of scientific and technological resources
between regions, including technology capital flow (FRDE) and technology personnel flow (FRDP),
measured by the gravity model. The gravity model is the development and application of the law of
universal gravitation in the field of economics in physics. It is mainly used to analyze the problem of
space interaction in an economic society [17]. This paper borrows from Bai and Jiang [33] to use the
gravity model to measure the degree of spatial correlation between regional scientific and technological
capital and personnel flows and selects a double logarithmic gravity model to measure the flow of
scientific and technological resources between two regions in year t (Equations (11) and (12)).

FRDEi jt =
RDEit ×RDE jt

di j
, i , j (11)
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FRDPi jt =
RDPit ×RDP jt

di j
, i , j (12)

where FRDEi jt and FRDPi jt are the flow of science and technology capital and science and technology
personnel between provinces i and j. Therefore, the total flow of scientific and technological capital
and scientific and technological personnel in the province i are as Equations (13) and (14).

FRDEit =
30∑

j=1

FRDEi jt, i , j (13)

FRDPit =
30∑

j=1

FRDPi jt, i , j (14)

(3) Controlling variables: The level of regional openness (FDI) can reflect the level of regional
technology introduction, expressed as the proportion of total foreign direct investment in GDP. In the
process of innovation, the communication and learning between the innovation subject and the outside
world can have an important impact on the innovation output of the region. Generally, the higher
the degree of openness, the easier it is for external advanced technology to spill over into the region,
and the easier it is to attract more external technology investment. In addition, the entry of foreign
investment will also form a competitive incentive for enterprises in the region, thereby promoting the
development of innovation in the region [34] (Table 1).

Table 1. Variables, measurements, and data sources (N = 600).

Variables Abbreviations Data Source

The number of invention patent applications INNO China Statistical Yearbook (1998–2017) [35]

Intramural expenditure on R&D RDE China Statistical Yearbook on Science and
Technology (1997–2016) [36]

R&D capital stock RDP China Statistical Yearbook on Science and
Technology (1997–2016) [36]

RDE share occupied by the enterprise CRDE China Statistical Yearbook on Science and
Technology (1997–2016) [36]

RDE share occupied by the university XRDE China Statistical Yearbook on Science and
Technology (1997–2016) [36]

RDE share occupied by the research institution YRDE China Statistical Yearbook on Science and
Technology (1997–2016) [36]

RDP share occupied by the enterprise CRDP China Statistical Yearbook on Science and
Technology (1997–2016) [36]

RDP share occupied by the university XRDP China Statistical Yearbook on Science and
Technology (1997–2016) [36]

RDP share occupied by the research institution YRDP China Statistical Yearbook on Science and
Technology (1997–2016) [36]

The flow of RDE FRDE China Statistical Yearbook on Science and
Technology (1997–2016) [36]

The flow of RDP FRDP China Statistical Yearbook on Science and
Technology (1997–2016) [36]

Foreign direct investment FDI China Statistical Yearbook (1998–2017) [35]

4. Spatial Correlation Test

4.1. Global Moran’s I Statistics

Moran’s I index can reflect the average correlation degree between spatially adjacent or spatially
adjacent regional units and the aggregation of spatial distribution [37,38]. The calculation formula is as
Equation (15).
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Moran′s I =

n
n∑

i=1

n∑
j=1
ωi j(xi − x)

(
x j − x

)
n∑

i=1

n∑
j=1
ωi j

n∑
i=1

(xi − x)2
=

n
n∑

i=1

n∑
j=1
ωi j(xi − x)

(
x j − x

)
S2

n∑
i=1

n∑
j=1
ωi j

(15)

where S2 = 1
n

n∑
i=1

(xi − x)2, x = 1
n

n∑
i=1

xi, xi is the observation value of the i space unit, n is the number

of space units, ωi j is the spatial weight matrix. The Moran’s I index takes a value between [−1,1].
A positive index indicates that there is a spatial positive correlation. The observed attributes show
a clustering spatial pattern. The closer to 1, the stronger the positive correlation. A negative index
indicates that there is a negative spatial correlation, and the observed attributes are in a discrete spatial
pattern. The closer to −1, the stronger the negative correlation. An index of 0 indicates that there is no
spatial correlation and it is randomly distributed in space [34,39].

