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Abstract: Biological invasions are an ongoing threat for sustainability of ecosystems, and estimating
the spread of invasive species is critical for making management decisions. Geopolitical unit-level
data (GULD) are often used to estimate invasions due to their wide availability, and researchers had
evaluated the abilities of multiple methods to estimate invasion with GULD. However, earlier studies
were case based and only addressed limited information on the spread, thus making it inadequate
to determine which method to choose to estimate invasions with GULD under various spread
scenarios. Here, we conducted a simulation study to (1) evaluate performances of eight methods on
estimating expansion patterns, spread rates, and spread dynamics of invasive species with GULD; (2)
assess the impact of size and homogeneity of size of geopolitical unit on the estimations by studied
methods; (3) evaluate the similarities of all studied methods. Additionally, we presented a concave
hull boundary displacement method (Ctd_BD) and an area-based regression method (SqrtNA_R) to
estimate spread with GULD. Three regions with varying sizes of counties in the United States (U.S.)
were selected to conduct the simulations, and three spread scenarios and three expansion patterns
were simulated. AIC, and R2 and root mean square error (RMSE) were used to evaluate the accuracy of
methods on estimating expansion pattern, and overall spread rate and spread dynamics, respectively.
Correlation coefficient and RMSE were used to assess the similarity of eight methods. We found
Ctd_BD and area-based regression methods consistently estimated the right expansion patterns.
Boundary displacement and area-based regression methods estimated highly correlated spread rates
and dynamics. Distance-based regression methods provided a high accuracy on estimating overall
spread rate without long-distance jump dispersal but performed poorly on estimating the spread
dynamics. We recommend boundary displacement method, especially Ctd_BD, for estimating spread
with GULD, whereas for spread without clear infestation boundaries, distance-based regression
can be used to estimate overall spread rate and area-based regression can be used to estimate
spread dynamics.

Keywords: invasion dynamics; invasive species; spread rate; boundary displacement method;
regression method

1. Introduction

As a major component of global change, biological invasions continue to pose significant threats
on ecosystems sustainability, decrease biodiversity, and cause substantial economic losses [1,2].
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Management of invasive species is the key to minimize their economic and environmental impacts.
Estimating the spread of invasive species can provide valuable information on when and where
a further invasion may occur, thus guide the early management of the invasive species to increase
control efficacy and promote environmental sustainability [1,3,4]. The spread of an invasive species
may show an increasing, decreasing or stable rate, which can be affected by the internal dispersal
ability of the species, environmental factors, and human activities [3,5,6]. Estimating spread dynamics
of the invasive species can shed light on the trend of spread rate over the invasion period, and such
information can effectively facilitate decision on early management and analysis on factors impacting
the spread [5,6].

Estimating spread of invasive species has been conducted at local to global spatial scales [5–8]. Data
collected through field sampling are frequently used in studies conducted at local scales [5,9], whereas
research on regional or larger scales utilize records collected from online databases, published research,
surveys, or field sampling [8,10]. The collected data for large-scale research are often aggregated to
geopolitical unit-level records (i.e., city, county, parish, state, etc.) to unify their spatial scales [7,11,12].
Additionally, quarantines initiated by governments or institutions are usually conducted and reported
at the geopolitical unit-level [13–15]. Consequently, geopolitical unit-level data (GULD), i.e., presence
or absence at a geopolitical unit level, is usually the most abundant information for invasive species.
During the past decades, several researchers worldwide used multiple methods to estimate spread of
invasive species at various spatial scales with GULD [7,11].

Several researchers have compared the accuracy of these methods and validated the use of
GULD to estimate invasion rates [14,15]. However, earlier research focused on specific species, thus
the generality of their results on performances of these methods to estimate spread with different
dispersal traits remain unknown [15]. Additionally, these studies only compared the overall spread rate,
i.e., a spread rate for the whole invasion period, and lacked at evaluations of methods on estimating
spread dynamics, i.e., the spread rate for different invasion periods. Spread of invasive species,
especially at large scales, is commonly complex due to spatial heterogeneity and stochastic events,
such as uncommon weather conditions or long-distance jump dispersal [8,16]. Estimating the spread
with GULD further increases the complexity, as the spatial resolution is coarse and there can be large
variations in the sizes of geopolitical units. Thus, compared to estimating one single overall spread
rate, providing spread dynamics across different time scales are more informative for understanding
the invasion process [16]. Additionally, earlier research did not examine the ability of different methods
on estimating expansion patterns, i.e., the change pattern of spread rate through the invasion period.
Estimating these expansion patterns of invasive species can provide insights on the temporal dynamics
of the invasion rate and facilitate the prediction of future spread.

