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Abstract: This study provides a general procedure to generate a direct expansion (DX) cooling coil
system for a roof top unit (RTU), which is a typical heating ventilation and air-conditioning (HVAC)
system for commercial buildings in the United States. Experimental data from a full-scale unoccupied
2-story commercial building is used for the HVAC modeling. The regression for identifying the model
coefficients was carried out with multiple stages, and the results were validated with measured data.
The model’s applicability was evaluated with multiple case studies, including a building energy
simulation (BES) program validation, model-based predictive control (MPC), and fault diagnostics
and detection (FDD).

Keywords: roof top unit (RTU); model-based predictive control; fault diagnostics and detection;
empirical validation

1. Introduction

1.1. Background

Globally, the building sector uses approximately 1/3 of the energy consumed. In the United
States, building energy consumption consumes about 40% among all other sectors, including industry
and transportation. Half of that is consumed by commercial buildings, and heating ventilation
and air-conditioning (HVAC) systems account for around a quarter of the commercial energy
consumption [1]. Constant efforts have been made globally to improve building energy performance
and ensure sustainable environments.

Building energy simulation (BES) tools play a significant role by mimicking the thermal behavior
of a building, which is extremely complicated due to the heat transfer phenomena at the building
envelope and the HVAC systems. Energy-efficient technologies and designs for new buildings [2]
and load prediction methods for residential [3] and commercial buildings [4] have been investigated
with machine learning and BES. In addition, prediction methods for annual energy consumption at
a district level were developed in a European climate using BES [5]. Advanced building operation
methods such as model-based predictive control (MPC) have also shown significant potential to save
the energy and cost for operating HVAC systems in buildings [6–8]. Efforts for detecting faults in
HVAC systems have been made to improve performance and save operation cost [9,10].

Many building simulation and control-related studies rely heavily on the performance of the
HVAC models. Realistically estimating the HVAC energy usage is one of the most crucial factors.
However, due to the lack of actual experimental data from HVAC systems, many building modelers
use the default HVAC model in building simulation programs. Often, the generic performance
curves for a specific HVAC system do not reflect the real system performance, mainly due to a lack
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of different system characteristics from the manufacture and the different system and duct layouts
of the existing HVAC system in real buildings compared to the standard system setup in the rating
condition. Furthermore, the generic performance curves are often created based on the manufacturer’s
performance table, which is generated in confined environments such as a test chamber or even
simulations in many cases. Furthermore, key characteristics of the HVAC system are limited and too
simple to be evaluated for various outdoor conditions. For example, only the nominal coefficient of
performance (COP) is provided in a typical catalogue or brochure. Therefore, well-calibrated and
well-estimated HVAC system models will benefit many researchers in academia as well as engineers
and designers in practice.

1.2. Literature Review

This study investigates a roof top unit (RTU) HVAC system, which is a prevailing system for
commercial buildings in the United States, where they are applied to more than 60% of commercial
building floor spaces [11]. In 2011, the U.S. Department of Energy’s Building Technology Office
developed design specifications for a high-performance RTU for the RTU Challenge [1]. The aim was
the market penetration of energy-efficient RTUs that would significantly outperform existing RTU
models. A number of manufacturers have participated in the challenge to meet the specifications,
which could potentially reduce the energy use by as much as 50% compared to the current standards.
In addition, the RTU is one of the main HVAC retrofit options in OpenStudio measures [12], such as
Measure 1 (variable air volume (VAV) RTU with 2-Stage DX Cooling and Hot Water Heating).
This measure is the first among 7 retrofit options. This indicates the significance of this RTU system in
terms of the energy saving potential, which can potentially involve various studies and research projects.

Experimentally calibrated HVAC models can be leveraged in multiple case studies. For example,
an RTU model can be used for the empirical validation of a BES to identify potential flaws and develop
internal algorithms/functions of new or existing BES tools. Some recent examples are based on an RTU
model developed for cooling seasons [13,14].

