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Abstract: Global warming and the rapid growth of carbon emissions have attracted the attention of
governments and academia throughout the world. In 2006, China surpassed the United States as the
emitter of the greatest volume of carbon, the largest contribution of which is derived from China’s
industrial sector. This study investigated the evolution of industrial carbon shadow prices (CSPs)
in China at the provincial level to assess the opportunity costs in terms of value added foregone
owing to decreasing carbon emissions. A dual formulation of the by-production data envelopment
analysis (DEA) model was applied to estimate the industrial carbon abatement costs in China during
2003–2017. This study represents the first attempt to apply the dual by-production DEA model for
this purpose. Empirical results showed that industrial CSP increased by 3.83% annually and that
the average provincial CSP was approximately $562.43 USD/ton. A significant upturn in the CSP
occurred after 2006. Furthermore, disparities of changes in industrial CSP over time were checked
using the test of sigma convergence. Regional divergence was observed for the period 2011–2017.
Policy implications were derived from the empirical results in terms of improvements regarding
carbon abatement.

Keywords: Chinese industry; carbon shadow price; by-production technology; environmental
performance; carbon abatement cost

1. Introduction

China became the world’s largest emitter of carbon in 2006 and its greatest consumer of energy
in 2011. Data from the BP Statistical Review of World Energy [1] shows that carbon dioxide (CO2)
emissions and energy consumption in China in 2018 reached 9428.70 million tons and 3273.50 million
tons oil equivalent, accounting for 27.82% and 23.61% of the world’s total, respectively. The industrial
sector is the major contributor to economic growth in China; however, it is also responsible for
producing the largest volume of carbon emissions and consuming the greatest quantity of energy [2].
According to estimates by Chen [3], the industrial sector contributed 83.1% of total carbon emissions
and accounted for 67.9% of total energy consumption in China during 1980–2006.

China has promised to reduce carbon intensity (carbon emissions per unit gross domestic product,
GDP) by 40–45% until 2020 and by 60–65% until 2030 using 2005 as the base year. Carbon emissions in
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China are projected to peak at around 2030. In fact, China has already taken a variety of measures
to reduce its CO2 emissions, and the 2020 goal was actually realized in 2017 when carbon intensity
fell by 46%. The 11th Five-Year Plan (2006–2010) for China was the first to set binding environmental
goals represented by indicators. This allowed stricter control with regard to implementation of
strategic measures. The development of quantitative and institutional frameworks for the promotion
of sustainable economies has been discussed by Song et al. [4,5], Popov et al. [6], and Raszkowski and
Bartniczak [7].

Carbon trading is one of the most effective market-based measures for the mitigation of carbon
emissions. CO2 emission is a typical externality, which is supposed to be curbed by the introduction
of property rights [8,9]. A carbon emission allowance is a type of property right that is allocated
initially to certain firms, which other firms are then allowed to purchase. The economic losses from
carbon abatement are likely to vary considerably among firms. Carbon trading allows the same level
of marginal abatement costs to be reached within the market. In October 2011, China started pilot
carbon trading schemes in seven provinces and cities, including four province-level municipalities—i.e.,
Beijing, Tianjin, Shanghai, and Chongqing—and Hubei (Wuhan), Guangdong (Guangzhou), and
Shenzhen. Subsequently, the central government of China initiated the establishment of a National
Carbon Trading Market. The World Bank and the United Nations have both predicted that China will
surpass the European Union to become the world’s largest carbon market by 2020 [10].

Without a functioning market, the prices of undesirable outputs are unavailable. For example,
carbon emission is a typical undesirable output, yet its price must be estimated because it is not
available on the market in many instances. Estimation of the carbon shadow price (CSP) is critical for
making rational decisions regarding carbon trading. Several previous studies investigated the shadow
price of pollutants in China. For example, Yuan et al. [11] measured the CSP of China’s industrial
sector in 2004 and 2008 using the nonparametric directional distance function (DDF) and found that
the price varied in the range of $30–17,190 USD/ton. Xie et al. [12] estimated the SO2 shadow price of
China’s industrial sector during 1998–2011 using the parametric quadratic DDF and found an upward
trend. Tang et al. [13] estimated the shadow prices of pollutants in China’s agricultural sector using a
parameterized quadratic output DDF. They found an upsurge of the shadow price of total nitrogen,
but fluctuating trends for the shadow prices of chemical oxygen demand and total phosphorus during
2001–2010. Estimation of a quadratic output DDF by Che [14] resulted in an upward trajectory for
CSP of China’s iron and steel industry during 2006–2012. Zeng et al. [15] estimated China’s SO2

shadow price using an output DDF and found that the average shadow price of China’s SO2 emissions
decreased during 2001–2012. However, none of the above studies examined the evolution of the CSP
with regard to the Chinese industrial sector using the by-production approach.

