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Abstract: Lignin is the most abundant aromatic biopolymer and is the sustainable feedstock most
likely to supplant petroleum-derived aromatics and downstream products. Rich in functional groups,
lignin is largely peerless in its potential for chemical modification towards attaining target properties.
Lignin’s crosslinked network structure can be exploited in composites to endow them with remarkable
strength, as exemplified in timber and other structural elements of plants. Yet lignin may also be
depolymerized, modified, or blended with other polymers. This review focuses on substituting
petrochemicals with lignin derivatives, with a particular focus on applications more significant in
terms of potential commercialization volume, including polyurethane, phenol-formaldehyde resins,
lignin-based carbon fibers, and emergent melt-processable waste-derived materials. This review will
illuminate advances from the last eight years in the prospective utilization of such lignin-derived
products in a range of application such as adhesives, plastics, automotive components, construction
materials, and composites. Particular technical issues associated with lignin processing and emerging
alternatives for future developments are discussed.
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1. Introduction

The word “lignin” is derived from the Latin word “lignum”, meaning “wood” [1]. It is in wood
that lignin may be most familiar to the layperson. A sample of wood contains light-colored material
and a darker material that gives wood its characteristic grain pattern. The darker material is primarily
lignin. The structural parts of most plants are likewise composed of lignin intermingled with cellulose
and hemicellulose. On a cellular level, it is the plant cell middle lamella and the secondary cell wall
that mainly contain lignin, accounting for 15–35% of a plant’s dry weight [2,3]. Chemically, lignin
is a three-dimensional structure that combines phenyl propane units through both ether and alkyl
linkages (Figure 1). The rigidity afforded by the 3D structural array of primarily aromatic subunits
in lignin lays the basic foundation to provide structural integrity to plant or timber-built structures.
Despite the well-known role of lignin as a structural element of plants, efforts to valorize lignin
as a component of synthetic structural polymers and composites for commercial applications have
not yet reached their presumed potential. One reason for the slow development of this area may
be that, in contrast to feedstock for most commercial products, lignin is not a material having a
discrete, well-defined structure, both because of the complexity and because the particular structure
of lignin differs depending on the plant species, extraction method and even growing conditions [4].
Despite the challenges involved, developing strategies to harness lignin for value-added applications
is imperative for the success of the burgeoning green economy. The average annual disposal of lignin
in the agricultural industry is around 50 Mt, while another 6 Mt of waste lignin/chlorolignin results
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from paper/pulp production [5], and current projections suggest that lignin production will exceed
120 Mt by 2022 [2]. Lignin also comprises 15–35 wt.% of the >9 billion tons/y of lignocellulosic waste
from agriculture [6]. Only 2% of waste lignin is used to synthesize chemical compounds like vanillin
and polyol compounds, while the rest of the lignin is burned as a low-cost, albeit low fuel value
(25.6 MJ/kg) [7]. As momentum builds towards cellulosic ethanol as a primary fuel source, even more
lignin will be left behind after removal of cellulose from the composite biomass for its conversion to
cellulosic ethanol.
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The current review focuses on significant advances in materials derived from lignin with specific
potential to replace petroleum-based chemicals. The commendable success in generating polyols for
polyurethane and phenol-formaldehyde industries, replacing high-cost petroleum-based precursor
materials in carbon fibers, and the utilization of lignin in extending sustainable sulfur cements are
particular topics highlighted herein. In addition to these approaches, the challenges and the impact
on each application for replacing traditional commercial materials are discussed. Remarks on future
strides toward a sustainable world and insight on possible future research directions and challenges
for the field are provided.