Other examples are MPC-related works. To maximize the pre-cooling potential, an MPC
formulation is constructed with COP prediction with respect to the forecasted outdoor air-temperature
profile. This method uses a higher HVAC efficiency and low electricity price at night by leveraging the
building thermal mass to optimize the building operation [15]. Significant energy/cost-saving potential
has been demonstrated in simulations and actual implementation in previous studies. The electricity
cost was reduced by more than 30% in the cooling season compared to typical feedback control with
a radiant floor system through implementation in an actual office building [16]. Cooling energy
was reduced by approximately 13% through optimized RTU coordination in a small retail store [17].
In addition, the electricity cost with a demand charge was reduced by up to 40% in a simulation
study with small commercial buildings [18]. The studies used experiment-based HVAC models
(e.g., air-cooled chillers and RTUs) to realistically evaluate the energy consumption and corresponding
electricity cost calculated and optimized in MPC formulation. MPC is often applied to the larger scale
such as the residential sector [19,20] or integrated with micro-grid where the renewable energy source
feeds the buildings [21].

The last potential example is fault diagnostics and detection (FDD)-related work. A number of
faults in building operation are related to the RTU according to a prioritized list of 20 top-priority
faults [22]. Many previous works investigated RTU faults in an automated fashion [11] or by
leveraging a virtual sensor set [23] that calculates the cooling energy to compare it with an
empirical model to distinguish faulty operation. In addition, a detailed HVAC model was empirically
validated with experiments [24] and used to develop automated FDD tools in a BES program (e.g.,
EnergyPlus, OpenStudio) [25,26]. This is capable of generating fault data as training sets to develop
an FDD algorithm.
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1.3. Objectives

This study proposes a method for generating performance curves of a direct expansion (DX)
cooling coil in an RTU based on field measurement. The developed model was evaluated with
various case studies. Previous studies were generally limited to a simulation-based HVAC system,
which might lead to an unrealistic analysis of building energy performance. This study leverages
long-term experimental data from an RTU installed in an unoccupied full-scale commercial building
that is monitored with a number of building-energy/environment-related sensors. The modeling and
performance evaluation are discussed in Section 2. Section 3 presents three different case studies, and
conclusions and a discussion are presented in Section 4.

2. Modeling and Evaluation

2.1. Test-Bed Description

The flexible research platform (FRP) in Oak Ridge National Lab (ORNL) was used for the RTU
experiment (Figure 1). It is a common two-story lightweight commercial building consisting of slabs
and a steel superstructure with a footprint of 13.4 m by 13.4 m. A 44-kW RTU with a DX cooling coil
system conditions zones of the building with an air handling unit (AHU) and VAV boxes in each room,
as shown in Figure 1 (right). The DX cooling system consists of two cooling coils that operate with two
stages. One cooling coil turns on in stage 1, and two coils are on in stage 2. Stage 2 is triggered when
the supply air temperature is not maintained at the setpoint (e.g., 12.8 ◦C (55 ◦F)).
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Figure 1. Front view of building (top left), roof top unit (RTU) (top right), and heating ventilation and
air-conditioning (HVAC) diagram (bottom).

2.2. RTU Modeling

2.2.1. General RTU Model Structure

In general, the power consumption of a DX cooling coil consists of multiple polynomials regarding
the cooling capacity, energy input ratio (EIR), and part load ratio (PLR). They are functions of the outdoor
air temperature and air temperature passing the cooling coil. The latter is a wet-bulb temperature,
which can be calculated based on the air temperature and relative humidity. Each polynomial does
not vary dramatically from one, and they are multiplied by the nominal value (i.e., rated condition),
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so they do not deviate much from the nominal performance. In this study, a general form is adopted
from the EnergyPlus engineering reference (Equation (1)) [27].