Despite the widely use of GULD to estimate spread of invasive species, studies evaluating
the impact of geopolitical unit size on the estimated spread rates remain absent. Dramatic variations in
geopolitical unit size are common especially for regional and larger spatial scales, which might lead to
inaccurate assessments of the estimated invasion rate. Additionally, an evaluation of the similarity
patterns of the commonly used methods on estimating overall spread rate and spread dynamics is
rare [15,17,18]. A variety of measurements (such as number of infested county, total infested area, and
spread distance) had been used by different estimation methods to estimate the invasions [15,17,18],
thus the estimated spread rates may vary depending on the measurement used. However, the spatial
or temporal change pattern of spread rate revealed by different methods could be essentially similar [3].
For example, spread rates estimated by using number of infested county and total infested area would
vary largely; however, they might both indicate that the spread rate had a consistently increasing
pattern over the invasion periods. This similarity of change pattern of spread rate by different methods
can lead to similar analysis result when analyzing critical factors that impact the invasions. This
research aims to address these research gaps.

Gilbert and Liebhold [19] conducted a simulation research to evaluate the accuracy of two
regression methods and a boundary displacement method on estimating the overall invasion rate in
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response to different spatial sampling configurations and sampling density. Tisseuil et al. [18] conducted
a simulation study to evaluate the accuracy of a regression method and a boundary displacement
method on estimating the overall invasion rate with field sampling data under different sampling
strategies, densities, and spatial interpolation approaches. Both research provided valuable guidance
on estimating the overall spread rate of invasive species with field sampling data [18,19]. However,
simulation of spread of invasive species with GULD is rare [11–15,17–19]. To fill the research gap of
a systematic evaluation of different methods on estimating invasions with GULD, we used a simulated
data approach to evaluate the ability of multiple methods on estimating invasion with GULD.

Specifically, we used simulated data to evaluate (1) the accuracy of eight methods to estimate
expansion pattern with GULD, (2) the accuracy of eight methods on estimating overall rate and
spread dynamic of invasive species with GULD, (3) the impact of the geopolitical unit size and its
variation on each method, and (4) the similarity of different methods on estimating spread. Earlier
simulation research provided valuable insight on simulating multiple spatial configurations of invasion
with consideration of different levels of complexity and stochasticity [18,19]. Similar with simulation
by Tisseuil et al. [18], we simulated a simple symmetric spread scenario and a more complicated
spread scenario with spatial anisotropy. Although long-distance jump dispersal is random and rare in
the spread of invasive species, research showed long-distance jump dispersal can be more influential
than local dispersal for some species [6]. Thus, we also simulated a third spread scenario with long
distance jump dispersal. Additionally, we formulated an alternative boundary displacement method
and an area-based regression method for estimating spread with GULD.

2. Common Methods to Estimate Spread with Geopolitical Unit

The most commonly used methods to estimate spread are regression and boundary displacement
methods, which can be used with all kinds of invasion records [15,19]. Note that this research aimed to
evaluate commonly used methods of estimating spread with GULD; however, alternative approaches
are also available for estimating spread with GULD and more detailed invasion record [17,20]. For
example, Goldstein et al. [17] used a Gaussian process model to estimate a gradient surface of
the invasion, and their method can estimate the rate and direction of the spread as well as detecting
potential jump dispersal sites. Pio et al. [20] used a trend surface analysis and spatial error simultaneous
autoregressive model to estimate spread rate of an infectious disease.

2.1. Regression Methods

The general idea of regression methods is to regress the measurement of spread (e.g., the cumulative
area or the distance to the invasion origin) against time, beginning when the infestation is first observed.
Rather than estimating the spread rate for every temporal unit, e.g., each year, the regression methods
output a spread rate for the entire studied period.

Spread Distance—With GULD, one way to calculate spread distance is to derive the minimum
distance between the spread origin and the polygon of each geopolitical unit [14,15]. Distances between
the spread origin and centroids of infested geopolitical units also have been used [3,7].

Square Root Area—This method assumes an invasive species spread by approximately concentric
circles, for which the total spread distance (D) from invasion origin can be estimated as D =

√
A/
√
π,

where A represents the cumulative area of the infested regions [21–23]. For GULD, the square root of
the cumulative area of all infested geopolitical units is used as the measurement [15].

Number of Infested Geopolitical Unit—Directly regressing the cumulative number of infested
geopolitical units, n, on invasion times has been used in previous studies [6,8,13]. However, we argue
that the square root of the cumulative number of infested units,

√
n, should be used instead [24]. If

the total number of infested geopolitical units is n and the mean county size is A, then the total infested
area could be estimated as A = nA. As mentioned above, the spread distance from invasion origin can

be estimated as D =
√

A/
√
π for concentric spread, thus by replacing A with nA we get D =

√
nA/

√
π.

Therefore, D is linearly associated with
√

n. The spread rates estimated from
√

n should be linearly
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correlated with the ones by spread distance regression and square root area regression. Additionally,

the measurement
√

nA can be an alternative to the
√

n method and can be used as an area-based
regression method.

2.2. Boundary Displacement Method and Minimum Spread Distance Method

Boundary Displacement—This method estimates spread rates as the distance between two
consecutive infestation boundaries, and can directly estimate the spread dynamics during different
invasion periods. The outer boundary of geopolitical units infested within the same period can be
used as the infestation boundary [5,25]. This method may require slight changes to the infestation
boundaries to avoid folds, islands, and gaps on the boundary [5]. In addition to use county boundary
to delineate infestation boundary, we also designed a concave hull method to derive the infestation
boundaries by using polylines that connect centroids of all the outermost newly infested geopolitical
units as the boundary. This method avoids the need to manually modify infestation boundaries, and
the infestation boundaries can be derived automatically using programs such as R (see Supplementary
Material 1). Additionally, Tobin et al. [15] used a spatial grid approach to delineate boundary with
GULD. Although their method is not included in our analysis, we encourage readers to try their
method, as the spatial grid approach also avoids the need of manually changing boundaries.