Table 2 shows the Moran’s I values of innovation output, scientific and technological capital
investment, and scientific and technological personnel input in 30 provinces in China from 1998 to 2017.

Table 2. Moran ‘s I value of INNO, RDE, and RDP from 1998 to 2017.

Year
INNO RDE RDP

Moran’s I Z Moran’s I Z Moran’s I Z

1998 0.0369 * 1.3008 0.0327 * 1.1837 0.0706 * 1.6121
1999 0.0559 * 1.5081 0.0192 0.901 0.0733 ** 1.6238
2000 0.0499 * 1.4589 0.0481 * 1.4270 0.0785 ** 1.7273
2001 0.0454 * 1.4530 0.0420 * 1.1917 0.1011 ** 2.0859
2002 0.0504 * 1.5702 0.0615 * 1.5097 0.0892 ** 1.8843
2003 0.0837 ** 2.0125 0.0687 * 1.5935 0.0997 ** 2.0209
2004 0.0592 ** 1.6961 0.0984 ** 2.0470 0.1025 ** 2.2711
2005 0.0663 ** 1.7973 0.1122 ** 2.2368 0.1098 ** 2.3538
2006 0.0818 ** 1.9118 0.1290 ** 2.4597 0.1243 ** 2.4685
2007 0.0916 ** 2.0303 0.1267 ** 2.3897 0.1060 ** 2.2267
2008 0.0925 ** 2.0049 0.1324 ** 2.4636 0.1074 ** 2.2728
2009 0.0969 ** 2.0677 0.1290 ** 2.4189 0.1324 *** 2.7192
2010 0.0966 ** 2.0795 0.1210 ** 2.2995 0.1261 ** 2.6741
2011 0.0979 ** 2.2126 0.1262 ** 2.3928 0.1291 ** 2.7319
2012 0.0915 ** 2.1267 0.1286 ** 2.4194 0.1181 ** 2.5794
2013 0.1033 ** 2.2170 0.1295 ** 2.4439 0.1304 *** 2.7595
2014 0.1127 ** 2.3055 0.1299 ** 2.4610 0.1375 *** 2.8740
2015 0.1144 ** 2.3227 0.1271 ** 2.4078 0.1425 *** 2.9572
2016 0.1185 ** 2.3978 0.1266 ** 2.3982 0.1437 *** 2.9818
2017 0.1006 ** 2.2067 0.1287 ** 2.4590 0.1349 *** 2.8433

Note: *, **, *** indicate that they passed the significance test at the levels of 10%, 5%, and 1%.

As can be seen from the table, the Moran’s I values of regional innovation output from 1998 to 2017
were all greater than 0, and all passed the test at a significance level of 10%, even most of them passed
the test at a significance level of 5%. This shows that the spatial distribution of regional innovation
output in China is not random. There is a spatial positive correlation between regional innovation
output and spatial clustering characteristics. That is, provinces with higher innovation intensity tend to
be closer to other provinces with higher innovation intensity. Provinces with low innovation intensity
are close to other provinces with low innovation intensity [40]. On the whole, the overall Moran ‘s I
value of China’s regional innovation output generally shows a process of rising, then falling, and then
rising, but this does not affect the study of its correlation characteristics. Technological capital and
personnel input have similar characteristics of spatiotemporal changes, and both Moran ‘s I values
are significantly positive. This shows that there is a significant spatial correlation between China ‘s
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investment in science and technology resources; that is, there is a significant spatial agglomeration
effect between provinces with similar investment in science and technology resources. In addition, from
1998 to 2017, the Moran’s I value of science and technology capital investment increased from 0.0327
to 0.1287, and the Moran’s I value of science and technology personnel investment increased from
0.0706 to 0.1349. With the development, the overall investment in science and technology resources
has shown an upward trend. The increase in Moran’s I value is mainly due to the rapid acceleration of
the flow of science and technology resources between provinces, the increasing interaction between
provinces. Provinces with high levels of innovation resources investment and low-intensity provinces
are more closely linked with each other in terms of innovation activities, thereby strengthening the
spatial dependence of science and technology resources.