ElecRTU = Qrated ·ModT,cap ·ModF,cap ·
1

COPrated
·ModT,EIR ·ModF,EIR ·ModPLR (1)

where:

ModT,cap = ccap,1 + ccap,2Tout + ccap,3T2
out + ccap,4TWB,coil + ccap,5T2

WB,coil + ccap,6ToutTWB,coil

ModF,cap = ccap,7 + ccap,8Fratio + ccap,9F2
ratio

ModT,EIR = cEIR,1 + cEIR,2Tout + cEIR,3T2
out + cEIR,4TWB,coil + cEIR,5T2

WB,coil + cEIR,6ToutTWB,coil

ModF,EIR = cEIR,7 + cEIR,8Fratio + cEIR,9F2
ratio

ModPLR = (Qactual/Qrated)/(cPLR,1 + cPLR,2(Qactual/Qrated))

2.2.2. Modeling Results

Figure 2 presents the process to obtain the RTU model from the experiments. The process includes
(1) a long-term experiment (e.g., a full year), (2) post-processing to obtain steady-state experimental
data, (3) cooling capacity curve estimation, (4) EIR curve estimation, and (5) PLR curve estimation.
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Figure 2. RTU modeling performance.

The RTU was operated constantly for a year (2017) according to the test procedure for multiple
research projects. The setpoint temperature of the supply air was set to 12.8 ◦C (55 ◦F) and 16.7 ◦C
(62 ◦F) for cooling and heating seasons with binary control (on/off) of the two cooling coils. The second
cooling coil is only activated when the supply air temperature is not maintained at the setpoint.
The supply fan is operated according to the duct pressure with VAV damper operation. During the
test, the temperature and humidity of the supply and return air, the outdoor air temperature, the air
flow rate through the RTU, and the power consumption of the RTU are measured.

To create the performance curve, quasi-steady-state data were filtered from 1 year of HVAC
operation data (6 a.m.–6 p.m. for cooling season and 7 a.m.–10 p.m. for heating season) with 1-min
resolution (268,778 data points). The transition period was excluded for the starting/ending times
(6- and 4-min data points, respectively). The number of the final data points is 41,457. Then pivot
tables were built in an Excel sheet to provide the averaged cooling capacity and power consumption of
the RTU with respect to Tout and Tcoil for each stage. The sizes of the pivot tables are 1653 and 344 for
stages 1 and 2, respectively. Finally, the data of the full air flow rate were separated.

Gross cooling capacity was calculated with the enthalpy difference between the mixed and supply
air across the RTU using temperature/humidity sensors installed in the RTU, as shown in Figure 1
(bottom), which is based on ASHRAE fundamental [28]. Then the coefficients of the temperature
modifier for the cooling capacity (Ccap,i (i = 1–6)) were estimated with full air flow rate data. Constrained
linear regression was carried out in Matlab (lsqlin). The inequality constraint was set to normalize the
multiplier so that it is close to one in rated conditions (67 ◦F and 95 ◦F for Tout and TWB,coil). Then the
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coefficients of the air flow rate modifier (Ccap,i (i = 7–9)) were estimated in the same fashion with
varying air flow data.

Figure 3 (left) shows the result of the regression for the cooling capacity. The horizontal and
vertical axes represent the regressed and experimental value. The root mean square error (RMSE) of
the model compared to the experimental data is 0.96 kWh, and its correlation coefficient (R2) is 0.98.
The coefficients for EIR (CEIR,i (i = 1–9)) were estimated in the same fashion. Figure 3 (center) shows the
result of the regression for the power consumption. The RMSE and correlation coefficient are 0.14 kWh
and 0.99, respectively.

Previous sections focused on estimating the coefficient for the cooling capacity and EIR without
the loss from the PLR, so the data was filtered to only consider the ideal cases without the loss from the
part load operation. In this section, however, unfiltered data (268,778) are used with 1-min resolution.
These 1-min data are averaged for an hour to capture the average power loss of the on/off operation
of the RTU. Typical coefficients for PLR are 0.85 and 0.15. Manual calibration with 2-digit resolution
yields the best results at 0.8 and 0.2. Figure 3 (right) shows the regression results of the hourly power
consumption considering the loss from the PLR. The RMSE and correlation coefficient are 0.39 kWh
and 0.99, respectively. The final coefficients are summarized in Table 1.
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Figure 3. Modeling results of the cooling capacity (left) and power consumption without part load
ratio (PLR) (center) and with PLR (right).