2. Lignin Derivatives for Polyurethane Synthesis

Polyurethanes are widely used plastics, traditionally prepared from petroleum-derived polyols and
isocyanates. Polyurethanes have shown tremendous property tunability depending on the particular
formulation, resulting in a commensurately wide range of applications. Polyurethane products can
take the form of adhesives, sealants, rigid or flexible foams, and coatings [8]. Half of the polyol market
in the United States is directed to polyurethane production [9]. The high abundance of phenolic and
aliphatic –OH groups in lignin makes it an obvious candidate to replace petroleum-derived polyols
in polyurethane production (Table 1). The most direct route to lignin-polyurethanes that has been
explored is to replace polyols with lignin particles (Scheme 1) [10]. In these studies, careful evaluation
of how properties are related to hydroxyl: isocyanide ratio, lignin solubility in reaction media, and
lignin particle dispersion must be undertaken. Although lignin is comprised of a high number of
phenolic moieties, isocyanate groups exhibit moderate selectively for reaction with aliphatic OH groups
over phenolic groups. Furthermore, due to the prevalence of bulky fragments in lignin, isocyanate
groups do not react with all of the OH groups of lignin. For these reasons, the greatest success has
been observed when the NCO/OH ratio is high, generally ≥1.0 mol NCO/mol hydroxyl [11]. Another
strategy to increase coupling to lignin particles is to modify lignin to increase its solubility and to
increase the number of aliphatic OH groups available for reaction. To facilitate discussion, products
are classified as modified and unmodified lignin-based polyurethanes.
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Table 1. Summary of Lignin Polyurethanes.

Lignin type Application NCO/OH
Ratio

Optimal
Lignin wt.%

Figure of Merit Most
Important for Target

Application
Ref.

Spruce wood meal
lignin Coating 1.7 47 Tensile strength 41.6 Mpa 12

Kraft lignin Coatings and
adhesives 1.3 70 Elastic modulus 3.70 Gpa 13

Kraft lignin Adhesives 1.2 46.5 Lap shear strength 6.3 Mpa 14

Organosolve lignin,
modified with

cellulose
nanowhiskers

Rigid foam NA 33 Compressive strength 0.52
Mpa, modulus 12.8 Mpa 24

Oxypropylated kraft
lignin Rigid foam 1.7 100 Compressive strength 0.14

Mpa, modulus 3.41 Mpa 10
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Scheme 1. Prototype reaction showing urethane bridge formation with lignin and isocyanate crosslinkers.

2.1. Polyurethanes Prepared from Unmodified Lignin

In a recent report by Lu and coworkers [12], spruce wood meal was pretreated by boiling in
1,4-butanediol with HCl. The pretreated lignin then reacted with methylene diphenyl diisocyanate,
(MDI) as the crosslinker in dioxane. This formulation allowed casting of a monolithic polyurethane
film. A maximum tensile strength of 41.6 MPa was achieved at a NCO:OH ratio of 1.7, equating to an
impressive 47% lignin by mass. These polyurethanes exhibit properties competitive with traditional
formulations used in coatings requiring high performance in hardness and solvent resistance [12].

Griffini and coworkers [13] demonstrated that lignin polyurethanes can also have high performance
metrics for wood and glass adhesives. These adhesives were prepared from unmodified kraft lignin,
which is soluble in 2-methyltetrahydrofuran (MeTHF). When kraft lignin was reacted in MeTHF
with toluene diisocyanate (TDI) as the crosslinker, a maximum adhesive strength (3.70 GPa) was
achieved with a NCO/OH ratio of 1.3 and contained 70 wt.% lignin [13]. Another approach to lignin
polyurethane adhesives allows reaction of technical-grade kraft lignin with MDI in THF [11]. These
adhesives displayed reasonable performance for binding wood surfaces, with a maximum lap shear
strength of 6.3 MPa achieved at a 1.2 NCO/OH ratio.