Minimum Spread Distance—This method takes the minimum distance between a newly infested
geopolitical unit and all units infested in earlier periods as the distance that a species has to spread
to invade the new unit [11,26]. The mean of all minimum distances of geopolitical units infested in
the same period is taken as the spread rate in that period. Similar to boundary displacement methods,
MSD also directly estimates temporal spread dynamics.

3. Materials and Methods

3.1. Spatial Area of Simulated Spread

The flowchart of the simulation research is detailed in Figure 1. All the simulations and
results analysis were conducted with R program [27], and ‘rgdal’ was used to facilitate the spatial
simulation and ‘Metrics’ was used to calculate the root mean square error (RMSE) [28,29]. To represent
the real-world variety of geopolitical units we used the counties in the U.S. to conduct the simulation
research (Figure 2a). The county size in the eastern U.S. (e.g., Tennessee) is consistently smaller than
a majority of regions in the western U.S. (e.g., Nevada), whereas the county size in the Midwest and
Southwest of the U.S. has more variations than the eastern U.S. This pattern of geopolitical unit size
being more homogenous within one region than other regions is representative of many countries (e.g.,
Canada, China, and Mexico). To evaluate the performance of eight methods in response to different
geopolitical unit sizes and homogeneity in sizes, we conducted the same simulations independently in
three regions—Regions 1, 2, and 3 (Figure 2a). The county size and its coefficient of variation (CV)
in three regions are listed in Table 1. In each region, we set a spread origin, from which the spread
was simulated.
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Figure 2. Examples of simulated invasion dynamics and conversion to county-level spread for biphasic
expansion pattern; (a,c,e) Simulated biphasic expansion during years 3–24 for spread scenarios 1, 2, and
3, respectively; (b,d,f) county-level spread record converted from (a,c,e), respectively. The distances
between the spread origin and first and second jump points in (e,f) are set the same in all three regions.
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Table 1. Statistics of county size in each region for different spread scenarios and expansion types.

Spread
Scenario

Expansion
Type

No. of Infested
Counties Mean County Area (km2)

Coefficient of
Variation

R1 R2 R3 R1 R2 R3 R1 R2 R3

S1
Linear 637 240 103 1188.21 3173.15 7564.29 0.12 0.07 0.29

Biphasic 919 371 172 1235.23 3133.17 7243.13 0.15 0.07 0.31
LGF 930 377 172 1236.82 3175.75 7229.18 0.16 0.10 0.32

S2
Linear 516 198 82 1125.04 3133.54 8472.74 0.02 0.09 0.29

Biphasic 760 209 95 1176.03 3231.86 8062.71 0.06 0.07 0.33
LGF 758 209 95 1175.65 3231.86 8062.71 0.07 0.13 0.26

S3
Linear 914 381 146 1271.61 3273.84 8858.33 0.12 0.04 0.35

Biphasic 1147 471 200 1290.96 3275.94 8169.05 0.13 0.04 0.35
LGF 1158 479 200 1288.32 3274.22 7881.00 0.14 0.08 0.34

LGF is abbreviated for Logistic growth function; S1, S2, and S3 are short for symmetric spread scenario, asymmetric
spread scenario, and long-distance jump dispersal scenario, respectively; R1, R2, and R3 are short for Regions 1, 2,
and 3, respectively.

3.2. Simulation of Three Expansion Types and Three Spread Scenarios

3.2.1. Three Expansion Types

To evaluate abilities of eight methods for estimating expansion patterns of invasive species, we
simulated three expansion types as summarized by Shigesada et al. [23]: (1) linear expansion, (2)
biphasic expansion resulting from two linear-spread phases, and (3) logistic curve expansion. These
three expansion patterns were commonly observed in research focused on invading organisms [12,27].
We simulated these three expansion types for each spread scenario in all regions.

3.2.2. Three Spread Scenarios

We simulated three spread scenarios to evaluate abilities of different methods on estimating spread
with different types of stochasticities and irregularities: (1) a symmetric spread (S1) (Figure 2a,b), (2)
an asymmetric spread (S2) (Figure 2c,d), and (3) a spread scenario with long-distance jump dispersal
(S3) (Figure 2e,f). The details on simulating three spread scenarios were described as follows.

Simulation of Symmetric Spread—For S1, the linear expansion pattern had a constant spread rate
for all periods. We set this rate to 20 km/year, as it approximates the mean spread rate of invasive species
based on multiple research [6,11]. For biphasic expansion the simulated rate was set to 20 km/year for
the first 12 invasion years and 30 km/year for the following 12 years; thus, the mean spread rate is
25 km/year. The logistic curve expansion followed a logistic growth function y = 826/

(
1 + e−0.43∗(x−10)

)
,

where y and x represent the total spread distance and spread time, respectively. The parameters
of the logistic growth were carefully set to ensure that (1) the overall spread rate of logistic curve
expansion is not smaller than linear expansion, and (2) the overall spread rate is not so large that there
is enough terrestrial land for conducting the spread simulations in each region.