This study investigated the evolution of the CSP of China’s industrial sector across 30 provinces
during 2003–2017. The research focused on the following two hypotheses: the CSP has increased in
China owing to improved environmental regulations, and the CSP across the provinces of China has
converged. The novel by-production approach (especially, its dual formulation) was applied in the
analysis. Compared with existing studies that calculated the CSP assuming weak disposability of
good and bad outputs, this study represented the first application of by-production technology based
on its dual formulation, which satisfied the materials balance requirement among other desiderata.
Therefore, the derived policy implications are based on reasonable estimates.

The remainder of this paper is organized as follows. Section 2 reviews the estimation of the CSP
in the earlier literature. Section 3 presents the by-production model. Section 4 discusses the data used
in the study and the empirical analysis. Conclusions are provided in Section 5.

2. Review of Estimation Methods for Carbon Shadow Price

Pittman [16] incorporated pollution into productivity measurements and estimated the associated
marginal abatement costs. Thereafter, other methods based on distance functions were proposed for
estimating shadow prices without complete information on the market prices of inputs and outputs.
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Based on the dual function of revenue, cost, and profit functions, three streams of approach can be
followed to estimate the shadow price of pollution using a distance function. Färe et al. [17] suggested
using the dual function of the revenue function, i.e., the translog Shephard output distance function,
to calculate the shadow price. Turner [18] computed shadow prices by combining data envelopment
analysis (DEA) with the subvector Shephard output distance function. Hailu and Veeman [19] utilized
the dual function of the cost function, i.e., the translog Shephard input distance function, within a
deterministic parametric approach to estimate the shadow price of undesirable outputs.

Reports on the use of the DDF for estimation of shadow prices and environmental performance
have increased in number. Compared with approaches based on the input distance function or the
output distance function, the approach based on the DDF is able to distinguish between desirable
and undesirable outputs in a realistic way. For instance, it can accommodate the way in which
decision-making units (DMUs) are willing to optimize their activities, e.g., by expanding production
and contracting pollution. Färe et al. [20] measured the shadow prices of undesirable outputs by
exploiting the dual function of the profit function, i.e., the DDF. In addition, Färe et al. [21] also
derived the shadow price of undesirable outputs using a quadratic DDF. Murty et al. [22] estimated the
shadow price of pollutants from India’s coal-fired thermal power plants using the DDF. Rødseth [23]
constructed a novel DDF model by considering various abatement choices, e.g., emission control,
pollution permits, and substitution between inputs and outputs. Song et al. [24] proposed a novel DDF
model based on an output-oriented slacks-based measure.

A large body of literature has emphasized the importance of considering externalities in the
form of undesirable outputs [24–27]. Unlike the free disposability assumption in models that take
undesirable outputs as inputs or as desirable outputs, conventional DDF models [28–31] account for
the negative externality of pollution by assuming weak disposability of desirable and undesirable
outputs. Nevertheless, weak disposability technology violates the physical laws of mass–energy
conservation [32–34].

To overcome the above problem, the by-production model was proposed recently by Murty and
Russell [32] and Murty et al. [35]. This model divides technology into two independent components:
the intended-production sub-technology and the residual-generating sub-technology. Although the
latter (involving undesirable outputs) is assumed to follow costly disposability, the sub-technology
relating to inputs and desirable outputs still follows the axiom of free disposability. Shen et al. [36]
were the first to apply the by-production model to the case of China when studying the economic
and environmental performances of China’s agricultural sector. Shen et al. [36] considered national
aggregate values as the direction of optimization in their by-production model, whereas we adopted
province-level data as the direction of optimization, which was necessary for the calculation of the CSPs.
Moreover, we used the dual formulation of the by-production model, which provided an unbiased
estimate for deriving policy implications.

