
sustainability

Article

Faster Data Forwarding in Content-Centric Network via
Overlaid Packet Authentication Architecture

Taek-Young Youn 1 , Joongheon Kim 2 , David Mohaisen 3 and Seog Chung Seo 4,*
1 Department of Industrial Security, Dankook University, Gyeonggi-do 16889, Korea; taekyoung@dankook.ac.kr
2 School of Electrical Engineering, Korea University, Seoul 02841, Korea; joongheon@korea.ac.kr
3 Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA; mohaisen@ucf.edu
4 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea
* Correspondence: scseo@kookmin.ac.kr; Tel.:+82-02-910-4742

Received: 18 September 2020; Accepted: 11 October 2020; Published: 21 October 2020
����������
�������

Abstract: Content-Centric Networking (CCN) is one of the emerging paradigms for the future Internet,
which shifts the communication paradigm from host-centric to data-centric. In CCN, contents are
delivered by their unique names, and a public-key-based signature is built into data packets to verify
the authenticity and integrity of the contents. To date, research has tried to accelerate the validation of
the given data packets, but existing techniques were designed to improve the performance of content
verification from the requester’s viewpoint. However, we need to efficiently verify the validity of
data packets in each forwarding engine, since the transmission of invalid packets influences not only
security but also performance, which can lead to a DDoS (Distributed Denial of Service) attack on
CCN. For example, an adversary can inject a number of meaningless packets into CCN to consume the
forwarding engines’ cache and network bandwidth. In this paper, a novel authentication architecture is
introduced, which can support faster forwarding by accelerating the performance of data validation in
forwarding engines. Since all forwarding engines verify data packets, our authentication architecture
can eliminate invalid packets before they are injected into other CCN nodes. The architecture utilizes
public-key based authentication algorithms to support public verifiability and non-repudiation, but a
novel technique is proposed in this paper to reduce the overhead from using PKI for verifying public
keys used by forwarding engines and end-users in the architecture. The main merit of this work is in
improving the performance of data-forwarding in CCN regardless of the underlying public-key validation
mechanism, such as PKI, by reducing the number of accesses to the mechanism. Differently from existing
approaches that forgive some useful features of the Naive CCN for higher performance, the proposed
technique is the only architecture which can support all useful features given by the Naive CCN.

Keywords: content-centric networking; data authentication; fast data forwarding;
authentication infrastructure

1. Introduction

Content-Centric Networking (CCN) has recently been proposed as a means of Information-Centric
Networking (ICN) to solve the existing IP-based Internet’s problems such as heavy traffic increases and
security weakness. Differently from the other ICN approaches, such as DONA and NetInf, CCN changes
the existing networking paradigm from host-centric to data-centric.

In CCN, contents are routed by their own content name rather than their IP-address and contents
are stored by the units of data segment in network nodes’ storage (so-called in-network caching) during

Sustainability 2020, 12, 8746; doi:10.3390/su12208746 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-3840-2254
https://orcid.org/0000-0002-1794-6076
https://orcid.org/0000-0001-8016-2808
http://dx.doi.org/10.3390/su12208746
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/20/8746?type=check_update&version=2

Sustainability 2020, 12, 8746 2 of 23

transmission to rapidly handle future requests. CCN’s name-based routing and in-network caching enable
multi-path content forwarding and optimization of bandwidth usage, which resolves the current Internet’s
data traffic problems and DDoS security attacks [1]. Since CCN allows contents to be stored in network
nodes by units of segment, it employs a public key signature as the built-in data and source authentication
mechanism.

Though the use of signature guarantees built-in security to CCN data segments, it requires high
computational overhead. To date, research has tried to reduce the cost of the public-key-signature-based
approach for segment authentication [1–12]. PARC used an MHT-based [5,6] mechanism in CCNx.
Note that CCNx is the reference implementation of CCN [1–4]. The use of MHT reduces the amount of
signing and verification, but it still requires a heavy overhead compared with the scenario where segment
authentication is not considered. To handle the efficiency issue, HMAC-based techniques have been
introduced [9,10]. However, they are not setup-free and and the techniques need an additional method for
the secure distribution of HMAC keys. Name-based techniques [7,8] have been proposed with efficient
data authentication. However, they depend on specific naming roles and the reliability of names can be
verified by an additional trusted party [7] or periodic broadcasting [8]. A hash chain-based mechanism was
proposed for efficient data segment authentication in CCN [12]. The technique is efficient in the viewpoint
of both computation and communication, but it is vulnerable to transmission error due to the basic feature
of hash chain technique. In 2015, a multi-token-based method, LIVE, was proposed for efficient data
integrity checking and access control in CCN nodes [11]. In the technique, the publisher uses tokens to
control cached content in forwarding engines. The publisher distributes tokens to valid users. Though the
technique is efficient to support sufficient performance, a content publisher should have a complete list of
authorized CCN nodes and their public keys.