4.2. Local Moran’s I Statistics

In order to deeply study the specific form of spatial agglomeration of scientific and technological
resources, local spatial correlation analysis methods were used to analyze local Moran results with
GeoDa ver. 1.14 (University of Chicago Spatial Data Science Center, Chicago, IL, USA), as shown in
Figure 1.

Figure 1 shows the scatter plot of Moran ‘s I invested in science and technology resources in 30
provinces of China in 1998 and 2017. The first quadrant of the Moran ‘s I scatter plot belongs to the high
investment in scientific and technological resources–high spatial lag (H–H) agglomeration form [41].
The second quadrant belongs to the low investment in scientific and technological resources–high
spatial lag (L–H) agglomeration form. The third quadrant belongs to the low investment in scientific
and technological resources–low spatial lag (L–L) agglomeration form,. The fourth quadrant belongs
to the high investment in scientific and technological resources–low spatial lag (H–L) agglomeration
form,. Among them, the clustering features in the first and third quadrants indicate positive spatial
correlation, and the clustering features in the second and fourth quadrants indicate negative spatial
correlation. In 1998, the scientific and technological personnel investment in 19 provinces showed a
positive spatial correlation, of which 9 provinces were located in the first quadrant, showing the H–H
agglomeration form. In 2017, 63.3% of the province’s scientific and technological personnel investment
showed a positive spatial correlation, and the remaining regions showed a negative correlation. Science
and technology capital investment have similar characteristics. This shows that the scientific and
technological resource inputs of most provinces show a positive spatial correlation in geographic space,
and the slope of the regression fitting line has increased, indicating that this positive spatial correlation
is constantly strengthening.
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5. Empirical Test and Result Analysis

5.1. Analysis of Spatial Metrology Results in the Region

In order to examine the resource allocation efficiency of different innovation subjects in the region,
the least squares method (OLS) was used to analyze the impact of the share of science and technology
resources input of different innovation subjects on regional innovation output, as shown in Table 3.

Table 3. Least squares method (OLS) results of the regional allocation of technological resources on
innovation impact.

Variables CRDE XRDE YRDE Variables CRDP XRDP YRDP

CRDE 0.1859 *** (3.5) CRDP 0.3741 ***
(3.87)

XRDE 0.0487 (1.26) XRDP −0.3995 ***
(−5.11)

YRDE −0.0277
(−1.00) YRDP −0.2119 ***

(−3.7)

RDE 1.0316 *** (63.51) 1.0438 ***
(63.77)

1.0393 ***
(62.17) RDP 1.2352 ***

(35.05)
1.2058 ***

(31.89)
1.2400 ***

(33.10)

WRDE −0.5966 ***
(−3.62)

−0.6155 ***
(−3.73)

−0.6349 ***
(−3.90) WRDP −0.7618 **

(−2.04)
−0.9402 **

(−2.56)
−0.7036 *
(−1.88)

FDI 0.0872 *** (2.93) 0.0643 ** (2.22) 0.0652 ** (2.23) FDI 0.2767 ***
(6.13)

0.2181 ***
(5.27)

0.2163 ***
(4.91)

R2 0.9217 0.9202 0.9201 R2 0.7881 0.7901 0.7884
LM (error) 26.0660 *** 30.9490 *** 30.1150 *** LM (error) 168.0420 *** 155.7740 *** 147.8290 ***

R-LM (error) 5.5850 ** 7.2570 *** 7.1200 *** R-LM (error) 27.5100 *** 24.9230 *** 19.7730 ***
LM (lag) 73.4610 *** 80.6140 *** 77.7810 *** LM (lag) 261.8130 *** 240.4350 *** 256.4370 ***

R-LM (lag) 52.9800 *** 56.9220 *** 54.7860 *** R-LM (lag) 121.2800 *** 109.5850 *** 128.3800 ***

Note: LM: Lagrange multiplier; R-LM: Robust Lagrange multiplier. *, **, *** indicate that they passed the significance
test at the levels of 10%, 5%, and 1%.