Table 1. Final model coefficients.

Stage 1 Stage 2 Stage 1 Stage 2

Ccap,1 1.57742940 × 10−1 1.67520969 × 100 CEIR,1 1.54543818 × 100
−6.39859076 × 10−1

Ccap,2 4.37237407 × 10−2
−6.92156475 × 10−3 CEIR,2 −2.70157221 × 10−2 1.34507138e0−2

Ccap,3 7.29207705 × 10−4 5.48380617 × 10−5 CEIR,3 −3.46088947 × 10−4 2.34046419 × 10−3

Ccap,4 3.18835887 × 10−2
−5.86719003 × 10−2 CEIR,4 −4.03434888 × 10−2 1.01593333 × 10−1

e −5.41107627 × 10−4 2.08504063 × 10−4 CEIR,5 1.31449523 × 10−3 2.82545174 × 10−4

Ccap,6 −1.18166008 × 10−3 1.93809110 × 10−3 CEIR,6 1.69638404 × 10−4
−4.99337303 × 10−3

Ccap,7 8.09989450 × 10−1 7.93045348 × 10−1 CEIR,7 1.27320835 × 100 1.20706248 × 100

Ccap,8 2.43276315 × 10−1 2.34209810 × 10−1 CEIR,8 −2.20756876 × 10−1
−1.24473476 × 10−1

Ccap,9 −5.40767115 × 10−1
−5.20610958 × 10−5 CEIR,9 4.90756905 × 10−5 2.76826460 × 10−5

2.2.3. Model Analysis

The performance of the estimated RTU model was compared with that of the manufacturer’s data
(Figure 4). We assume that the performance data with gross cooling capacity in the manufacturer are
based on stage 2 operation. According to the comparison, regression with stage 2 operation is close to
the manufacturer data. Unfortunately, no cooling power data are provided from the manufacturer.
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Even though the manufacturer data follow the performance trend of the actual measurement, they are
limited as only stage 2 operation is provided, and cooling power performance is not given.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 17 
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Figure 5 shows the COP variation of the estimated RTU model with respect to the outdoor air
temperature and airflow rate. The wetbulb temperature of the air entering the cooling coil (TWB,coil) is
fixed at 67 ◦F (19.4 ◦C). The left and right figures show stage 1 and stage 2, respectively. As one can
expect, the COP becomes high when the outdoor air temperature is low. Likewise, the higher COP
is obtained with higher airflow. However, this is not as sensitive as the impact from the outdoor air
temperature. The experimental data for the stage 1 are obtained when the outdoor air temperature
is not that high and vice versa for the stage 2 which is activated only for hot weather condition.
Ideally, those two could be united to one curve by dividing the weather/operation condition between
two stages. Figure 6 presents the simplified relation between the COP and outdoor air temperature.
It shows the maximum, average, and minimum value from the airflow rate variation for stages 1 and 2
with TWB,coil fixed at 67 ◦F (19.4 ◦C). Typically, stage 2 is required when the outdoor air temperature is
high, so stage 2 data might not be applicable with lower outdoor air temperature.
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3. Case Study

In this section, simulation/experimental case studies were carried out with regressed RTU model
to evaluate the significance of the model in three different research topics. In building energy modeling
study (Case 1), cooling DX electricity consumption, delivered cooling energy, and room air temperature
were compared between the simulation and experiment. In MPC study (Case 2), the room air
temperatures were compared between the simulation and experiment for the building modeling.
Then the cooling rate, power consumption, and corresponding electricity cost of the simulations with
different control strategies were compared. In the FDD study (Case 3), the COP, delivered cooling,
and power consumption were compared between the simulated performance with regressed RTU
model and experimental test based on the faults that were implemented by the authors.