Simulation of Asymmetric Spread—Simulations of the three expansion types for S2 were similar
with S1, except that the rates varied among different directions. The change pattern of spread rate along
each direction kept consistent with the corresponded expansion pattern (Figure 2c,d). The simulated
rate in all directions varied between 10–24 km/year for linear expansion, and 12–31 km/year for biphasic
and logistic curve expansions.

Simulation of Long-Distance Jump Dispersal—We added two jump dispersal events in S3 with
one occurring in the nineth year and another occurring in the 18th year (Figure 2e,f). To make the S3 in
three regions comparable, the distances among the two jump points and the spread origin were set
the same for all regions (Figure 2e,f). The jump point served as a new spread origin from which further
spreads occurred in all directions, and we set this further spread rate to 20 km/year for all jump points
and expansion types for clarity and simplicity.
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3.2.3. Simulation over Landscape and Conversion to Geopolitical Unit-Level Spread

To simulate the spread over different invasion periods, we first determined the cumulative invaded
regions at different periods based on the spread rates. We then derived the newly invaded regions
for a given period as the difference of the cumulative invaded region between current and previous
invasion period. As shown in Figure 2a,c,e, the original simulated spreads had perfect geometric
shapes over the landscape as no stochasticity (except long-distance jump dispersal for S3) was added
before converting to GULD. To convert the simulated spread (shown in Figure 2a,c,e) to GULD (shown
in Figure 2b,d,f), we selected counties that were infested in the same periods (i.e., every three years). A
county was defined as first infested only if more than 10% of its area was covered by the simulated
spread zone. To reflect real-world stochasticity of species invasion, we randomly removed 5% of
the counties first infested in each period as non-infested counties (Figure 2b,d,f).

3.3. Estimating Overall Spread Rate and Spread Dynamics

Five regression methods, two boundary displacement methods and an MSD were included in this
research to estimate overall spread rate and spread dynamics (Table 2). For boundary displacement
methods, mean distance between two consecutive boundaries were measured as the mean length of all
transects radiating from the spread origin at 2◦ [3,25]. Ctd_BD, Cty_BD, and MSD directly estimated
spread dynamics, and the overall rate was calculated as the mean spread rate across all invasion
periods. For regression method spread dynamic for a given period were estimated as the difference of
measurements between current and previous period. The overall rate for regression methods were
estimated as the slope of a linear model for linear expansion and mean of two slopes of a segmented
linear model with break point at the 12th year for Biphasic. For logistic curve expansion, instead of
using derivatives of the logistic growth function, we estimated the spread rate as follows for practical
purpose:

Overall rate = cumulative spread distance/time since initial detection (1)

Table 2. Full and abbreviated names of all methods and the measurements used by all methods to
estimate spread dynamics.

Method
Name of Method

Measurement
Full Name Abbreviation

Regression
methods

Centroid distance between
spread origin CtdD_R Mean distance between county

centroids and spread origin

Minimum distance between
county and origin MinD_R

Mean of the minimum distance
between counties and spread

origin

Square root of infested area SqrtA_R
√

A/π

Square root of number of
infested counties SqrtN_R

√
n

Square root area estimated
from number of infested

counties
SqrtNA_R SqrtN_R *

√
A/π

Boundary
displacement

Centroid boundary Ctd_BD Mean distance between two
consecutive boundariesCounty boundary Cty_BD

Minimum spread distance MSD
Mean of the minimum distance
between centroids of newly and

earlier infested counties

A, n, and A represent the cumulative infested area, number of all infested county, and mean area of invaded
counties, respectively.



Sustainability 2020, 12, 8526 8 of 17

3.4. Evaluation Statistics

3.4.1. Ability of All Methods to Estimate Expansion Types

The cumulative values of spread measure for each period were used to fit regression models
against spread time to determine the expansion type. The spread measures for regression methods
were already cumulative values, thus we only derived the cumulative values of spread measure for
each period for Ctd_BD, Cty_BD, and MSD methods. We then fitted three regression models, i.e.,
linear, biphasic (i.e., segmental linear with one break-point at year 12), and non-linear with logistic
curve function, to the cumulative values of each estimation method by each expansion type, spread
scenario, and region. For each simulation (i.e., one combination of spread scenario and expansion
type in one region), the Akaike information criterion (AIC) of three fitted regression models were
derived and the model with lowest AIC was assigned as the estimated expansion pattern for this
simulation [30]. The estimated expansion type was then compared to the simulated expansion type to
determine the ability of each method to estimate expansion pattern. For linear expansion, we defined
the method that can accurately estimate the expansion pattern if the linear or biphasic linear fit has
the lowest AIC, as biphasic linear can be an overfitting of linear model but have lower AIC.