The results in the table show that in the tests for spatial error and spatial lag, the assumption of
“no spatial autocorrelation” was rejected, which indicates that a spatial econometric analysis should be
performed. Comparing the Lagrange multiplier, it can be seen that the R-LM (lag) level of the SLM
model is significantly higher than the R-LM (error) of the SEM model in the impact of technological
capital investment on regional innovation output. We select the more significant SLM model for
further analysis.

Before performing an SLM model analysis, a decision is needed on whether to use a fixed-effect or
a random-effect model. In the choice between fixed effect and random effect models, combined with
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the LM test, the Hausman test, and Akaike information criterion (AIC) and Schwarz Criterion (SC)
indicators, this paper selects the fixed effect model as the analysis model. Table 4 lists the estimation
results of the SLM model under fixed effects.

Table 4. Results of the impact of regional allocation of technological resources on regional innovation.

Variables CRDE XRDE YRDE Variables CRDP XRDP YRDP

CRDE 0.1750 *** (3.48) CRDP 0.3449 ***
(3.85)

XRDE 0.0541 (1.42) XRDP −0.2055 **
(−2.44)

YRDE −0.01962
(−0.71) YRDP −0.1559 ***

(−3.11)

RDE 1.0074 *** (60.88) 1.0175 ***
(62.01)

1.0149 ***
(59.96) RDP 1.1591 ***

(34.01)
1.1704 ***

(32.91)
1.1748 ***

(35.04)

WRDE −0.5288 ***
(−2.58)

−0.5392 ***
(−2.61)

−0.5627 ***
(−2.73) WRDP −0.5457 ***

(−3.38)
−0.6535 ***

(−3.63)
−0.5104 ***

(−3.28)

FDI 0.0852 *** (3.21) 0.0634 ** (2.44) 0.0643 ** (2.47) FDI 0.2470 ***
(6.04)

0.1970 ***
(5.02)

0.1936 ***
(4.95)

ρ 0.07674 *** (4.10) 0.0810 ***
(4.30)

0.0792 ***
(4.19) ρ

0.2756 ***
(10.55)

0.2627 ***
(9.70)

0.2695 ***
(10.22)

R2 0.8261 0.8137 0.8184 R2 0.7880 0.7886 0.7880
Log L −449.2385 −454.2231 −454.9762 Log L −706.3906 −710.7528 −708.9141

Note: **, *** indicate that they passed the significance test at the levels of 5%, and 1%.

The results in the table show that the estimated coefficient of the CRDE variable is 0.1750, and it
is significant at the level of 1%, which indicates that corporate technology capital expenditures have
significantly promoted regional innovation growth, and the ratio of technological capital expenditures to
total scientific and technological expenditures has increased by 1 percentage point. The corresponding
innovation output increased by 0.1750 percentage points. The estimated coefficients of the XRDE
and YRDE variables are not significant, indicating that the technological capital expenditures of
universities and R&D institutions have not significantly affected the regional innovation output. On
the whole, China’s allocation of science and technology capital is not efficient, and the increase in
science and technology capital expenditure of universities and R&D institutions cannot promote the
growth of regional innovation output. Each year, China accounts for a certain percentage of funding
in universities and R&D institutions, but this has the lowest innovation output. At the same time, it
shows that the reason for the low innovation output of Chinese universities and R&D institutions is
not the insufficient investment in science and technology capital, but the low level of organization
and management of science and technology activities and the lack of effective operating mechanisms.
Therefore, increasing the sci-tech capital investment of enterprises can promote the growth of regional
innovation output.

Similar results are also shown for the input of scientific and technological personnel. The estimated
coefficient of the CRDP variable is 0.3449, and it is significant at the level of 1%. This indicates that
the investment of scientific and technological personnel of enterprises has significantly promoted
the growth of regional innovation. The proportion was increased by 1 percentage point, and the
regional innovation output was correspondingly increased by 0.3449 percentage points. The estimated
coefficients of the XRDP and YRDP variables are significantly negative, which indicates that the
increase in the number of scientific and technological personnel in universities and research institutions
has not led to the growth of regional innovation output, but has inhibited the development of regional
innovation output. This is mainly because the scientific research results of universities and research
institutions appear in the form of a small number of patents, and the technologies that can generate
patents are in the hands of a few teachers. The increase in the number of scientific and technological
personnel alone cannot promote the growth of regional innovation output.