3.1. Case 1: Building Energy Modeling Study

The regressed RTU model in previous section was tested in a building energy modeling study
with a simulation program, EnergyPlus. The building envelope model was constructed in OpenStudio
according to the building information from drawings, specifications, and a site audit (Figure 7).
Then the model was imported in the EnergyPlus program for the additional settings of the HVAC
system and envelope details. The weather file was packed based on the data from the weather station
on the roof. In addition, a blower door and tracer gas test were performed to identify the infiltration
rate of the building envelope and input to the simulation.
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The AHU and VAV were modeled with ZoneHVAC:OutdoorAirUnit and AirTerminal:
SingleDuct:VAV:Reheat. The RTU DX cooling system was modeled with Coil:Cooling:DX:TwoStage
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WithHumidityControlMode. The regressed cooling coil performance was implemented with
Curve:Quadratic and Curve:Biquadratic, while the detailed performance information, such as the COP
and cooling capacity, was input in CoilPerformance:DX:Cooling.

The experiment for the validation test was performed for 8 days in the cooling season
(19–26 June 2019). A total of 10 zones were conditioned with a fixed damper position at a minimum
opening rate and providing air flow from 116 to 352 cfm (cubic feet per minute). The setpoint of the
supply air temperature from the AHU was set to 12.8 ◦C (55 ◦F), and measurements show fluctuation
of approximately ±1.5 ◦C due to the on/off control of the RTU. During the test, all heating coils in the
AHU and VAV were turned off. The room air setpoint temperature of all zones was set to 22.2 ◦C
(69.8 ◦F). However, they were not maintained at the setpoint due to the minimum airflow rate with the
fixed damper position, and the reheating coils were not operated. The detailed procedure and grounds
for the experiment are described in a previous study [13].

Figure 8 shows the validation results along with environmental data. The simulated RTU
cooling power consumption and delivered cooling matched well with the experimental trajectories.
The simulation trajectory of the average (volume-weight) room air temperature follows the trend
of the experimental trajectory. However, it was impossible to match all trajectories of the room air
temperatures (not shown in the figure due to the page limit), which vary according to characteristics
such as the room size, window orientation, and window-wall ratio.
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The regressed RTU model was compared with the generic models in the open dataset of EnergyPlus.
Three curves (Lennox KCA120S4, Lennox SCA120H4B, Lennox TCA120S) that are operated with
similar cooling capacity were selected. Only the curve data (Curve:Quadratic, Curve:Biquadratic) are
used, while the coil performance remains the same (CoilPerformance:DX:Cooling). Figure 9 shows the
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comparison of the measured and simulated cooling power trajectories and reference curves. The NMBE
and coefficient of variation of sRMSE (cv(RMSE)) obtained with the naive adoption of the nominal
curve are −21.7~−37.1% and 25.5–41.4%, but those of the regressed curve are reduced to −0.2% and
6.1%, respectively.Sustainability 2020, 12, x FOR PEER REVIEW 9 of 17 
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3.2. Case 2: Model-Based Predictive Control (MPC)

The second case was an MPC study. A control-oriented building model was estimated with
actual building operation data and then input to a state-space formulation for optimization in MPC.
The grey-box model structure was applied, which is simple and robust so has been applied for
a number of MPC studies [29,30]. The experiment was conducted for four days (21–24 September
2019) to generate building data from the test-bed. A total of 10 zones of the FRP were conditioned
with bang-bang control to decorrelate the impact of the control and disturbance inputs to the output.
This was done to facilitate the estimation process and obtain a robust building model.

To simplify the building model, the 10 building zones were lumped into a single-zone model,
as shown in Figure 10. This is the 2C2R model with one boundary temperature (Tout), one control
input (QAHU), and three disturbance inputs (Qsol, QLGT, and Qint). The cooling rate from the supply
duct to each zone and the internal heat gain are summed and input to each state (envelope and room
node). The heat gain from the lighting (QLGT) and internal equipment (a heater in this study, Qint)
are distributed to the envelope and room nodes; αLGT,room + αLGT,env = 1 and αint,room + αint,env = 1.
The corresponding state-space formulations are shown in Equations (2) and (3).