1.1. Contribution and Organization of the Paper

In this work, we investigate the security issues caused by the lack of packet verification in forwarding
engines and review existing works under this perspective. To date, several data packet authentication
mechanisms have been presented [1–3,9–11,13,14], but they all failed to achieve all of the aforementioned
requirements if all forwarding engines participate in data packet verification (a detailed analysis and
comparison will be described in Section 6). To support efficient packet verification in all forwarding
engines, a new authentication architecture named Overlaid Packet Authentication (OPA) is designed in
this work. Our authentication architecture can support all features given by the original CCN architecture.
Recall that a number of improved architectures are aimed at the efficiency of packet verification in
requesters, and thus they are unable to catch all features when forwarding engines also participate in
the verification of data packets. In the literature, our work is the first authentication mechanism that can
improve the performance of data packet verification in CCN while permitting all nodes to partipate in
the verification of data packets.

This paper is organized as follows. In Section 2, we recall the basic properties of CCN and some
security issues that should be considered. In Section 3, a new architecture for efficient packet verification
in CCN is proposed and its security is proven in Section 4. Note that the proposed architecture is a generic
construction in the sense that any signature scheme can be used. In Section 5, a concrete description is given.
The performance of the proposed construction will be analyzed in Section 6. Section 7 is the conclusion.

2. Preliminaries

In this section, the basic properties of CCN are briefly recalled, with discussions regarding
security-related issues.

Sustainability 2020, 12, 8746 3 of 23

2.1. Basic Structure of CCN

2.1.1. Packet Structures

As seen in Figure 1, there are two packet structures: the interest packet I-Packet and data
packet D-Packet.

Figure 1. CCN packet types [1].

Interest Packet

An interest packet is a content request packet and it contains content name, selector, and nonce fields.
content name is the name of the requested content, and typically hierarchical naming is used in CCN.
selector indicates the condition of the required data. Finally, nonce is a randomly generated value to
uniquely identify an Interest packet.

Data Packet

A data packet is a response packet to the Interest packet and it consists of content name, signature,
signed info, and data fields. Content name is the unique indicator for identifying the data packet. Signature is
the authenticating information for the data packet, and it can be verified under the information signed info
which includes the publisher’s ID and key locator. A data field is the real data piece of a content.

2.1.2. CCN Forwarding Engine

A content requester sends an I-Packet containing the content name that he/she wants to get,
and network nodes (forwarding engines, publisher, or other nodes), with the content matched to the content
name in the Interest packet, send D-Packet through the reverse path, where the Interest comes from.

When a CCN-forwarding engine receives an Interest packet on some faces, it searches the CS-PIT-FIB
sequence by using the content name in the Interest. If there is content in the Content Store (CS) matched
to the Interest, the data packet containing the requested content will be sent out through the face that
the Interest arrived on and the Interest will be discarded. If there is no matching content in the CS,
the forwarding engine searches the Pending Interest Table (PIT). In other words, if there is an exact-matched
PIT entry, the Interest’s arrival face will be added to the corresponding entry’s RequestingFaces list
and the Interest will be discarded (the so-called Interest aggregation function). When a sata packet
corresponding to this PIT entry arrives, the copy of the packet will be sent out through the faces recorded
on the entry’s RequestingFaces list and the entry will be removed in the PIT. If there is no matched
entry in both CS and PIT (this means that this Interest is the first request to that content), the forwarding
engine searches the Forwarding Interest Base (FIB). If there is a matching FIB entry with the longest-prefix

Sustainability 2020, 12, 8746 4 of 23

matching method, then the Interest will be sent out through faces on the Face list of the entry and a new
PIT entry is created about the Interest and its arrival face. Finally, if there is no match for the Interest in CS,
PIT and FIB, it is discarded.