The possible reason for the above results is that this article selects the number of invention patent
applications as a measure of regional innovation output. For universities and research institutions,
the number of invention patent applications may not have been given much attention. Universities
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and research institutions attach more importance to basic research in the form of scientific papers
and scientific works. They do not pay enough attention to invention patents and lack the ability to
transform scientific research results into new technologies and products. Moreover, human capital
is heterogeneous, and the increase in innovation output mainly depends on the promotion of a
small number of core talents. The ineffective accumulation of research staff working hours will not
have a positive impact on innovation output, which also reflects the importance of talent strategy
for innovation development as well as the current low R&D efficiency and the need to optimize
the performance evaluation of R&D personnel [42]. The above analysis shows that in the current
context, to strengthen the status of enterprises as the mainstay of innovation, at the same time,
it is necessary to increase the incentive policies of invention patents at universities and research
institutions, promote their transformation of scientific research results into new technologies and
new products, strengthen cooperation with enterprises, and promote the transfer and transformation
of scientific and technological achievements. The government cannot simply invest science and
technology resources in universities and research institutions. Instead, it should guide the formation
of the industry–university-research cooperation model by adjusting the distribution of science and
technology resources among different subjects. The investment in scientific and technological resources
should be tilted towards enterprises, and at the same time, the ability of universities and research
institutions to transform scientific and technological achievements should be improved.

Observing the estimation results of the three types of R&D entities, it can be seen that the
corresponding coefficients of total scientific and technological capital expenditures, namely RDE, are
1.0074, 1.0175, and 1.0149, respectively, and they are all significantly positive. This shows that with
the increase of China’s investment in science and technology capital, the overall level of regional
innovation output has shown an upward trend. In the SLM model, the ρ values were 0.07674, 0.0810,
and 0.0792, and all passed the test at a significance level of 1%. This shows that regional innovation has
a significant spatial spillover effect, and that the growth of regional innovation in neighboring regions
in geographic space can drive regional innovation and development in the region. The coefficient of
WRDE is significantly negative, which indicates that neighboring provinces’ investment in science
and technology capital in this province has restrained the increase of regional innovation output to
a certain extent. This is mainly due to the increase in technology capital investment in neighboring
provinces, which to some extent crowded out local technology capital investment. The promotion
effect of local science and technology capital investment on innovation output is very significant. Due
to the crowding out of science and technology capital investment in neighboring provinces, the level of
innovation output in the province has been reduced.

On the whole, the effect of the allocation of scientific and technological personnel in the region on
regional innovation is similar to the allocation of scientific and technological capital, which indicates
that the estimation results of the allocation of scientific and technological resources in the region
are robust. We consider the impact of three major R&D entities on regional innovation output. The
impact of the investment in scientific and technological personnel of enterprises and the investment
in scientific and technological capital on regional innovation output is similar, but the impact of
scientific and technological personnel investment in higher education on regional innovation output is
significantly negative. This shows that blindly increasing the proportion of scientific and technological
personnel in institutions of higher education does not necessarily lead to an increase in innovation
output. Cooperation with enterprises should be strengthened to transform the basic research results
of institutions of higher education into applied research, thereby increasing the level of innovation
output in local regions.

From the perspective of the overall impact of the scale of scientific and technological personnel’s
input on regional innovation output, the coefficients of scientific and technological personnel input
from the three major R&D entities on regional innovation output are 1.1591, 1.1704, and 1.1748, which
are significantly larger than the impact coefficient of scientific and technological capital input on
regional innovation output, which indicates that the degree of influence of scientific and technological
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personnel investment on regional innovation output is significantly greater than that of technological
capital investment on regional innovation output. From the results of the SLM model, it is known that
the values of ρ are 0.2756, 0.2627, and 0.2695, respectively, indicating that there is a significant positive
spatial correlation in regional innovation output. This spatial correlation feature relies mainly on the
spatial transmission of the impact of errors. The WRDP coefficient is still significantly negative, that is,
the input of scientific and technological personnel in neighboring provinces has a significant inhibitory
effect on the development of regional innovation output in the province.

Since the setting of the spatial weight matrix may have a significant impact on the model estimation
results, in order to test the robustness of the estimation results in Table 3, the spatial panel model is
estimated based on the spatial weight matrix established by Equations (8) and (9).