3. Methodology

The CSP denotes the amount of revenue that a DMU has to forego to reduce carbon emissions by
a single unit. This measure is useful in providing economic assessment of environmental regulations
when implementing carbon mitigation policies. Strategies for estimation of shadow prices can be
categorized in two main groups, i.e., parametric and nonparametric approaches. The first group involves
predefined functional forms of representations of production technology (e.g., the Cobb–Douglas,
translog, or quadratic functional forms). This study adopted the nonparametric approach, which
relies on linear programming and does not require a predefined functional form for representation of
production technology. In our case, the DEA was applied as an estimator. In this section, we begin
with the basic definitions of environmental production technology.
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3.1. Environmental Production Technology

Murty and Russell [32] and Murty et al. [35] argued that traditional approaches for modeling
undesirable outputs (e.g., the weak disposability model) might lead to unacceptable economic
implications. Therefore, they introduced the by-production technology to model environmental
production possibilities. Suppose there are K provinces in China, and that each province can be
regarded as a DMU with associated quantities of inputs and outputs. Two groups of inputs can
be defined in the environmental production technology, i.e., clean inputs (xn) and dirty inputs (xp).
Both types of input can produce desirable outputs (y), while only dirty inputs generate undesirable
outputs (z). Note that clean inputs do not contribute to the generation of z, whereas the opposite holds for
dirty inputs. For instance, here, labor force and capital stock are clean inputs and energy consumption
is a dirty input. Production technology is separated into two sub-technologies: the production process
that focuses on intended outputs is termed the first sub-technology (T1). In our empirical application,
the value added of the industrial sector is generated by exploiting the labor force, capital stock,
and energy. The pollution-generating process is modeled in the second sub-technology (T2). Here,
the provincial carbon emissions generated by energy consumption are used to measure industrial
environmental performance. The by-production technology (TBP) proposed by Murty et al. [35] can be
defined as follows:

TBP = T1 ∩ T2

=
{
(xn, xp, y, z) ∈ RN+P+M+J

+ : (xn, xp) can produce y; xp can generate z
}
;

T1 =
{
(xn, xp, y) ∈ RN+P+M

+

∣∣∣ f (xn, xp, y) ≤ 0
}
;

T2 =
{
(xp, z) ∈ RP+J

+

∣∣∣∣g(xp) ≤ z
}
,

(1)

where f and g are continuously differentiable functions with existing derivatives with respect to
inputs and outputs, respectively. Murty et al. [35] and Shen et al. [36] both highlighted that the
sub-technologies satisfy certain economic assumptions, e.g., convexity, closedness, disposability, and
returns to scale. To distinguish desirable and undesirable outputs, free disposability (A1) is imposed on
T1 for all inputs and desirable outputs. The latter property implies that the given output quantities can
be produced using more inputs than necessary, or that the given quantities of inputs can produce less
output. The costly disposability (A2) is imposed on T2 for pollution-generating inputs and undesirable
outputs, which indicates that undesirable outputs cannot be abandoned freely as is the case for desirable
outputs. The free disposability and cost disposability axioms are formally given as follows:

A1 : i f (xn, xp, y, z) ∈ T1, then (x̃n, x̃p, ỹ, z̃) ∈ T1 f or all (−x̃n, −x̃p, ỹ) ≤ (−xn, −xp, y).

A2 : i f ( xp, z) ∈ T2, then ( x̃p, z̃) ∈ T2 f or all ( x̃p, −̃z) ≤ ( xp, z).
(2)

3.2. Output-Oriented Directional Distance Function

To evaluate the CSP of the industrial sector across the Chinese provinces, a measure of
environmental efficiency based on by-production technology is introduced to evaluate the DMUs.
The distance function is an equivalent representation of production possibility sets and it is a tool
used commonly for measuring the improvement space from the evaluated DMUs (provinces) to the
production frontier. Based on the improved output-oriented Färe-Grosskopf-Lovell index introduced
by Murty et al. [35], Shen et al. [36] proposed a nonradial measurement of DDF that allows for the
linearity of by-production technology. Here, we employ an output-oriented distance function that
is able to increase desirable outputs and decrease undesirable outputs simultaneously. This DDF is
defined as follows:

D(x, y, z; gx, gy, gz) = max{δ,θ ∈ R+ : (x, y + δgy, z− θgz) ∈ TBP}, (3)
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where δ and θ can be interpreted as the inefficiency scores that denote the maximum possible increase
in desirable outputs and decrease in undesirable outputs, respectively. If δ = 0 or θ = 0, the evaluated
province serves as a benchmark regarding a certain sub-technology. Based on Equation (3), the DDF
can be evaluated by solving the following linear program:

D(x, y, z; 0, gy, gz) = max
δ,θ,λ,σ

1
2

 M∑
m=1

δm/M +
J∑

j=1
θ j/J


s.t.