2.1.3. Data Packet Authentication in (Naive) CCN

As a default data packet authentication, PARC implemented an MHT-based aggregate signing
mechanism into the CCNx library, the CCN protocol’s reference implementation. The CCNx library
supports per-packet authentication and multi-packet authentication using MHT, depending on the security
configuration [1–3]. Recently, Seo et al. [14] proposed an efficient two-layered data packet authentication
mechanism in CCN.

The data packet can be authenticated with signature and signedinfo fields. Since all information
required for verification is included in each data packet, any entity can perform the data packet verification,
including forwarding engines. Note that forwarding engines do not verify the data packet in original
CCN architecture even though they can. To use a signature scheme for verification, an architecture such as
PKI is required to check the validity of a public key. Though some dedicated systems have been studied
for CCN, a verifier is still needed to access the validation system to check the validity of given public
key before verifying a signature using the public key [15]. Though the cost of public key validation was
not seriously considered in measuring the cost of signature verification, it is not easy to ignore the cost,
since at least one verification should be performed for the signature generated by a CA on the public key.
If we have to use more complicates systems for checking the freshness of the public key by using a system
such as CRL or OCSP, the cost of public key validation may take form a large portion of the total cost of
the verification of the data packet.

2.2. Requirements

2.2.1. Security Model

Since generating and injecting invalid packets into the network is a very common and practical
scenario, it is assumed that adversaries can perform one of the following attack scenarios. Before giving a
formal definition, we recall some attack scenarios as follows.

Distribute Poisoned Data

The most harmful attack is the distribution of damaged data. Since a successful adversary can generate
harmful but correctly verified data packets, requesters may receive the harmful data instead of the original
data. If the poisoned data include simply garbage information, requesters fail to obtain the expected data.
Though requesters can obtain the original data later by asking a reliable source, some services that need
timely data transmission will be damaged. When the adversary succeeds in inserting a malicious code into
the poisoned data packet, receivers can be damaged by the code. Since the damage caused by the code
cannot be anticipated, we need a way to detect poisoned data for secure data distribution via CCN.

Fortunately, in CCN, the use of an authentication mechanism such as a digital signature scheme is
considered to guarantee the integrity of data. Requesters can detect a corrupted data packet by verifying
the authenticating message included in the data packet. Therefore, poisoned attacks can be easily countered
by using a suitable authentication mechanism.

DDoS Attack

It is not easy to distribute a maliciously forged data packet in CCN due to the use of an authentication
mechanism. However, it is still relatively easy to inject a meaningless data packet into CCN. Thus,

Sustainability 2020, 12, 8746 5 of 23

adversaries can mount a DDoS attack against CCN by generating a number of valid data packets and
the corresponding number of request packets [15,16]. Though the robustness against DDoS attack is
a merit of ICN, it is still possible to mount DDoS attacks by generating a number of data packets and
the corresponding request packets if an adversary obtains the right to publish, which implies that (s)he
can generate a valid data packet and publish a maliciously generated data packet into CCN. Note that
an easy way to prevent the adversary from distributing maliciously made packets is maintaining a list of
reliable publishers. In this case, only permitted publishers can generate the data packet, and so we should
give up the convenience of being able to participate in publishing.

When a DDoS attack occurs, forwarding engines consume computing power to support
the transmission of manipulated packets. Though CCN is designed to aggregate a number of packets into
a sign packet, the adversary still can perform DDoS by generating a number of packets that cannot be
aggregated. For example, a number of (different) data packets and the corresponding interest packets can
be generated to be injected. Note that the packets cannot be aggregated since only interest packets for
the same data packet can be aggregated.

Differently from an ordinary network, ICN is robuster against DDoS since the volume of manipulated
packets influence the effect of DDoS and generating huge packets is also a burden to the adversary.
However, ICN is still vulnerable to DDoS if the adversary can use sufficient resources to generate packets
for attack.

Cache Consumption Attack

In ICN, forwarding engines maintain (relatively) large storage to cache data packets for faster data
transmission. If the adversary generates and injects maliciously generated data packets into the network,
the forwarding engines’ cache would be filled with garbage data. Then, valid packets have less of a chance
to be stored in the forwarding engines’ storage, which influences the performance of forwarding, since the
forwarding engine can reduce the round trip time by responding to an interest packet without asking other
forwarding engines only if the required file is already stored in his storage. Cache consumption attack
can be seen as a part of the DDoS attack, but different from the ordinary DDoS attack since the damage
caused by cache consumption attacks lasts until the stored garbage data are removed from forwarding
engines’ caches.