The results obtained according to Equation (8) are shown in Table 5.

Table 5. Results of the impact of regional allocation of technological resources on regional innovation.

Variables CRDE XRDE YRDE Variables CRDP XRDP YRDP

CRDE
0.1792 ***

CRDP
0.3901 ***

(3.54) (4.41)

XRDE
0.0465

XRDP
−0.1907 **

(1.21) (−2.28)

YRDE
−0.0124

YRDP
−0.0930 *

(−0.44) (−1.83)

RDE
1.0143 *** 1.0253 *** 1.0236 ***

RDP
1.1558 *** 1.1772 *** 1.1946 ***

(61.06) (62.24) (60.72) (34.44) (33.49) (36.16)

WRDE
−0.5561 *** −0.5727 *** −0.5925 ***

WRDP
−0.6096 *** −0.7108 *** −0.6988 ***

(−2.70) (−2.75) (−2.85) (−3.58) (−3.79) (−3.51)

FDI
0.0965 *** 0.0748 *** 0.0752 ***

FDI
0.3057 *** 0.2471 *** 0.2469 ***

(3.59) (2.83) (2.85) (7.58) (6.35) (6.33)

ρ 0.0682 *** 0.0557 *** 0.0923 *** ρ 0.2674 *** 0.2316 *** 0.2474 ***
(2.99) (3.09) (2.98) (11.78) (10.72) (10.89)

R2 0.9199 0.9183 0.9182 R2 0.7374 0.7426 0.7400
Log L −453.0874 −458.5554 −459.1919 Log L −693.9786 −700.9625 −701.8900

Note: *, **, *** indicate that they passed the significance test at the levels of 10%, 5%, and 1%.

The results obtained according to Equation (9) are shown in Table 6.

Table 6. Results of the impact of regional allocation of technological resources on regional innovation.

Variables CRDE XRDE YRDE Variables CRDP XRDP YRDP

CRDE
0.1734 ***

CRDP
0.3184 ***

(3.47) (3.46)

XRDE
0.0476

XRDP
−0.3072 **

(1.26) (−3.66)

YRDE
−0.0168

YRDP
−0.1629 ***

(−0.61) (−3.17)

RDE
1.0182 *** 1.0292 *** 1.0266 ***

RDP
1.2221 *** 1.2046 *** 1.2306 ***

(65.35) (66.87) (64.23) (35.70) (33.47) (36.51)

WRDE
−0.5472 *** −0.5622 *** −0.5819 ***

WRDP
−0.6659 *** −0.8067 *** −0.6236 ***

(−2.70) (−2.74) (−2.84) (−2.86) (−2.98) (−3.53)

FDI
0.0996 *** 0.0786 *** 0.0792 ***

FDI
0.2930 *** 0.2431 *** 0.2421 ***

(3.77) (3.03) (3.05) (6.99) (6.08) (6.04)

ρ 0.0069 *** 0.0193 *** 0.0069 *** ρ 0.0631 *** 0.0549 *** 0.0310 ***
(5.08) (5.20) (5.14) (9.13) (8.86) (8.97)

R2 0.8753 0.8707 0.8714 R2 0.4297 0.4489 0.4384
Log L −444.8956 −450.0707 −450.6726 Log L −717.2743 −716.5777 −718.1894

Note: **, *** indicate that they passed the significance test at the levels of 5%, and 1%.
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As apparent from Tables 5 and 6, the estimation results of this kind of spatial weight matrix
basically show a consistent phenomenon, which indicates that the estimation results of the fixed-effect
space lag model are robust.

5.2. Inter-Regional Spatial Econometric Analysis Results

The flow of science and technology resources between different provinces has realized the
reallocation of science and technology resources in space, which has a two-sided effect on changes
in regional innovation output. On the one hand, for the sake of profitability, science and technology
resources tend to flow into provinces with higher levels of regional innovation output, making the
allocation of science and technology resources more efficient in space. In addition, during the flow
of scientific and technological capital and personnel, relevant technical knowledge will be carried,
which will speed up the dissemination of technical knowledge, thereby promoting the growth of
regional innovation output. On the other hand, the flow of scientific and technological resources
will cause a shortage of resources out of the provinces and the overcrowded use of infrastructure
in the provinces, which will inhibit the development of regional innovation. Whether scientific and
technological resource flow is favorable or unfavorable to regional innovation output is the focus of
this article. Table 7 shows the specific impact of the cross-regional flow of technological capital and
scientific and technological personnel of enterprises, universities, and research institutions on regional
innovation output.