K∑
k=1

λkym
k ≥ym

k′ + δmgm
y , m = 1, · · · , M,

K∑
k=1

λkxn
k ≤ xn

k′ , n = 1, · · · , N,

K∑
k=1

λkxp
k ≤ xp

k′ , p = 1, · · · , P,

K∑
k=1

λk = 1,

λk ≥ 0, k = 1, . . . , K,
K∑

k=1
σkz j

k ≤ z j
k′ − θ

jg j
z, j = 1, · · · , J,

K∑
k=1

σkxp
k ≥ xp

k′ , p = 1, · · · , P,

K∑
k=1

σk = 1,

σk ≥ 0, k = 1, . . . , K,

(4)

where the nonzero directional vector (0, gy,gz), which is defined as the observed output quantities,
implies that the province seeks to maximize desirable outputs and minimize undesirable outputs.
Here, λk and σk are activity variables for T1 and T2 that suggest that two production frontiers are
allowed with different benchmarks. The assumption of variable returns to scale related to T1 and T2 is
represented by the constraints of

∑
k∈K

λ = 1 and
∑

k∈K
σ = 1, respectively.

Each linear program has its own corresponding dual formulation. The dual model allows for
derivation of the shadow prices of desirable outputs (πy) in T1 and those of undesirable outputs (ωz) in
T2. The dual formulation of the linear program in Equation (4) was developed by Baležentis et al. [37],
and it takes the following form:

D(x, y, z; 0, gy, gz) = min
πy,πn

x ,πp
x,ωp

x,ωz,v1,v2

[(
N∑

n=1
πn

xxn
k′ +

P∑
p=1

π
p
xxp

k′

−

M∑
m=1

πm
y ym

k′ − v1) + (
J∑

j=1
ω

j
zz j

k′ −
P∑

p=1
ω

p
xxp

k′ + v2)]

s.t.
M∑

m=1
πm

y ym
k −

N∑
n=1

πn
xxn

k −
P∑

p=1
π

p
xxp

k + v1 ≤ 0, k = 1, . . . , K,

P∑
p=1

ω
p
xxp

k −
J∑

j=1
ω

j
zz j

k − v2 ≤ 0, k = 1, . . . , K,

M∑
m=1

πm
y gm

y = 0.5/M,

J∑
j=1

ω
j
zg j

z = 0.5/J,

πm
y ≥ 0, m = 1, . . . , M,
πn

x ≥ 0, n = 1, . . . , N,
π

p
x ≥ 0, p = 1, . . . , P,
ω

p
x ≥ 0, p = 1, . . . , P,

ω
j
z ≥ 0, j = 1, . . . , J,

(5)
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where πn
x , πp

x, and πy are the shadow values associated with the clean inputs, dirty inputs, and desirable
outputs, respectively, in sub-technology T1; ωp

x and ωz are the shadow values of the dirty inputs and
undesirable outputs, respectively, generated as defined by sub-technology T2; and variables v1 and v2

represent the variable returns to scale assumption in T1 and T2, respectively. The objective function in
Equation (5) seeks the minimum shadow profit by summing the observed shadow profits across the
two sub-technologies.