3.4.2. Accuracy and Similarity of All Methods

The simulated rate was defined as the distance between the simulated boundaries, and was used
to evaluate the accuracy of eight methods on estimating spread rates. We derived R2 and the RMSE
between the estimated and simulated overall rate and dynamics by each method for each spread
scenario, expansion type, and spread region. R2, varying from 0 to 1, is scale independent with 1,
indicating perfect estimation. RMSE measures the absolute deviation of estimation from the simulation,
thus cannot be used on SqrtN_R method as the measure of this method is the square root of number
of infested counties. We calculated the Pearson correlation coefficient (r) and the RMSE of estimated
spread rates and dynamics among all methods to assess their similarity pattern. Hierarchical clustering
(HC) with complete linkage using mean distance was conducted to group all methods based on their
similarity of derived spread rates.

3.4.3. Impact of County Size on Spread Estimation

To determine whether the county size and the variation of county size affect the values of
estimated rates, we tested the significance of correlations between the estimated rates with the mean
and coefficient of variation (CV) of county size. To assess the impact of county size and the variation of
county size on the accuracies of estimated rates, we tested the significance of correlations between
the mean and CV of county size and R2 of the estimation from the simulation for each region and
spread scenario.

4. Results

4.1. Ability of All Methods to Estimate Expansion Patterns

Both regression and boundary displacement methods can estimate the expansion patterns
(Supplementary Material 2). Ctd_BD, SqrtN_R, and SqrtNA_R correctly estimated the expansion
patterns for all scenarios and regions (see Supplementary Material 2 for AICs). For S1, except MSD, all
other methods correctly estimated the expansion patterns (see Supplementary Material 2). For S2 and
S3, SqrtA_R and Cty_BD correctly estimated all expansion patterns for Region 1 and Region 2, whereas
MinD_R and MSD constantly misclassified the expansion patterns for S2 and S3 (see Supplementary
Material 2).
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4.2. Accuracy of All Methods

4.2.1. Accuracy on Estimating Overall Spread Rate

The estimated and simulated overall spread rates for all spread scenarios and expansion types
were included in Supplementary Material 3. Based on R2, all methods had the best accuracy to estimate
spread rate in S1 and the worst ability in S3 (Table 3). MSD and SqrtN_R estimated spread poorly when
all three regions were analyzed (R2 < 0.1). Ctd_BD, CtdD_R, and MinD_R were the best three models to
estimate overall rate without long-distance jump dispersal (Table 3, R2 for S1 and S2), whereas Cty_BD,
SqrtA_R, and Ctd_BD were the best three models with occurring of long-distance jump dispersal
(Table 3, R2 for S3). Based on both R2 and RMSE on spread rate for all scenarios and regions, Ctd_BD
had the best estimation, followed by Cty_BD, and SqrtA_R.

Table 3. R2 of estimated overall spread rate by each scenario and region, and R2 and root mean square
error (RMSE) of estimated spread rates in all regions for all scenarios.

Spread Regression Method Boundary
Displacement MSD

CtdDR MinD_R SqrtA_R SqrtN_R SqrtNA_R Ctd_BD Cty_BD

R2 by
scenario

S1 0.96 0.96 0.95 0.09 0.87 1.00 0.95 0.04
S2 0.96 0.96 0.92 0.09 0.86 0.94 0.93 0.03
S3 0.47 0.47 0.89 0.02 0.79 0.85 0.89 0.00

R2 by
region

Region 1 0.89 0.89 0.98 0.93 0.92 0.98 0.98 0.89
Region 2 0.80 0.80 0.96 0.96 0.95 0.97 0.98 0.76
Region 3 0.81 0.81 0.95 0.92 0.91 0.98 0.97 0.41

All rates
R2 0.81 0.81 0.95 0.14 0.91 0.98 0.97 0.13

RMSE 1.78 1.78 1.06 NA 1.25 0.71 1.22 5.19

S1, S2, and S3 represent symmetric spread, asymmetric spread, and long-distance jump dispersal, respectively.

4.2.2. Accuracy on Estimating Spread Dynamics

Compared to the overall rate, the ability to estimate spread dynamics decreased for all methods,
i.e., lower R2 and higher RMSE values for spread dynamics estimation (Supplementary Material
4) than the overall rates (Table 4). All methods had better performance for S1 and Region 1 and
lower performance for S3 and for Region 3, except SqrtN_R, SqrtNA_R, and MSD. MSD had low
performances for all scenarios and regions. CtdD_R and MinD_R only had good estimation for S1
(Table 4). Ctd_BD, SqrtNA_R, and SqrtA_R were the best three methods for all scenarios and regions
based on both R2 and RMSE (Table 4), among which Ctd_BD showed consistently good estimates for
all regions and scenarios (R2 > 0.75).