2.2. Polyurethanes Prepared from Modified Lignin

The mechanical properties of traditional polyurethane resins are mainly controlled by the degree
of crosslinking with isocyanate groups. Recent efforts have centered on modifying lignin in ways
hypothesized to increase crosslink density. Demethylation of methyl ethers is one such strategy that
can increase the number of OH groups available for crosslinking. The 5-methoxy group in syringyl
alcohol subunits, for example, is conveniently converted to a hydroxyl group by exposure of the lignin
to SO2 or HBr. The SO2-mediated route leads to an impressive 54% increase in hydroxyl groups [14],
while the HBr-mediated method increased hydroxyl content by 28% [15]. In this case, however, the
significant increase in crosslinkable sites led to films that were too brittle for practical applications.
The brittleness can be controlled to some extent by the addition of polyethylene glycol to tune the
crystallinity. In contrast with some previous lignin polyurethanes comprising up to 70 wt.% lignin,
however, the more-crosslinked material could only be formulated with up to 17 wt.% lignin in this case.
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Some of the technical constraints of using lignin in its crosslinked macromolecular form can be
overcome by prior liquefaction. Oxypropylation has been recognized as an especially productive
method for the liquefaction of lignin [16,17]. The lower nucleophilicity of phenols with respect to
aliphatic alcohols diminish their reactivity towards isocyanates. Consequently, the phenolic moieties
in lignin do not efficiently react with isocyanate monomers. Oxypropylation was used as an effective
effort to enhance the reactivity, as lignin is reacted with propylene oxide to form aliphatic ligno-polyol
derivatives and polypropylene oxide (Scheme 2) [18]. Introducing multiple ether units as chain
extenders also served to liquify the solid lignin (Tg = −75 ◦C), minimizing the technical issues in
processability [19–22]. In most formulations for PU (polyurethane) foams, the resultant polypropylene
oxide homopolymer is separated from the mixture before reacting with isocyanate monomers. Pavier
and Gandini devised an efficient method to remove the homopolymer via extraction with hot hexane
followed by vacuum drying [19].
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In the quest to access lignin polyurethanes for rigid foam applications, success has come from
employing oxypropylated ethanol organosolve lignin, modified with cellulose nanowhiskers [23].
This modified lignin was reacted with MDI utilizing dimethylcyclohexaneamine and by employing a
Mannich base as a catalyst to improve reactivity. Incorporating just 5 wt.% of cellulose nanowhiskers
into the foam led to a remarkable 260% increase in compressive strength, while adding an additional
1–5 wt.% cellulose fibers did not lead to any additional improvements. The maximal compressive
strength was obtained with 33 wt.% lignin incorporation, while attempts to increase this loading led to
a precipitous drop in compressive strength. Follow-up efforts have achieved an additional 30% increase
in compressive strengths when the lignin was modified with 1,4 butanediol chain extenders. The
improved strength likely results from better reactivity that should result from less steric encumbrance
about hydroxyl sites.

Li and Ragauskas reported the utilization of oxypropylated kraft lignin for target application as
rigid foams [10]. In this modification, the oxypropylation process effectively increased the aliphatic
OH content in the lignin by 3.5-fold, as compared to unmodified kraft lignin. For comparison, control
PU foams using industry standard Pus (sucrose polyol or glycerol polyol with MDI crosslinkers) were
prepared under identical conditions. A methodical approach was undertaken in which sucrose polyol
was replaced with increasing fractions of the oxypropylated lignin. The NCO:OH ratio was held
constant at 1.7 for these foams. The beginning of the foam reaction is referred to as the cream time,
a point at which the reaction mixture turbidity increases as a result of the formation of gas bubbles
giving the mixture a creamy consistency and appearance. A shorter cream formation time is generally
desirable. In this work, the cream time decreased with increasing lignin content. Impressively, the
yield strength and the compressive modulus of lignin PU foams were improved by 1.44-fold and 135%,
respectively, compared to the sucrose polyol PU foams.

Applications of polyurethanes extend beyond adhesives, coatings and structural foams. The polar
urethane functional groups and relative chemical inertness makes polyurethanes attractive components
of polar stationary phases for chromatographic and chemoselective membrane applications. One effort
to leverage lignin for such applications was undertaken by Evtuguin et al. in 2011 [24]. This work
employed eucalyptus kraft lignin modified with chain extenders to prepare PU in the presence of
carbon nanotubes. The lignin used was modified via oxidative treatment under aerobic conditions and
the isocyanate crosslinker was pre-modified with poly (propylene glycol) having terminal TDI groups.
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One of the major objectives of this modification was to ensure that all of the material is covalently
bound in the matrix to minimize leaching of small molecular material from composite membranes.
The poly (propylene glycol) segments also contribute to very low Tg values, which made it feasible to
fabricate self-plasticizing membranes at room temperature. To maintain the thermoset properties, the
polymer had to be synthesized with a NCO:OH ratio of 1.5 and a relatively low 10 wt.% lignin content.
The resultant optimized lignin PU-doped multiwall carbon nanotubes proved moderately effective as
ion-selective membranes.