The CSP can be derived as a ratio of the shadow values from Equation (5). The resulting
CSP indicates the opportunity costs associated with decreasing the undesirable outputs by a single
additional unit and thus abandoning the desirable outputs. Shen et al. [36] argued that the CSP could
be considered the marginal abatement cost for each DMU. The case of energy-related carbon emissions
can be considered as an example. As carbon emissions are produced by consumption of energy,
carbon emissions are linked to the underlying emission factors. Thus, reduction in carbon emissions
requires decline in energy consumption following the material balance condition. Finally, the desirable
outputs (including the value added) will be contracted owing to decline in the input quantity (energy
consumption). Thus, the CSP is obtained as follows:

CSP =
ω

j
z

πm
y
= −

∂D̂(x, y, z; 0, gy, gz)/∂z

∂D̂(x, y, z; 0, gy, gz)/ ∂y
. (6)

The levels and trends of the CSP could represent valuable information for policy makers. A higher
CSP indicates greater marginal carbon abatement cost, i.e., a DMU would have to cede further desirable
output for a given level of carbon reduction, and vice versa. If there were two DMUs, A and B, and the
value of the CSP for A were greater than that for B, then policy makers might persuade B to curb its
carbon emissions to a greater extent. Boussemart et al. [25] highlighted that rich provinces in China
have a high CSP, while less-developed regions show relatively low abatement costs. Moreover, the
evolution of the CSP implies improving environmental performance if the CSP is rising. Knowledge
of such change could help policy makers evaluate conditions regarding the abatement activities of
the DMUs.

4. Data and Results

4.1. Data

This study focused on industrial production, including mining and quarrying, manufacturing,
electricity, heat, gas, and water. The period of investigation was 2003–2017. Labor was measured
based on the number of employees of firms in the industrial sector. The data were obtained from the
China Statistical Yearbook for Regional Economy [38], statistical yearbooks of each province, China
Economic Census database [39], and EPS database [39]. Capital refers to the capital stock employed in
the industry, which was calculated using the perpetual inventory method. The data on fixed asset
investment were taken from the National Bureau of Statistics [40]. The variation in depreciation rate
among different provinces was taken into account with reference to the depreciation rate of each
province given in Jiang et al. [41].

Energy consumption represents the final energy consumption by the industrial sector. It is equal
to the total energy consumption, excluding the consumption for conversion of primary energy into final
energy and losses during energy transformation. The data, derived from the China Energy Statistics
Yearbook [42], covered 22 types of energy in terms of physical units. We converted the data to the unit
of coal equivalent based on standard conversion factors. It is noteworthy that data on five types of
energy (i.e., liquefied petroleum gas, liquefied natural gas, blast furnace gas, converter gas, and coal
gangue) were missing for 2003–2009. The value added represents the desirable output of the industrial
sector. The data were taken from the National Bureau of Statistics [40]. The emission factors for the
various energy types were collected from the Intergovernmental Panel on Climate Change [43] and the
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National Development and Reform Commission [44]. Data for the province of Tibet were not available.
All monetary variables were deflated by price indices obtained from the National Bureau of Statistics
website [40] using constant prices of 2011 as benchmarks. Descriptive statistics of the five variables are
shown in Table 1. The total number of observations was 450.

Table 1. Descriptive statistics of variables defining production technology.

Variable Units Mean Std.Dev Min Max

Labor millions 3.94 4.10 0.14 19.77
Capital billions US dollars 249.81 290.51 3.25 1847.53
Energy million tons of standard coal 53.83 39.84 0.784 195.25
Value added billions US dollars 9.93 96.33 2.16 530.19
CO2 million tons 166.87 124.00 5.44 569.38

Note: in 2011, 1 US dollar was approximately equal to 7 yuan.

4.2. Empirical Results

As listed in Table 2, the values of industrial CSP for the Chinese provinces followed an increasing
trend (average rate of growth: 3.83% p.a.), and the average CSP was approximately $562.43 USD/ton
during the entire period of study. Figure 1 shows that the trend of industrial CSP in China could be
divided into three subperiods. The first stage covers 2003–2007 when the CSP decreased from $534.14
USD/ton to $439.71 USD/ton. It shows that the model of economic growth in China was generally
extensive before the 2008 financial crisis. The second stage refers to the period 2007–2016 when the
CSP maintained rapid increase. This can be attributed to the binding goals represented by specific
environmental indicators set by central government in the Five-Year plans since 2006. The third stage is
represented by slight decline of the CSP after 2016. On signing up to the Paris Agreement in 2016, China
promised to start building its National Carbon Trading Market in 2017. The expectations associated
with the establishment of the National Carbon Trading Market could explain the temporary decrease of
the CSP at this time. However, various reasons could have contributed to the slowing of the progress
of this plan scheduled for the first half of 2017. Although the plan was not released officially until the
end of 2017, to a certain extent, it might have affected the emission reduction behaviors of provinces
and departments, which could have caused the decline of the CSP at national and regional levels.