The described attack scenarios can be countered if secure authentication technique is applied to CCN
architecture appropriately and all forwarding engines verify every data packet under the authentication
technique. To be sure, it is not easy to counter the case where an adversary obtains a legitimate right
to publish and generate a number of data packets for malicious purposes. Therefore, the case will be
excluded from our discussion. Except for this extraordinary case, if it is possible to figure out maliciously
generated packets when they are inserted into CCN, all the above attacks can be countered. From now on,
the attacks are referred to as forgery attacks, since, fundamentally, an adversary’s goal in any attack is to
generate a forged data packet. Based on this observation, the security of CCN against forgery attacks can
be formally defined as the following.

Definition 1. Let Auth be the authentication mechanism in CCN architecture. Let Adv(Auth,A) be the advantage
of an adversary A in terms of forgery attacks against Auth. More concretely, Adv(Auth,A) can be understood
as the probability of successful forgery generation in the sense that a forged data packet is injected into the CCN
architecture by passing the verification procedure deployed in Auth. Then, the authentication mechanism is secure
against forgery attacks if

Adv = max{Adv(Auth,A)|A ∈ ADV} < ε

Sustainability 2020, 12, 8746 6 of 23

where ADV is the set of all adversaries and ε is a negligible value. In other words, the authentication mechanism
Auth is secure against forgery attacks if any powerful adversary cannot generate a forged data packet which can pass
the verification procedure in the mechanism.

2.2.2. Functional Requirements

In addition to the security requirement, for security against forgery attacks, some functional
requirements are required for effective packet verification in CCN. To date, the research has tried to improve
the authentication procedure in CCN, as mentioned in the above. However, they focus on the performance
in end-users or need some restrictions for supporting efficient packet verification in forwarding engines.
Recall that the naive CCN architecture can support packet verification in all forwarding engines since
the functionality is already built into each data packet. Unfortunately, when we focus on the verification
in forwarding engines, existing technologies fail to give a better performance compared with the naive
approach. To understand the above viewpoint, we recall some useful features that can be guaranteed by
the naive approach:

Verification Independence

Since CCN is a general purpose architecture, it can cover various types of data, including small-sized
data where the data can be transmitted in a single data packet. Thus, for CCN, it is desirable to give an
authentication mechanism which can support efficient packet verification regardless of the size of data
to be treated. To cover the requirement, we have to guarantee verification independence in the sense that
each data packet can be verified without any additional information, such as a sibling path in MTH-based
approaches.

On-the-Fly Data Packet Generation

MHT-based approaches are suitable for static data distribution. For real-time data, e.g., live-TV
broadcasting, the data to be published cannot be fixed before generating and transmitting data packets,
which means that some approaches, such as MHT-based methods, cannot be applied to such applications,
since a hash-tree can be constructed only after all the data are given. Recall that the naive CCN is very
suitable for on-the-fly packet generation, since each data packet can be generated without considering
other data packets belonging to the same data.

Non-Deniability (or Traceability)

In many techniques, publishers are assumed to be honest entities. However, these days, more entities
generate various data. For example, in YouTube, anyone can generate their own contents and distribute
them via Website. Such changes suggest the need for new technologies that can counter the threats.
Since CCN is devised to prepare the coming age, it is better to assume an arbitrary publisher instead of
fixed reliable publishers. In this case, we face a new challenge of countering malicious publishers. One
possible and easy remedy is to make list of verified publishers. However, the method cannot cover data
transmission generated by unexpected publishers. A better choice is to make a list of malicious publishers
and permit any publishers to publish their data. However, in this case, we need non-deniability (or
traceability), since a malicious publisher should be identified. In naive CCN, the use of a public-key-based
signature scheme is considered as a mandatory component, which implies that the naive CCN can support
the functionality due to the non-deniability of the underlying signature scheme.

Sustainability 2020, 12, 8746 7 of 23

Setup-Free Construction

One significant goal of CCN is mobility in many aspects. However, many existing works weaken
the feature to improve the performance of authentication. For example, HMAC-based methods and
the Token-based method are designed by assuming some pre-shared secret information, or by parties
needing to maintain common information which is necessary for being synchronized. If we need any
setup procedure for authentication, it could influence the mobility of CCN, since any entity who wants
to participate in the communication should set up according to the underlying system. For example,
in the HMAC-based system, each user should shares common secret information with the publisher before
participating in the system. One of the demerits of state-based construction is that parties need to maintain
secret information and the existence of secret information in many points causes various security threats.
Hence, it is obvious that the setup-freeness is one of the important requirements of CCN.