.
x = Ax + Bu (2)

y = Cx + Du (3)

where:

A =

 − 1
Cenv

(
1

Roe
+ 1

Rer

)
1

CenvRer
1

CroomRer
−

1
CroomRer

, B =

[ 1
CenvRoe

αsol,env αLGT,env αint,env 0
0 αsol,room αLGT,room αint,room 1

]
,

C =
[

0 1
]
, D =

[
0 0 0 0 0
0 0 0 0 0

]
, x =

[
Tenv

Troom

]
, u =


Tout

Qsol
QLGT
Qint

QAHU


Non-linear optimization was performed to identify the model parameters (Roe, Rer, Cenv, Croom,

αsol,env, and αsol,room) with the average (volume-weight) room air temperature. The internal Matlab
function fmincon was used. The initial values of the estimate parameters, such as the convective heat
transfer coefficient, were adopted from the building energy simulation program. Figure 11 presents
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the estimation and validation results along with the control and disturbance inputs. The RMSE of the
estimated building model was 0.76 ◦C, which is acceptable for implementation in the simulation and
actual test-bed building.
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The MPC simulation was performed with the estimated building and RTU models. In the MPC
formulation, a simple COP prediction with linear relation to the outdoor air temperature was used,
as shown in Equation (4). This was derived from Figure 6 based on the least squares method. All stage
1 data were used, while only high-temperature data (80–95 ◦F) were applied.

COP = −0.073 Tout + 9.6637 (4)
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To formulate the linear optimization (e.g., linear programming), the continuous state space
formulation was discretized with a time step k, and then the input matrix B was divided according to
the disturbance and control input (Equations (5) and (6)). Bd,w and Bd,Q are input matrices incorporating
the disturbance and control input. This was iterated with the time step, and a series of matrices were
generated, including a column matrix (Ωx) and lower triangular matrices (Ωw and Ωu), as shown in
Equation (7). The matrices are expressed with bold notation.

x[k + 1] = Adx[k] + Bdu[k]
= Adx[k] + Bd,ww[k] + Bd,QQAHU[k]

(5)

y[k] = Cdx[k] + Ddu[k] (6)
x[1]
x[2]

...
x[n]

︸   ︷︷   ︸
X

=


Ad
Ad

2

...
Ad

n

︸   ︷︷   ︸
Ωx

x[0]︸︷︷︸
X0

+


Bd,w 0 · · · 0

AdBd,w Bd,w · · · 0
...

...
. . .

...
Ad

n−1Bd,w Ad
n−2Bd,w · · · Bd,w

︸                                            ︷︷                                            ︸
Ωw


w[0]
w[1]

...
w[n− 1]

︸         ︷︷         ︸
w

+


Bd,Q 0 · · · 0

AdBd,Q Bd,Q · · · 0
...

...
. . .

...
Ad

n−1Bd,Q Ad
n−2Bd,Q · · · Bd,Q

︸                                            ︷︷                                            ︸
Ωu


QAHU[0]
QAHU[1]

...
QAHU[n− 1]

︸               ︷︷               ︸
QAHU

(7)

Equation (8) represents the optimization formulation for the MPC simulation. The objective
function is the electricity consumption of the RTU, which is calculated by dividing the control input
matrix (QAHU) by the predicted COP (COPT, where T is the transpose operator). The room air
temperatures (Tlower and Tupper) are set to 20 ◦C and 23 ◦C. They are hard constraints incorporated in
an inequality constraint so that no comfort violation occurs in the room during the optimization. CT is
a pre-defined matrix for extracting the target temperature from the state (e.g., air temperature).

min
n∑

k=1

1
COP k

·QAHU,k = COPT
·QAHU (8)

where: [
CT ·Ωu

−CT ·Ωu

]
︸          ︷︷          ︸

Aineq,i

QAHU ≤

[
Tupper −CT(ΩX ·X0 −Ωw ·w)

−Tlower + CT(ΩX ·X0 −Ωw ·w)

]
︸                                           ︷︷                                           ︸

Bineq,i

The existing Matlab solver linprog was used for solving the linear programming problem. The time
step and the prediction horizon were set to 15 min and 24 h, so the dimension of the control input
(QAHU) is 96. The initial state temperatures for the envelope and room were set to 21.5 ◦C, which is the
mid-point of the comfort bound. Ventilation load is not considered (i.e., no outdoor air is included in
the cooling load calculation).