The provincial and regional evolutions of industrial CSP are shown in Table 2 and Figure 1.
The eastern region exhibited the highest CSP in China, and most provinces had a positive trend.
The only exception is Hainan Province, which had a slightly negative trend, which might reflect the
rapid development of its energy-intensive industries after 2007. Indeed, certain energy-consuming
industries (e.g., the petroleum processing industry, natural gas chemical industry, and power industry)
have been identified as the pillar industries of Hainan Province. These industries contributed 54.4% of
the total industrial output value in 2007 [45].

Guangdong Province had the highest CSP, and the actual carbon emissions in Guangdong were
close to the goal set by the government [46]. Furthermore, as the most developed city in Guangdong,
Shenzhen faces serious environmental constraints [47]. Ningxia had the lowest CSP, which might
reflect its relative technical inefficiency [48].

Two inland provinces showed decline of the CSP—Heilongjiang and Xinjiang. Being the old
industrial bases in China, the three northeastern provinces (i.e., Heilongjiang, Liaoning, and Jilin) all
had low CSPs. However, the energy structure of Heilongjiang Province is dominated by coal [49],
which is likely the reason for its lower absolute value and downward trend of its CSP. In addition,
a mode of extensive development prevails in Heilongjiang Province, which implies substantial energy
consumption, high levels of pollution, and low efficiency [50]. Zhang et al. [51] highlighted that
the unreasonable industrial structure in Xinjiang Province is an important reason for the increase of
regional carbon emissions. Actually, the value added of several energy-intensive sectors (e.g., petroleum
processing, the chemical industry, and oil and gas extraction) accounts for a large share of the provincial
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GDP in Xinjiang. However, these sectors feature low energy efficiency and they contribute 90% (almost
all) of the direct (indirect) carbon emissions in Xinjiang.

Generally, most economically developed provinces are located in the eastern region of China,
and the results indicate that these provinces face increasing carbon abatement costs. In comparison
with the eastern area, the industrial CSP of provinces in inland and western regions is lower. However,
the lower level of the CSP in inland and western regions suggests that their environmental production
technology might be less efficient and/or they tend to consume more energy inputs. This result is
consistent with the findings in Boussemart et al. [25], Zhou et al. [52], and Song et al. [5].

Table 2. Description of the carbon shadow price (CSP) of the Chinese industrial sector (USD/ton).

Region Province Mean Max Min Std.Dev. Trend (%)

Eastern

Beijing 712 1300 361 306 9.40
Fujian 869 1409 576 275 5.60
Guangdong 1095 1529 678 283 5.87
Guangxi 586 855 425 139 4.76
Hainan 353 397 313 25 −0.01
Hebei 354 433 283 45 2.68
Jiangsu 793 1074 499 167 4.78
Liaoning 425 551 314 89 1.53
Shandong 601 810 426 123 4.40
Shanghai 766 1019 544 138 4.01
Tianjin 802 1255 405 284 8.12
Zhejiang 914 1293 695 206 4.63

Inland

Anhui 510 714 350 136 5.50
Heilongjiang 704 1841 306 487 −11.19
Henan 640 894 479 134 3.10
Hubei 564 964 327 231 8.60
Hunan 620 940 356 232 8.39
Inner
Mongo. 267 459 178 67 −0.20

Jiangxi 737 904 561 121 3.00
Jilin 442 696 202 179 9.71
Shanxi 283 340 233 31 0.79

Western

Chongqing 647 1017 401 215 7.27
Gansu 313 358 275 26 1.38
Guizhou 214 375 122 92 8.94
Ningxia 166 214 134 22 −0.25
Qinghai 405 547 221 113 5.46
Shaanxi 696 1675 461 299 −0.32
Sichuan 723 964 500 176 3.57
Xinjiang 300 367 217 59 −4.31
Yunnan 369 603 236 135 7.27

China Average 562 1841 122 294 3.83

Note: trend indicates stochastic annual growth rates for 2003–2017 as estimated using the ordinary least squares
method. The unit of the CSP is USD/ton and in 2011, one US dollar was approximately equal to seven yuan.
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Figure 1. Average CSP of the Chinese industrial sector during 2003–2017 (USD/ton).