Overall, Ctd_BD, SqrtNA_R, SqrtA_R, and Cty_BD were ranked as the best four methods for
estimating both overall spread rate and spread dynamics, among which Ctd_BD constantly had
the best estimation. The accuracy of two boundary displacement methods on estimating overall
spread rate was not significantly different from each other (p = 0.69), whereas Ctd_BD had significantly
higher accuracy on estimating spread dynamics than Cty_BD (p = 0.01). Between the two area-based
regression methods, SqrtA_R had significantly better estimation on overall spread rate than SqrtNA_R
(p = 0.001), whereas SqrtNA_R had marginally better estimation on spread dynamics than SqrtA_R (p
= 0.07). Distance-based regression methods, CtdD_R and MinD_R, could provide good estimations for
overall spread rate without long-distance jump dispersal, and had constantly lower performances on
estimating spread dynamics compared to boundary displacement methods and area-based regression
methods. There was also no significant difference of accuracy on estimated overall rate (p = 0.49) and
spread dynamics (p = 0.48) between these two distance-based regression methods.
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Table 4. R2 of estimated spread dynamics by each scenario and region, and R2 and root mean square
error (RMSE) of estimated spread dynamics for all regions and scenarios.

Spread Regression Method Boundary
Displacement MSD

CtdDR MinD_R SqrtA_R SqrtN_R SqrtNA_R Ctd_BD Cty_BD

R2 by
scenario

S1 0.83 0.81 0.84 0.36 0.84 0.90 0.83 0.24
S2 0.60 0.45 0.79 0.35 0.89 0.80 0.77 0.22
S3 0.05 0.06 0.57 0.24 0.63 0.77 0.58 0.07

R2 by
region

Region 1 0.37 0.39 0.96 0.46 0.89 0.97 0.96 0.27
Region 2 0.31 0.32 0.87 0.48 0.92 0.90 0.88 0.24
Region 3 0.31 0.31 0.57 0.38 0.65 0.77 0.55 0.30

All
dynamic

R2 0.33 0.34 0.76 0.24 0.80 0.86 0.76 0.19
RMSE 7.44 7.25 3.86 NA 3.50 3.30 4.13 8.75

S1, S2, and S3 represent symmetric spread, asymmetric spread, and long-distance jump dispersal, respectively.

4.3. Impact of County Size and Its Variation on Estimation of Spread Rate

Overall, the county size and the variation in county size showed more significant impact on
the estimation of spread dynamics than the overall spread rate (Table 5). However, significantly positive
and negative correlations existed between the county size and spread rates estimated by MSD and
SqrtN_R, respectively, for both spread dynamics and overall spread rate (Table 5). Additionally, larger
county sizes led to higher estimated spread dynamics for SqrtA_R, Ctd_BD, and Cty_BD (Table 5). For
the accuracy of estimated rates, significantly negative correlation of R2 with mean and CV of county
size was only observed on the SqrtA_R method for overall rate but were observed on SqrtA_R, Ctd_BD,
and Cty_BD for spread dynamics (Table 5). These negative correlations suggest that accuracy is
negatively impacted by the county size and its variation. The accuracy of two boundary displacement
methods on estimating spread dynamics were negatively impacted by the county size and its variation,
whereas for SqrtN_R and SqrtNA_R the variation of mean county size among different periods is more
influential than the mean size of county on the estimation accuracy.
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Table 5. Correlation coefficient between mean of county size and estimated overall rate and spread dynamics, and between mean/coefficient of variation of county size
and R2 for each region, expansion type, and spread scenario.

Correlation of A and B Regression Method Boundary Displacement
MSD

A B CtdDR MinD_R SqrtA_R SqrtN_R SqrtNA_R Ctd_BD Cty_BD

Mean
Overall rate 0.00 −0.04 0.01 −0.85 *** 0.13 0.00 0.07 0.91 ***
Dynamics 0.08 −0.02 0.15 * −0.55 *** −0.04 0.15 * 0.15 * 0.67 ***

Mean R2 of overall
rate

−0.06 −0.23 −0.68 * 0.51 0.51 0.18 0.42 −0.58
CV 0.07 −0.19 −0.62 0.18 0.18 0.13 0.14 −0.38

Mean
R2 of dynamics

−0.08 −0.22 −0.85 *** −0.32 −0.32 −0.69 ** −0.86 *** −0.38
CV −0.05 −0.16 −0.81 *** −0.53 * −0.53 * −0.62 ** −0.77 *** −0.34

*, ** and *** Significant at level α = 0.05, 0.01, and 0.001, respectively.
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4.4. Similarity of All Methods

The CtdD_R and MinD_R constantly estimated highly correlated overall spread rate and spread
dynamics (r > 0.95, Figure 3a,c), and both estimations had low RMSE between two methods (Figure 3b,d).
The spread rates estimated by MSD and SqrtN_R had low similarity with other methods when spread
in all regions was analyzed, i.e., low correlation and high RMSE (Figure 3a–d). For asymmetric spread
but with low variation in county size (i.e., S2 for Region 1), all methods still estimated highly correlated
overall rates and spread dynamics (Supplementary Material 5—Figure S1a,b, Supplementary Material
5—Figure S2a, r > 0.75). With the increase of anisotropy, stochasticity, and variation of county size,
strong correlations were observed among SqrtA_R, SqrtNA_R, Cty_BD, and Ctd_BD for both overall
rate and spread dynamics (r > 0.80, Figure 3a,c). Additionally, the RMSE among these four methods
also remained at a low level for estimation on overall spread rate (Figure 3b, RMSE < 1.5) and spread
dynamics (Figure 3d, RMSE < 5). SqrtA_R, Ctd_BD, Cty_BD and SqrtNA_R were constantly classified
into one group for both overall spread rate and spread dynamics due to their similarities on estimating
spread rates (Figure 3a,c; Supplementary Material 5-Figures S1 and S2).Sustainability 2020, 12, x FOR PEER REVIEW 11 of 16 
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Correlation matrix and similarity pattern of estimated overall rate and spread dynamics, respectively,
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estimated overall rate and spread dynamics, respectively, among each method for all regions, expansion
patterns, and spread scenarios. Methods that are enclosed in the same triangle are classified in the same
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5. Discussion