Table 7. Results of the impact of regional allocation of technological resources on regional innovation.

Variables CRDE XRDE YRDE Variables XRDP XRDP YRDP

CRDE 0.0695 ***
(2.53) CRDP 0.2732 ***

(3.20)

XRDE 0.1749 ***
(5.17) XRDP −0.1790 **

(−2.18)

YRDE −0.0279
(−1.10) YRDP −0.0645 ***

(−3.24)

RDE 0.8145 ***
(2.84)

0.8255 ***
(3.31)

0.7369 ***
(3.37) RDP 0.6206 ***

(2.43)
0.7105 ***

(4.63)
0.5912
(0.75)

WRDE −0.1910 ***
(−2.71)

−0.1971 ***
(−3.98)

−0.1717 ***
(−2.73) WRDP −0.2543 ***

(−2.76)
−0.1381***

(−3.02)
−0.2096 ***

(−2.98)

FRDE 0.0127 ***
(2.60)

0.0262 ***
(4.28)

0.0384 ***
(3.08) FRDP 0.0353 ***

(3.10)
0.0551 ***

(2.82)
0.0959 ***

(3.50)

FDI 0.1167 ***
(5.65)

0.1171 ***
(5.79)

0.1199 ***
(5.74) FDI 0.3366 ***

(9.53)
0.3366 ***

(9.48)
0.3207 ***

(8.80)

ρ
0.4362 ***

(34.64)
0.4277 ***

(34.64)
0.4367 ***

(34.64) ρ
0.7748 ***

(34.64)
0.7789 ***

(34.57)
0.7804 ***

(34.55)
R2 0.6922 0.9457 0.9437 R2 0.8254 0.8231 0.8228

Log L −353.6240 −341.7460 −354.1960 Log L −698.2620 −701.4640 −702.5970

Note: **, *** indicate that they passed the significance test at the levels of 5%, and 1%.

It can be seen from Table 7 that in the econometric model, the influence coefficient signs of the
inter-regional flow variable FRDE of scientific and technological capital and the inter-regional flow
variable FRDP of scientific and technological personnel are positive and pass the significance level
test. This indicates the inter-regional flow of scientific and technological resources. It has a significant
promotion effect on regional innovation output growth. As to technological capital and personnel as
innovation factors, their interregional flows have increased the economic scale of each technology in
each region. At the same time, the expansion of the flow of science and technology resources across
regions has increased the degree of regional economic integration. The increasing effect of scale returns
brought about by the spread of knowledge and technology and economic integration will eventually
increase the level of innovation output in various regions and nations. Comparing the regression
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coefficient values of the two types of resource flows, it can be seen that the effect of unit scientific
and technological personnel mobility on regional innovation output is higher than the effect of unit
technological capital flow between regions.

Therefore, removing the institutional barriers that restrict the flow of scientific and technological
personnel and fully realizing the resource reallocation effect brought by the flow of research and
development personnel has a very important role in accelerating the improvement of regional innovation
output. In addition, the regression results of the allocation structure of each innovation subject in
the science and technology resource area are basically consistent with Table 4 except XRDE. The sign
and significance level of the estimated coefficients of each variable are basically consistent, which
also proves to a certain extent that the estimation results of this paper are robust. After considering
inter-regional mobility, the coefficient of XRDE has changed from insignificant to significant, which
indicates that the flow of scientific and technological personnel between colleges and universities in
different provinces can significantly promote regional innovation output.

In order to test the robustness of the estimation results in Table 7, the spatial panel model estimation
is performed according to the spatial weight matrix established by Equations (8) and (9). The estimation
results of the three spatial weight matrices are basically consistent, which indicates that the estimation
results of the fixed-effect space lag model are robust.