Recall that any attacks considered in Section 2.2.1 can be countered by verifying the validity of data
packets, and we can achieve the security goal by using public-key-based signature schemes. However,
to achieve all the above requirements is not easy, since the use of heavy cryptographic primitive caused by
the use of signature schemes can be a hurdle to overcome. For example, if we use an MHT-based approach,
we can support the above requirements efficiently except the second requirement. If we adopt the naive
authentication mechanism in CCN and let all forwarding engines to verify all data packets, we can achieve
all the above requirements. However, the naive approach requires heavy computation in forwarding
engines. Though the efficiency of verification in forwarding engines is not explicitly included in the list of
requirements, it is very important in the authenticating mechanism for its practicality. Hence, the main
goal of the paper is to design an authentication mechanism which can achieve all requirements with very
low cost.

3. Proposed Overlaid Authentication Mechanism

In this section, a new architecture named TAuth will be described, which supports secure and efficient
routing in a content-centric network (CCN).

3.1. Basic Idea

To accelerate the authenticated packet forwarding in CCN, network connections are divided into two
types according to the reliability of connections. The connections between a forwarding engine and an
outsider, such as a requester or a data publisher, cannot support strong reliability since the forwarding
engine cannot trust the outsider and vice versa. On the other hands, the connection between two
forwarding engines can support stronger trust since there is a fixed number of forwarding engines
in the network, and it is possible to maintain the list of forwarding engines and the corresponding
information, such as the list of their public keys.

Note that a data packet put into the network passes through a number of forwarding engines until it
reaches a requester. When the data is first given to a forwarding engine, it verifies the given packet using
attached authenticating information such as signature and signed information. If the packet is verified to
be valid, the forwarding engine sends the packet to adjacent forwarding engines. Then, the forwarding
engines do the same operations until the packet reaches the requester. Note that most of the data
transmission and verification are executed by many forwarding engines who can trust themselves more
than outsiders. Based on the observation, it is possible to design an efficient authentication mechanism
by providing an overlay for connections between forwarding engines. Due to the stronger reliability
between forwarding engines, the cost for authentication is reduced in many viewpoints. Finally, note that,
the main idea of this work is to divide network links into two levels according to the reliability between

Sustainability 2020, 12, 8746 8 of 23

nodes, and use less-intensive and efficient authentication for reliable nodes, which form a large part of
data transmission.

3.2. Components

3.2.1. Signature Scheme for Content Publishers

The verification algorithm optionally requires the message as an input. For example, most well-known
signature schemes such as DSA require the signed message as an input. However, the value is omitted
from the input of the function, since it does not influence the readability of the technique and some
signature schemes such as RSA do not require the signed message as an input. We assume that each
content publisher Pubi may use a different signature scheme, and so we let {Sigi(si, m), Veri(vi, σ)} be
the publisher’s signing and verification algorithms where:

• si is the private signing key;
• vi is the corresponding public verification key;
• m is a message to be signed;
• σ is a signature generated by the signature scheme.

3.2.2. Signature Scheme for Forwarding Engine

Differently from the signature for publishers, it is possible to regulate forwarding engines’ signature
schemes. To distinguish forwarding engines’ algorithms from publishers’ algorithms, different notations
are used as follows. Let {SIG(ski, m), VER(vki, σ)} be the signature scheme used by forwarding engines.

3.2.3. Public Key Verification

For authenticating data packets, the signature scheme is used as a building block. In general, the cost
of signing and verification is considered to measure the efficiency of a signature-based authenticating
technique, but the cost of examining the freshness of a used public key is frequently missed. To prove
the freshness of a key, we need to access to an archive, such as the certificate revocation list (CRL) in
public key infrastructure (PKI), which maintains the most recent information regarding the freshness
of public keys. Each user should interact with the archive to check the freshness of a public key before
using it to verify some information, including data packets. Let KVer(vi) be the public key verification
function which returns a binary response according to the freshness of the input public key. For the
ordinary public-key-based scheme, the function can be seen as an interactive protocol. For some schemes,
such as ID-based schemes and attribute-based schemes, the function can be executed locally. In this case,
the cost of communication for performing interactive protocol can be reduced, but we face other problems
instead. In the schemes, each public key is frequently updated to support the freshness without proving
it via interactive protocol.. For CCN, dedicated systems have been considered instead of the ordinary
PKI. However, even though the systems are adopted in CCN, we still need additional costs for checking
the freshness of public keys.