Kernel densities can be used to reveal the complex distributions of economic variables.
The distribution of industrial CSP across the three main regions of China is depicted in Figure 2.
The range of the CSP is $121.71–1840.71 USD/ton. The CSP is centered on $400 USD/ton in most
provinces. However, disparities in the distributions of the CSP can be observed, i.e., they are clearly all
right-skewed distributions.
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To identify the changes in industrial CSP over time, time-specific distributions are depicted for
each region in Figures 3–5. In the eastern region (Figure 3), it can be seen that the kernel density
is displaced to the right, which corresponds to growth in the industrial CSP. Moreover, the curve
is flattening, which confirms the increasing disparity of the CSP among the provinces. It implies
regional imbalance, especially in terms of environmental governance, which was also found by both
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Chen et al. [53] and Jin et al. [54]. Different patterns of the dynamics in the distributions of the CSP
can be observed in inland (Figure 4) and western (Figure 5) regions. Instead of maintaining growth,
the industrial CSP shows a type of sigma convergence in these regions during 2003–2010.
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The sigma convergence was tested for the three regions of China by regressing the coefficient of
variation on the trend over time. As shown in Table 3, the coefficient of variation of the industrial CSP
on the trend over time was negative in both inland (−0.59 p.a.) and western (−0.48 p.a.) areas in the
first period. However, divergence in the CSP occurred during 2011–2017. For instance, the positive
trend (0.39 p.a.) in the inland region was statistically significant (t-value = 4.46), indicating increasing
disparity. These results are in agreement with those of both Boussemart et al. [25] and Zhou et al. [52].

Table 3. Tests of sigma convergence of industrial CSP among the three main regions of China.

Period 2003–2010 2011–2017

Trend Coefficient t-Value Trend Coefficient t-Value

Eastern 0.06 2.85 0.37 7.68
Inland −0.59 −5.37 0.39 4.46

Western −0.48 −3.18 0.13 1.53

Note: the linear trend was estimated by considering the coefficient of variation as the dependent variable and the
time index as the independent variable.

5. Conclusions

This study investigated the cost of carbon emission abatement in China’s industrial sector during
2003–2017. A nonparametric framework based on by-production technology was employed to estimate
provincial-and regional-level CSPs. For this purpose, a dual formulation of the by-production DEA
model was developed and applied, which to the best of our knowledge represented this first such a
model has been applied to CSP evaluation. The sigma convergence test was applied to examine the
evolution of marginal abatement costs across the three main regions of China.

Generally, the results showed an increase of the CSP in the Chinese industrial sector, which
implies increasing costs associated with further reduction in carbon emissions. With regard to the
convergence of regional CSPs, inland and western regions of China showed significant convergence
during 2003–2010 but divergence throughout the rest of 2001–2017, whereas divergence was observed
in the eastern region during the entire study period. The following policy implications can be derived
based on the empirical results. First, environmental performance should be defined in terms of binding
goals set by the government to ensure efficient policy implementation. Indeed, the binding goals
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represented by the environmental indicators set by central government in the Five-Year plans since
2006 resulted in obvious upturn of the CSP. Second, the National Carbon Trading Market should
be developed further to alleviate the severe regional imbalance in carbon emissions across China.
In fact, the Ministry of Ecology and Environment of China has been making great efforts to build a
National Carbon Trading Market since the end of 2017, following a six-year implementation of the
pilot scheme for carbon trading. Third, stricter supervision of environmental pollution is needed for
inland and western regions of China, especially those provinces with deteriorating carbon emission
performance (e.g., Heilongjiang and Xinjiang). Within the eastern region, the spillover of cleaner
production technologies is especially topical because of the increased spread in the CSP across the
provinces. Information on CSPs might assist the government in setting up an effective carbon trading
system and encourage funding for the promotion of cleaner technologies. Differences in the leverage
effect of the money spent on existing environmental programs in China are evidenced by the increasing
spread of the CSPs.

It is recognized that this study had certain limitations. For instance, the research focused on
estimation of the industrial CSP without consideration of other economic sectors. Therefore, future
research should compare the dynamics of the CSP across different sectors of the Chinese economy,
which would allow deeper insight into the possible effects of carbon trading.
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