As the efforts discussed in this section suggest, lignin can be used as a promising substitute for
petroleum-derived commercial polyols in polyurethane. Some of these studies have already shown
the potential use of lignin as the sole hydroxyl group-bearing component. Lignin plays a role as
a heterogeneous polyol compound, having both aliphatic and aromatic –OH groups to react with
isocyanates. Urethane bridges are likely to be formed with aliphatic OH groups over the phenolic
groups, yet the presence of phenolic moieties enhances the overall mechanical strength of PU.

Despite the promise of lignin in this area, the uniform reactivity of lignin towards isocyanate is
diminished due to the low accessibility of –OH groups, so more studies on pretreatment of lignin to
improve the accessibility of reactive sites are needed. When some reaction sites are inaccessible, a higher
NCO:OH ratio has to be used to attain the target materials. Utilizing low molecular weight lignin with
different modifications, such as liquefaction, oxypropylation, demethylation, and hydrogenolysis have
all been proven useful for alleviating the need to use an excess of the toxic isocyanates. In addition to
the environmental and sustainability considerations, one of the major benefits of using lignin-based PU
is to minimize the cost of the overall manufacturing process over current commercial Pus. Thus, a cost
analysis on each modification method needs to be undertaken to compare and analyze the profitability
of replacing petrochemicals with lignin.

3. Lignin in Phenol-Formaldehyde (PF) Resins

Phenol-formaldehyde (PF) resins were synthesized by using condensation of formaldehyde
with phenol. PF resins are frequently used as adhesive in wood composites such as particle board
or as binders in lamellar wood products like plywood. PF resins are preferred over urea- or other
formaldehyde-based resins owing to higher strength, good chemical resistance, dimensional stability
and resistance to moisture [25]. The barrier to more widespread use of the superior PF resins is the
high cost of petroleum-derived precursors. Lignin has great potential for replacement of the high cost
phenolic components of PF resins. In contrast to current works on polyurethanes, which has employed
wood-derived lignin, most lignin used in PF resin derives from annual, grassy plants [26,27]. Lignin
from these species are high in p-coumaryl alcohol units, the least-substituted monolignol unit. Resins
made using unmodified lignin always required longer pressing time and high pressing temperatures.
It was estimated that kraft lignin has only 10% of the reactivity towards formaldehyde that phenol
has [26,28]. Hence, the current trend is to use modified lignin to increase the reactivity towards
formaldehyde, a direction discussed for lignin Pus in the previous section. Among all the modifying
techniques, the demethylation, phenolation, and hydroxymethylation techniques have emerged as the
most effective approaches in the last decade [28]. Generally, formaldehyde reacts with the 2-,4-, and 6-
position of phenol due to the directing ability of the hydroxyl group for electrophilic substitution. The
demethylation converts some of the lignin methoxy groups into hydroxyl groups, resulting in catechol
moieties that have increased reactivity with formaldehyde. In hydroxymethylation and phenolation
lignin is pretreated with formaldehyde or thermally pretreated with phenols, respectively (Scheme 3).
The phenolation procedure involves treating lignin with phenol under acidic conditions in organic
solvents, leading to the condensation of phenol with lignin side chains and aromatic rings [29].
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Çetin and Özmen reported lignin-based phenol-formaldehyde films (LPF) that have mechanical
properties on par with those of commercial PF resins. The organosolve lignin precursor was
hydroxymethylated by its reaction with formaldehyde in alkaline aqueous methanol [30]. The LPF
films made in this fashion comprise up to 30 wt.% lignin. Particle board fabrications made using this
LPF exhibited a 32% increase in ultimate tensile strength versus boards prepared using a commercial PF
resin. Other physical properties including modulus of rupture, internal board strength, and modulus
of elasticity are also comparable. LPF resins further demonstrated lower water absorption than the
commercial resin. However, when the lignin content was increased to >30 wt.%, poor internal board
strength perpendicular to the plane of the board was noted. Likewise, the thickness swelling rate of
high lignin-content LPF-bonded particleboards (<0.24 % h-1) is higher than that of commercial resin
(0.068 % h-1) after 24 h. This may be due to high water uptake ability of the hemicellulose fraction
embedded in this type of lignin. A drawback for LPF resins in this study is that they require up to
30-min gelation time. Economical manufacturing of commercial board products, however, requires a
gelation time of 10 min or less [25].