One-day data after the estimation/validation period were selected (25 September 2019), which
was a typical sunny day in the cooling season (the maximum and minimum outdoor air temperatures
were 32.7 ◦C and 12.2 ◦C). One-shot optimization was carried out with measured disturbances
including weather data (outdoor air temperature and solar radiation) and internal heat gain profiles.
The estimated RTU model was incorporated after calculating the MPC with the simplified COP
prediction. A typical feedback controller was simulated with the estimated building model to evaluate
the MPC performance.
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Figure 12 shows the performance comparison of the MPC and feedback control. It shows the
room air temperature, cooling rate, power consumption of the RTU (regressed model in Section 2),
and disturbances, including solar radiation and outdoor air temperature. The cooling rate was input to
the zone when the outdoor air temperature was low and the corresponding COP was high (e.g., 2 a.m.
to 5 a.m.) in the MPC. The amount of power consumption of the pre-cooling was relatively low due to
the higher COP at night. The relative savings potential of the MPC in the power consumption is 14.4%
compared to the feedback control. The cost saving is 12.5% when the typical electricity cost at the time
of use (TOU) was applied; we assumed that the peak price is twice the off-peak price, and their average
is 12.7 ¢/kWh which is approximately the nation-wide average [31]. The cost saving can be increased
when a more aggressive TOU policy is applied. The results are summarized in Table 2.
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Table 2. Energy and cost comparison.

Feedback Control MPC Savings [%]

Cooling rate [kWh] 129.7 136.5 −5.3

Power consumption [kWh] 51.9 44.4 14.3

Cost [$] 5.6 4.8 13.2

3.3. Case3: Fault Diagnostics and Detection (FDD)

An FDD study was conducted in a third case study using the regressed RTU model. Three main
fault conditions were identified in terms of the RTU operation: duct leakage, limited refrigerant,
and condenser fouling. They are ranked as the 2nd, 4th, and 7th most common faults in the top 20
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faults that occur in small commercial buildings in the U.S. [22]. This is a purely experiment-based
study and was carried out for several days in two years (2017–2018). All tests were done with a typical
occupancy schedule (e.g., 07 a.m. to 10 p.m.) using heaters, humidifiers, and lighting on the ceiling
without actual occupants. The setpoint temperature of all rooms was set to 23.9 ◦C (75 ◦F). The detailed
information regarding the experiments was described in a previous study [26].

To generate the leakage in current RTU while not damaging the actual systems (e.g., cooling/heating
coils, chiller, fan, etc.) from rain and other incidents, cylinder-type iris dampers (Fantech IR16 Iris
Damper) were installed on the supply and return sides (the economizer specifically), as shown in
Figure 13. They enable manual control of the level of the air leakage from outside. Only the damper in
the return side was activated.
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Figure 13. Damper installation for duct leakage test on supply and return sides.

There is no direct measurement for the return duct leakage rate. The air flow can be determined
from the K factor and differential pressure measurements. The lever in the damper can be adjusted to
select the K factor. The equation to estimate the airflow is:

q = K
√

∆p (9)

where q is the airflow rate in cfm, and ∆p is the differential pressure in w.c. Different levels of return
duct rates were tested by adjusting the K value and measuring ∆p. The test results show that around
12% and 23% return duct leakage can be achieved with K values of 1500 and 6750, respectively. As the
maximum value of K is 6750, higher return duct leakage was not tested. Based on this preliminary test,
leakage tests with 12% and 23% were carried out.

“Limited refrigerant” refers to operating the RTU with an inappropriate or smaller amount of
refrigerant. This fault can occur due to human error or mechanical issues such as leaking. This damages
the performance of the compression cycle of the RTU, so the cooling capacity and efficiency are
degraded. To emulate this fault, we manually injected less refrigerant (70%) in the pipe line.