Estimating spread is critical for predicting further invasion and guiding early management of
invasive species and facilitates analysis of important factors affecting the spread to enhance agricultural
and environmental sustainabilities [1,3,4]. Although researchers have been using GULD to estimate
the spread of invasive species, a systematic evaluation of the performances of GULD to estimate
invasion under different spread scenarios with multiple types of stochasticity and irregularity is lacking.
This research filled this gap by using simulation data, and findings of this research can guide selection
of optimal methods to estimate expansion pattern, overall spread rate, and spread dynamics of invasive
species with GULD.

5.1. Ability of Common Methods to Estimate Expansion Pattern and Spread Dynamic

Regression methods have long been used to determine expansion patterns of invasive species [3,
25,31]. Here we found the cumulative value of boundary displacement methods can correctly estimate
expansion patterns. In the simulation study, the boundary displacement method, Ctd_BD, and
two regression methods, SqrtN_R and SqrtNA_R, always estimated the correct expansion patterns
regardless of variations in county size or anisotropy and stochasticity in spread.

Estimation of spread dynamic is more challenging than the estimation of overall spread rate.
Boundary displacement and MSD have been commonly used to estimate spread dynamic of invasive
species [5,11,32]. Nevertheless, our research suggests that regression methods can also estimate
spread dynamics by using the difference of measurements between two consecutive periods. In
fact, two regression methods, SqrtA_R and SqrtNA_R, together with two boundary displacement
methods, Ctd_BD and Cty_BD, were the top four methods to estimate both overall spread rate and
spread dynamic.

5.2. Estimating Spread with Anisotropy and Stochasticity with GULD

Compared to long-distance jump dispersal, asymmetric spread caused by spatial heterogeneity
does not seriously challenge the ability of all focal methods to estimate overall spread rate. Meanwhile,
boundary displacement methods and area-based regression methods can still have good estimation of
spread dynamics with long-distance jump dispersal. However, when the spread is highly asymmetric
and the study area is at regional or larger scales, estimating spread rates by taking the whole infested
region as one area does not reveal the spatial dynamics of spread caused by heterogeneities [3,33].
Thus, this may lead to failure of recognizing critical factors influencing the invasions [3].

Our research suggests that dividing a highly asymmetrical spread into several relatively symmetric
spreads can improve the estimation accuracy for each sub-region, thus we recommend the use of
neighborhood measurement when the spread is highly asymmetric. The neighborhood measurement
was applied in multiple studies for better estimating localized spread dynamics [34,35]. Estimating
spread within different homogenous sub-regions can further contribute to better understanding of
the spread dynamics and facilitates analysis of spatial factors impacting the spreads [3,33]. Andow
et al. [33] first proposed to divide the large infested area into multiple neighborhoods to increase
homogeneity within each neighborhood to well reveal localized spread dynamics for asymmetrical
spread. Liang et al. [3] proposed a quantitative method, i.e., spatial constrained clustering, to classify
a large heterogeneous region into environmentally homogeneous sub-regions.

Long-distance jump dispersal is often caused by rare random events and human-related activities [6,
36]. However, despite its rarity and stochasticity, it greatly facilitates the spread of invasive species and
can be more influential than local dispersal for some species [6,19,21,36]. Long-distance jump dispersal
causes new spread origins and obscure the actual expansion pattern that is determined by life traits and
dispersal ability of the target species itself [31,36]. To better estimate the ability of an invasive species to
spread, researchers could set multiple spread origins, including the ones caused by long-distance jump
dispersal [6,37], and then estimate spread rate from different origins. Goldstein et al. [17] developed
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a method which can detect possible long-distance jump dispersal. Methods that can analyze local
spread rate determined by dispersal ability of invasive species and long-distance spread rate impacted
by human-related activities separately can also be used to better facilitate estimation of further spread
of invasive species. For example, Meentemeyer et al. [38] designed an approach to estimate the local
dispersal ability of invasive species impacted by the biological trait and long-distance dispersal
impacted by human activity separately to simulate the spread dynamics of invasive species.