The free formaldehyde content was also higher for LPFs (0.21–0.25%) compared to 0.18% for
control PF. Free formaldehyde is a concern from a health and regulatory compliance standpoint.

Another effort to utilize LPF resins for plywood bonding could incorporate up to 50 wt.% of
unmodified kraft lignin without compromising performance [31]. This study demonstrated that the
reactivity of LPF resins towards formaldehyde is lower than petroleum-based PF due to the lack of
available sites for polymerization. LPF-bonded products required 10 min of hot-pressing to reach
maximum strength. A cooling phase applied immediately after hot pressing resulted in a 25% increase
in bonding strength between layers. This interesting behavior is likely a result of the thermoplastic
behavior of lignin in the thermosetting adhesive system. In contrast to previously discussed systems
comprising organosolve lignin, these kraft lignin-derived LPF resins showed distinct variation in
mechanical properties based on humidity, even after full curing. Tensile shear strength, for example,
falls from 6.0 MPa at 2% relative humidity to 0.9 MPa at 98% relative humidity. The significant
water uptake and consequent dependence of mechanical strength on relative humidity is likely a
result of the increase in hemicellulose content present in kraft lignin compared to the essentially
saccharide-free organosolve lignin [32]. Despite problems with humidity, the kraft lignin-derived
LPF resins exhibit favorable viscosity, low residual solids content, and low free formaldehyde/phenol
content that compare favorably to commercial PF resins for similar target applications.
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Another utilization of modified lignin for plywood-bonding LPF resins was reported by Huang
and coworkers employing hydroxymethylated alkaline rice straw lignin [25]. These researchers
hypothesized that alkaline lignin may perform better than other types of lignin in bonding because
larger molecular fragments of alkaline lignin could allow for more rapid gelation [33]. Resins comprising
35 or 50 wt.% lignin and formaldehyde: phenol ratios of 1.8 or 2.2 gave the best gelation times of
10.2–10.3 min, with impressively low free formaldehyde content (0.01–0.02 wt.%). The important
physical properties like viscosity, residual solid content, gelation time and free formaldehyde content
are all well within the range necessary for commercial application. A thorough mechanical properties
analysis is still needed on these materials, however, as no mechanical strength analyses were reported
(Scheme 4).
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Zhao et al. used phenolated wheat straw steam explosion lignin to prepare LPF resins [34].
The phenolated lignin exhibited a 30% increase in total phenolic content per gram of material. The
resultant LPF resins were used to prepare plywood by using hot-pressing. Plywood bonded with
resins in which up to 70 wt.% of the resin is comprised by lignin passed the Chinese National Standard
(GB/T 14732-2006) for first-grade plywood. The best performance in mechanical properties (40 wt.%
lignin and 0.43% free formaldehyde) were achieved with a plywood having 1.11 MPa of tensile bond
strength, compared to 1.15 MPa for traditional commercial PF resin-bonded plywood. The gelation
time was only 7 min and all the other parameters such as viscosity, solid content, and pH values all are
within the parameters required for commercialization standards.

As is the case when preparing lignin PU resins, the utilization of modified lignin resulted in more
compatible for PF resin formulations. All the LPF parameters such as viscosity, solid content, free
formaldehyde content, and mechanical properties can match those metrics required for commercial
resins for plywood. However, the macromolecular structure of lignin limits the number of reactive
sites and lowers the number of phenolic moieties per unit mass compared to commercial phenol.
These impediments can be minimized through modification techniques. A notable improvement in
formaldehyde/phenol mass ratio was observed as increased amount of formaldehyde is required to
overcome the steric impediments of phenolic moieties in lignin. As a result, the final free formaldehyde
content in LPF resins is stepped up over the commercial PF resins. However, even a small amount
of formaldehyde gas can cause serious health problems. Thus, it is required to introduce a standard
list of optimal amounts of formaldehyde, specific to each type of modified lignin rather than using
an excess. Conversely, Younesi-Kordkheili et al. reported diminishing formaldehyde emission in
urea-formaldehyde resin modified with phenolated lignin. Interestingly, even 10% modified lignin
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incorporation into a resin can lead to a significant decrease in free formaldehyde content (0.26%)
compared to the control (0.40%) [35]. The foregoing examples are summarized in Table 2.