Condenser fouling refers to decreasing the airflow rate across the condenser fan due to dust,
dirt, or litter on the condenser unit’s fins. This fouling degrades the heat transfer rate between the
refrigerant in the condenser unit and the air induced by the condenser fan. To emulate this fault without
damaging the facility, two different levels of porous fabrics were applied on the external surface of the
condenser, as shown in Figure 14. Air reductions of 28% and 58% were achieved compared to the case
without the fabric according to manual measurement with a hand-held airflow meter.

Figure 15 shows the results of the three fault tests along with the baseline case. The COP, delivered
cooling, and RTU’s total power consumption are shown with 1-min resolution. Transition data for
turning on the RTU and between stages were deleted as a bias to evaluate the prediction performance
of the model. The error metric was evaluated with the daily cv(RMSE) in percentage (%) and is
summarized in Figure 16. As one can see, the prediction with the estimated model and experimental
data matched well at baseline. However, in all cases, the power consumption does not deviate as much
as the COP and delivered cooling. It can be concluded that the fault should not be evaluated with
only power consumption prediction but also with the delivered cooling prediction or COP, which is
calculated based on the delivered cooling.
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When the outdoor air is infiltrated through the RTU return side (i.e., return duct leakage),
the delivered cooling measurement was reduced to 22–32%, while the power consumption increased
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slightly compared to the prediction based on the model. This makes sense according to the sensing
point of the return air. The actual return air sensor is located typically before the mixing box and
unintentionally mixed with infiltrating outdoor air. The cv(RMSE) between the measurement and
prediction is 31–55%. The more duct leakage is produced, the less delivered cooling is produced
(e.g., compare the leakage rates of 12% and 23%). This trend is seen in the power consumption—more
power consumption is required for a higher leakage rate. However, the deviation is not distinct
compared to the delivered cooling case.

As for the limited refrigerant case, it does not affect the power consumption distinctively, but the
delivered cooling decreases about 19%. When the heat exchange rate in the condenser side degrades
(i.e., condenser fouling), distinct deviation between the prediction and measurement is not seen.
The more fouling occurs (e.g., compare the airflow reduction rates of 28% and 58%), the less delivered
cooling is produced, and more power is required.

4. Conclusions and Discussion

This study presented a general procedure to generate a DX cooling coil system for an RTU
and evaluated the applicability of the model to multiple cases. Regression was carried out with
experimental data for predicting the cooling capacity and power consumption. Based on the estimated
model, three case studies were carried out.

• The estimated DX cooling model for RTU system matched well with the measurement for the two
stages. Their RMSE and correlation coefficient were 0.96kW and 0.98 in the cooling capacity and
0.14kW and 0.99 in power consumption.

• A BES program validation with EnergyPlus was conducted with a 2-story unoccupied commercial
building. The power consumption of the model matched well with the experiment compared to
the naive adoption of the nominal curve. The NMBE and cv(RMSE) improved from −21.7~−37.1%
and 25.5~41.4% to −0.2% and 6.1%, respectively.

• An MPC simulation study was carried out with an estimated grey-box building and RTU models.
Simplified linear COP prediction was incorporated in the MPC formulation, and 14.3% power
savings was achieved compared to the feedback control.

• Three fault tests (duct leakage, limited refrigerant, and condenser fouling) were performed with
the regressed RTU model. In all cases, the delivered cooling decreased distinctively. The cv(RMSE)
of faulty experimental data against the model was 7~52% while the normal experimental data
against the model were 9% (baseline). However, the power consumption of the faulty condition
increased slightly compared to the prediction from the model.

The scope of this study was limited to quick case studies to evaluate the applicability of the RTU
model. Empirical validation was only carried out with a single tool (EnergyPlus), and the analysis
of the building envelope to match the indoor air temperature was not fully investigated. The MPC
simulation study was carried out for one day with a simplified/lumped (single) zone from a multi-zone
building. In the FDD study, a detailed algorithm to predict the fault was not discussed, and only
a simple error metric (cv(RMSE)) with trajectories in figures was presented. Further evaluation with
a detailed analysis for each case study can be performed in future work.
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