5.3. Similarity of Methods to Estimate Overall Spread Rate and Spread Dynamics

When the spread is symmetrical and the county size is relatively uniform, estimates of spread
rates and dynamics among all eight methods are similar. With increase of anisotropy and stochasticity
in spread, only boundary displacement methods and area-based regression methods continued to
estimate similar overall spread rate and spread dynamics. Unsurprisingly, the two distance-based
regression methods, CtdD_R and MinD_R, always estimated highly correlated overall rates and spread
dynamics. Meanwhile, no significant difference was observed on estimation accuracy of overall
rate and spread dynamics between these two distance-based regression methods, thus these two
methods can be used interchangeably. The two boundary displacement methods also always estimated
very highly correlated overall spread rate and spread dynamic, nevertheless, the Ctd_BD showed
significantly higher accuracy on estimating spread dynamics (p = 0.01). Additionally, Ctd_BD had
better estimation on expansion pattern than Cty_BD, therefore Ctd_BD can be preferred over Cty_BD.
The two-area based regression methods also consistently estimated highly correlated overall spread
rate and spread dynamics. SqrtA_R showed significantly higher accuracy on estimating overall spread
rate than SqrtNA_R (p = 0.001) but marginally lower accuracy on estimating spread dynamics (p =

0.07).

5.4. Selection of Method to Estimate Overall Spread Rate and Spread Dynamics with GULD

Earlier simulation research focused on comparing accuracy of multiple methods on estimating
overall spread rate with different approaches of field sampling strategy [18,19], and they found
regression method consistently have good estimations. Our simulation results on estimating overall
spread rate are consistent with earlier findings as the spread scenarios in earlier research resembled
the S1 and S2 spread scenarios. Distance-based regression methods, i.e., CtdD_R and MinD_R, showed
the top level of accuracy (based on R2) on estimating overall spread rate for S1 and S2. However,
distance-based regression methods have lower ability of estimating spread dynamics when compared
to area-based regression methods and boundary displacement methods. Tobin et al. [14,15] found that
the overall spread rate estimated from boundary displacement method was most similar to the rate
estimated from field sampling data than the distance- and area-based regression methods. Our research
confirmed their findings as the overall spread rate estimated by Ctd_BD had the lowest RMSE than all
other methods.

Researchers have used MSD to estimate spread dynamic [11,26] and SqrtN_R to estimate overall
rates and expansion types of invasive species [8,13]. However, when evaluating the accuracy across
different regions, SqrtN_R and MSD constantly showed low abilities of estimating both overall rate and
spread dynamics due to their sensitivity to the size of geopolitical units. Meanwhile, MSD constantly
showed the lowest ability to estimate both overall rate and spread dynamics in all scenarios, and
SqrtN_R had a low ability of estimating spread dynamics among all methods considered. Therefore,
MSD is not recommended to estimate spread of invasive species, whereas SqrtN_R is only suggested to
estimate overall spread rate when the mean sizes of geopolitical units across different periods or regions
are relatively uniform. SqrtNA_R is a better alternative to the SqrtN_R as it rectifies the SqrtN_R by
the mean area of geopolitical unit.

Generally, the abilities of all methods to estimate invasion rates decreased with the increase of
irregularities and stochasticities, i.e. anisotropy and stochasticity in spread and size and variation in size
of geopolitical unit. Additionally, we found these irregularities and stochasticities have more negative
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impact on the estimation accuracy of spread dynamics than overall spread rate. Selection of an optimal
method depends on the question of interest and stochasticity in spread. Distance-based regression
methods, i.e., CtdD_R and MinD_R, can provide a better estimation than area-based regression method
and equally well estimation with CtD_BD on overall spread rate without long-distance jump dispersal.
When the goal is to estimate the spread dynamics, boundary displacement methods and area-based
regression method can be preferred. More specifically, SqrtNA_R showed better estimation on spread
dynamics than SqrtA_R, whereas Ctd_BD constantly had the best estimation on both overall spread
rate and spread dynamics. Additionally, Ctd_BD, SqrtN_R, and SqrtNA_R correctly estimated all
the expansion patterns. Thus, Ctd_BD can be a top choice for estimating spread, whereas for spread
without clear infestation boundaries, a distance-based regression method can be used to estimate
overall spread rate, and an area-based regression method can be used to estimate spread dynamics.

6. Conclusions

Using simulated spread data, we found that GULD can be used for estimating spread of invasive
species even with variations in geopolitical unit size. Both regression and boundary displacement
methods are capable to estimate the expansion pattern, overall spread rate, and spread dynamics of
invasive species. Selection of an optimal method depends on the question of interest and stochasticity
in spread. We found the anisotropy and stochasticity in spread and the size and variation in size
of geopolitical unit have more negative impact on the estimation accuracy of spread dynamics than
overall spread rate, thus estimating spread dynamics is more challenging than estimating the overall
rate with GULD. Boundary displacement methods and area-based regression methods estimated
spread dynamics for all scenarios most reliably, among which Ctd_BD had the best estimation. Overall,
we recommend the boundary displacement method, Ctd_BD, for estimating spread of invasive species,
as it can reliably estimate expansion pattern, overall spread rate, and spread dynamics. However, for
spread without clear infestation boundaries, area-based regression methods can be good alternatives
to estimate spread dynamics and expansion pattern, whereas distance-based regression methods can
be used to estimate overall spread rate without long-distance jump dispersal. We suggest readers to
carefully design method to estimate spread rate with occurring of rare long-distance jump dispersal.
Finally, in addition to the methods included in our analysis, we also encourage readers to explore other
methods with GULD, such as the methods in Goldstein et al. [17] and Pio et al. [20].
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