Table 2. Summary of LPF Resins.

Lignin Type
Incorporated

Lignin % of the
Best Sample

Formaldehyde/
Phenol

Mass Ratio

Free
Formaldehyde

%

Gelation
Time/Min

Mechanical
Properties/Mpa Ref.

Hydroxymethylated
organosolve lignin 20 1.07 0.25 29 Tensile

strength 1.02 31

Hydroxymethylated
alkaline rice
straw lignin

35 1.8 0.01 10.2 NA 26

Phenolated wheat
straw steam

explosion lignin
40 1.5 0.43 7 Tensile

strength 1.11 35

Unmodified kraft
lignin 50 NA 0.40 20 Lap shear

strength 3.4 32

4. Lignin-Derived Carbon Fibers

Carbon fibers (CFs) are light weight and have high tensile strength, specific modulus, low electrical
resistivity, and high resistance to torsion, manifesting better mechanical properties than those of steel
in many applications for a fraction of the weight [36]. This attractive combination of light weight and
high strength have made CFs extremely attractive as components of vehicles to improve fuel efficiency,
high-performance sporting goods and as a substitute for infrastructure components. Unfortunately,
the high cost of CF precursors has been a hurdle to their more widespread use. The main industrial CF
precursors have been polyacrylonitrile (PAN) and pitch [37].

PAN based CFs resulted in higher tensile strength over pitch based fibers, yet pitch based fibers
manifested a higher modulus compared to PAN.

Finding more affordable and sustainable CF precursors could lead to a transformative advance
in pursuit of high strength materials to replace environmentally damaging petrochemical polymers.
Among sustainable CF precursors, lignin has emerged as a premier candidate by merit of its composition
by 60 wt.% carbon, good thermal stability, and the general observation that aromatic polymers tend to
more efficiently degrade to CF-type materials than aliphatic precursors do. Lignin based CFs have
shown much potential for robust commercial applications, and a plethora of ongoing research can
be found in this area over the last 5–10 years. Replacing PAN-derived CF fibers with lignin-derived
CFs would reduce the emission of harmful CO2 by 22% and could lower manufacturing cost by
30–40% if preparation could be achieved at similar temperatures. The decrease in the thermoplasticity
of lignin, recalcitrance in processing, lower carbon content, low molecular weight fractions, and
lower modulus compared to PAN-based fibers has slowed the development of more sustainable
lignin-based alternatives [38]. Among many manufacturing processes, this review mainly focusses on
low-cost extrusion and melt spinning processes. These methods are convenient and free from using
toxic solvents.

Due to diminished thermoplastic and flow properties, the melt spinning of unmodified lignin
is a difficult task to accomplish, yet impressive recent attempts have been reported with solvated,
unmodified lignin. Baker et al. used both unpurified thiolignin and a sample of the same hardwood
thiolignin that was extracted in organic solvents as CF sources [39]. The unpurified lignin exhibited
very poor processability under the melt spinning technique, whereas extracted lignin exhibited better
spinnability. The extracted lignin consisted of a greater proportion of low molecular weight fractions
which are preferentially solubilized in organic solvents. Such low molecular weight fractions have
a plasticizing effect on the lignin. The best mechanical properties were achieved when CFs melt
spun from extracted lignin were subsequently oxidatively stabilized only at very slow heating rates
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(<0.05 ◦C/min). Carbonized fibers produced in this way still did not manifest striking mechanical
properties with a tensile strength of 0.51 GPa and tensile modulus of 28.6 GPa.