6. Discussion

In recent years, China’s economy has grown rapidly, and the growth rate in the input of science
and technology resources has become increasingly apparent. Behind the increase in investment in
scientific and technological resources, we need to be more aware of the impact of the allocation of
scientific and technological resources on regional innovation output. This paper uses the panel data of
30 provinces in China from 1998 to 2017 to construct a regional innovation output growth model that
includes both scientific and technological resource inputs and allocation of scientific and technological
resources and uses space econometric models to empirically examine the specific effects of the input
and allocation of scientific and technological resources on regional innovation output.

(1) China’s regional innovation output and scientific and technological resource input show
obvious agglomeration characteristics in space, mainly manifested in positive spatial correlation;
that is, provinces with higher innovation intensity tend to be closer to other provinces with higher
innovation intensity. The spatial correlation test shows that the economically developed areas along
the eastern coast of China basically show H–H spatial correlation patterns. The L–L spatial correlation
model basically belongs to the underdeveloped western regions. The central region is in the east–west
connection region, and it is generally in the H–L and L–H spatial correlation patterns. The emergence
of this association pattern indicates that apart from China’s uneven distribution of scientific and
technological resources, it also has the characteristics of spatial dependence. In other words, the
level of development of innovation output in each province is not only affected by the input of
science and technology resources in this province, but also by the input of science and technology
resources and innovation output in neighboring provinces. Therefore, when the state supports
innovation development in the west, it also needs to pay attention to the spatial relationship between
innovation output and the input of scientific and technological resources, and try to avoid suppressing
innovation output.

(2) The efficiency of scientific and technological resource input by application-oriented research
entities that are mainly enterprises is higher, and the promotion of regional innovation output is
more significant. The investment in scientific and technological capital of universities and research
institutions is not significant, and the input of scientific and technological personnel is significantly
negative. The emergence of this phenomenon indicates that universities and research institutions need
to pay more attention to invention patents and lack the ability to transform scientific research results into
new technologies or new products. Human capital itself is heterogeneous. Innovation output depends
mainly on a small number of core talents. Ineffective accumulation of working hours of scientific
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researchers will not promote innovation output. In general, the input of scientific and technological
resources has a significant role in promoting regional innovation output, and the degree of impact of
scientific and technological personnel input on regional innovation output is significantly greater than
the effect of scientific and technological capital input on regional innovation. The emergence of this
phenomenon indicates that under the fixed circumstances of the innovation environment, increasing
the input of scientific and technological personnel is more significant in promoting regional innovation
output than increasing the input of scientific and technological capital in the same proportion. Therefore,
in the allocation of scientific and technological resources, attention should be paid to applied research
areas with greater innovation output intensity, increasing the proportion of enterprises’ scientific and
technological resources investment, increasing the input of scientific and technological personnel in
applied research fields, strengthening the level of transformation of basic research into applied research
by universities and research institutions, strengthening cooperation between industry, universities,
and research institutions, and promoting the development of regional innovation output levels.

(3) The input of science and technology resources in neighboring provinces will have a significant
inhibitory effect on the innovation output of the province, and this inhibitory effect is reflected in the
input of scientific and technological capital and the input of scientific and technological personnel.
The emergence of this situation indicates that the province’s innovation output cannot depend on
the input of science and technology resources in other provinces. In the allocation of scientific and
technological resources, we should give full play to the advantages of local resources, strengthen
investment in scientific and technological resources in the province, increase the flow of scientific and
technological capital and the introduction of scientific and technological personnel, and enhance the
inherent motivation for innovation.

(4) In the case of interregional mobility, the signs of the influence coefficients of the interregional
mobility variables of scientific and technological resources are significantly positive, reflecting that the
regional mobility of scientific and technological resources has a significant promotion effect on the
growth of regional innovation output. The promotion effect of innovation output is superior to the
promotion effect of technological capital flow on regional innovation output. Therefore, when raising
the level of regional innovation output, we should eliminate the institutional barriers that restrict the
flow of scientific and technological resources, strengthen the level of cooperation between enterprise,
universities, and research institutions, promote the flow of scientific and technological resources
between enterprises, universities, and research institutions, and establish a long-term mechanism for
collaborative innovation, to achieve coordinated development of regional innovation.
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