As the study by Gallego and Baker demonstrates, the recalcitrance of neat lignin and subpar
mechanical strength of lignin CFs is a common problem in the field. Significant attempts have been
made to employ lignin in polymer blends to achieve CFs having improved processability and strength.
In one study, Wang, et al. blended fractionated commercial hardwood thiolignin with poly(lactic
acid) (PLA) in varying ratios [40]. After extrusion at 220–240 ◦C, initial thermal stabilization was
accomplished by heating to 280 ◦C at a rate of (0.05 ◦C/min) followed by carbonization by heating to
1000 ◦C at 3 ◦C/min. CFs were successfully produced by this method for compositions comprising
from 0–20 wt.% PLA. The addition of PLA results in increased porosity and commensurately lower
tensile strength as PLA content increases.

In 2017, Li et al. proposed the use of a miscible blend of fractionated kraft lignin and PAN
as a means to increase the processability of CF formulations [41]. Prior to mixing, kraft lignin was
fractionated into water-soluble and insoluble using a common laccase-mediator system. The treatment
resulted in fractions having different molecular weights of lignin. It was claimed that treatment also
leads to reduced total OH content groups in both soluble and insoluble fractions, thus improving
the interactions with PAN and the nonpolar solvent system. The homogenized blend containing less
polydisperse lignin had improved extrusion ability to form CF fibers. To accomplish this desirable
blend, target lignin fractions and PAN were blended in a 1:1 weight ratio via electrospinning. Fibers
created in this way from the water-insoluble lignin fraction exhibited an impressive elastic modulus
of 21.8 GPa, on par with that of 20.7 GPa for PAN-based commercial carbon fibers. Water soluble
lignin-based CFs had a lower yet still practically viable elastic modulus of 16 GPa, similar to the
modulus for pure kraft lignin-derived CFs (15.7 GPa). Despite using lignin as a sustainable feedstock
in this process, it should be noted that all of the PAN-derived CF reactions emit toxic hydrogen cyanide
gas, which is a drawback to this approach [42].

Hosseinaei and coworkers recently reported a creative and intriguing strategy in the area of tuning
the processability by blending. In this case, rather than blending lignin with a synthetic polymer, two
differently-sourced lignins, hardwood and softwood lignin, were blended. Hardwood lignin consists
primarily of 5-substituted syringyl units, so the possibility of aryl crosslinking via dibenzodioxocin
linkages is reduced compared to softwood lignin, which contains mostly guaiacyl units [43]. As a
result, lower Tg values are observed in hardwood lignin, whereas highly branched softwood lignin
structure exhibits higher Tg values [44]. Due to lower Tg values, hardwood lignin shows a promising
melt spinning ability, while softwood lignins exhibit more favorable thermostabilizing ability [45].
With these fundamental properties in mind, Housseinaei, et al. mixed organosolve hardwood and soda
switchgrass lignin (15–50 wt.%) in different ratios to investigate the change in mechanical properties
of resultant CFs [46]. The lignin mixtures resulted in meltable, miscible blends that could be readily
extruded at 180–185 ◦C. From these materials, it was determined that lower amounts of switchgrass
lignin and a very slow heating rate (0.05 ◦C/min) provide carbon fibers with the best mechanical
properties. Efforts to employ grass-derived lignin in place of softwood lignin led to mixtures that
could not be effectively melt spun.

An alternative strategy to blending lignin with other materials is to modify lignin by chemical
derivatization prior to processing [47]. Eckert and Abdullah patented the use of acetylated softwood
lignin, [48] as a source for CFs. The acetylation process employs acetic anhydride with pyridine
as the catalyst at a 50 ◦C reaction temperature and is relatively affordable. Acetylated lignin was
readily extruded at 220 ◦C and stabilized at 240 ◦C under a very low heating rate of 0.2 ◦C /min,
and carbonization occurred at a 4 ◦C /min heating rate to 1150 ◦C. Although no mechanical data
was reported for these initial CFs, Zhang and Ogale have measured the mechanical properties of
acetyl lignin-derived CFs by using this procedure with slight modifications [49]. The mechanical
properties of these acetyl lignin CFs show significantly improved tensile modulus, tensile strength, and
strain-to-failure (52 GPa, 1.04 GPa, and 2.0%, respectively) over previously-reported lignin-derived CFs.
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Although lignin-based CFs manifested high feasibility in applying low modulus robust commercial
applications, many of the key deficiencies need to be addressed. Already, hardwood lignin is mostly
used in melt spinning over softwood due to its higher thermoplastic behavior. Nevertheless, advanced
modification of softwood lignin also should be addressed in the future, as considerable amount of
biomass is also produced from softwoods. Maintaining the specific conditions of extraction methods
to retain more ether linkages (β-O-4), mask the OH groups by polymer grafting or copolymerization,
or control the polydispersity and molecular weight of lignin fractions may lower the glass transition
temperatures of lignin, improving the spinnability. Concurrently, the hemicellulose fraction embedded
in lignin may absorb water, causing an increase in void content. Hence, a thorough purification step
is required prior to the melt spinning to gain an undamaged, continuous fiber. Addressing these
concerns may liberate some of the barrios which prevent lignin-based carbon fibers from achieving
their viable use.

5. Lignin in High Sulfur-Content Materials

Like lignin, sulfur is one of the major underutilized byproducts of modern industry. Sulfur
production, primarily by its removal from petroleum during fuel production, has outpaced demand by
up to 7 million tons annually for decades, leading to massive untapped stockpiles for valorization.
In 2013, Pyun reported an intriguing method for exploiting this waste sulfur as a component of
copolymers by its reaction with olefins via a process called inverse vulcanization [50]. Although
elemental sulfur itself is quite brittle, durable materials can be obtained for the copolymers comprising
up to 90 wt.% sulfur [51–54]. These efforts have employed a wide range of starting materials including
cellulose, lignin, amino acids, terpenoids, algae acids, polystyrene derivatives, and other olefins [55–70].
More recently, radical-induced aryl halide/sulfur polymerization (RASP) proved similarly effective for
preparation of high sulfur-content materials (HSMs) but employing aryl halides in place of the olefins
required for inverse vulcanization.

Both inverse vulcanization and RASP have been used to prepare HSMs from elemental sulfur and
lignin derivatives. In a 2019 report, the Smith group employed allylated lignin to react via inverse
vulcanization with elemental sulfur (Scheme 5A). Allyl lignin reacted with sulfur at 180 ◦C in different
ratios. Allyl lignin and molten sulfur suffer from significant immiscibility of the two comonomers,
thus minimizing the amount of lignin that can be incorporated into the HSM to 5 wt.%. The maximum
flexural strength of the allyl lignin HSM was 2.1 MPa, [71] significantly lower than analogous HSMs
prepared from functionalized cellulose. Due to the thermal reversibility of S–S bond-formation,
however, these materials can be remelted and recast over many cycles without any loss in moduli
or strength.

In another report, the RASP process was used to prepare HSMs from chlorolignin and sulfur
(Scheme 5B) [72]. Chlorolignin can be obtained either as a byproduct of the bleach paper/pulp industry
or prepared from the other lignin sources by using oxidation with aqueous bleach. The sulfur and
chlorolignin are fully miscible at the 240 ◦C reaction temperature, allowing them to be reacted in any
ratio. The study focused on thermoplastic materials, however, so only the remeltable copolymers,
comprising up to 20 wt.% lignin, were studied in detail. The chlorolignin/sulfur HSMs had remarkably
improved mechanical strength compared to that of the allylligin/sulfur copolymers. A maximum
flexural strength of >3.6 MPa was achieved for the material comprising 20 wt.% chlorolignin. This
flexural strength is on par with that of Portland cement (3.8 MPa), suggesting that these materials
could be recyclable cement surrogates.
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6. Conclusions

Although the foregoing review demonstrates some of the promise held by lignin to replace
petrochemicals in several important technologies, many challenges remain. One challenge is the
complexity of lignin. More efforts must be directed towards the full characterization of lignin from
different sources so that firm structure-property relationships can be elucidated. Another area needing
more research is in developing more efficient and effective modification protocols to endow lignin
with desired properties for each application. Finally, comparing lignin-derived materials to those that
have been prepared from purified, discrete small molecular petrochemicals is problematic given the
heterogeneous nature of lignin. With recent advances in the production of more well-characterized
lignin oils, a potent future direction may be to use these lignin oils, rather than whole lignin, as
feedstocks to replace petrochemicals in our emerging sustainable society.
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