Most operations for CCN data transmissions are executed in forwarding engines, and the main
difference between our architecture and other authentication mechanisms for CCN is the way of dealing
authenticating messages between forwarding engines. Recall that forwarding engines can trust each
other with higher reliability than other entities in CCN, and we can improve the performance of data
transmission by reducing the cost of packet verification based on this assumption. In our construction,
forwarding engines maintain ListR, the list of forwarding engines and their public keys, i.e., ListR =

{(ridi, vki)|i = 1, . . . , nR} where nR is the number of forwarding engines. Instead of relying on a system

Sustainability 2020, 12, 8746 9 of 23

such as PKI, forwarding engines in our construction use the list to check the correctness of public keys.
Note that the list is used not for all public keys, but for forwarding engines.

How to construct the list is an important issue in this approach. Fortunately, we already have a number
of solutions for this problem. As a simple solution, the network service provider NSP can intervene in
the distribution of the list ListR. Since NSP knows the network topology and the list of forwarding engines, it is
relatively easy to make the list. Even if NSP does not construct the list on behalf of the forwarding engines,
each forwarding engine can construct the list by adding a new public key when it receives a forwarding
engine-generated packet which is generated by a new forwarding engine.

3.3. Authenticated Data Generation and Verification

In CCN, the three entities work as follows.

3.3.1. Publisher Side

The role of a publisher Pubi is to generate data packets and publish them for its own data.
The publisher Pubi generates and publishes its own data as follows. To publish a file F of which file
ID is fid, the data publisher splits the file into n blocks as

F = m1||m2|| · · · ||mn.

Then, Pubi runs the data packet generation function

D-Packet(pidi, F) = {DPi,1, DPi,2, . . . , DPi,n}

where DPi,j is the data packet for each block mj. Specifically, each data packet is defined as

DPi,j = c-namej||σi,j||auth-infoi||mj

where:

• c-name is the content name of the file F;
• c-namej = c-name||j;
• Mj = c-namej||auth-infoi||mj;
• σi,j = Sigi(si, Mj);
• auth-infoi = {pidi, Veri, vi}.

Finally, the publisher Pubi transmits the data packets into networks. In this phase, the publisher’s
data packet will be firstly sent to the closest forwarding engine. The publisher may send the data packet to
a set of close forwarding engines, but the prosecure is stated as in the above to simplify the description
of the proposed scheme, since the feature will be used to improve the performance of authentication
mechanism in CCN.

The pseudo-code for two roles, generation of authenticated content packet and transmission of
authenticated data packet, are given in Algorithms 1 and 2. Note that both algorithms are included to aid
the reader’s understanding. The publisher can generate and publish its own data as described in the above,
and specific procedures are written as pseudo-code in Algorithms 1 and 2.

Sustainability 2020, 12, 8746 10 of 23

Algorithm 1 Authenticated Content Generation at Content Publisher (DPG)

Require: pidi, Content m = (m1||m2|| · · · ||mn), content name c-name, signing key si.
Ensure: D-Packet = (DPi,1, DPi,2, . . . , DPi,n).

1: for j from 1 downto n do

2: Construct c-namej by concatenating c-name and packet index j
3: Construct Mj by concatenating c-namej, auth-infoi, and mj
4: Construct σi,j = Sigi(si, Mj)
5: Construct auth-in f oi ← pidi, Veri, vi
6: DPi,j ← (c-namej||σi,j||auth-in f oi||mj)
7: end for
8: return Authenticated data packets as D-Packet = (DPi,1, DPi,2, . . . , DPi,n)

Algorithm 2 Transmitting Authenticated Data Packets at Content Publisher Pubi

Require: Content F = (m1||m2|| · · · ||mn), signing key si.
Ensure: Send authenticated data packets.

1: /* Generating signed data packets */
2: D-Packet = (DPi,1, DPi,2, . . . , DPi,n)← DPG(F, si)
3: while Listen Interest packets from other nodes do

4: Receive Interest I-Packet
5: Get the content name c-name from the received I-Packet
6: if there is a match in DPi,v then

7: Send DPi,v to the network
8: end if
9: end while

3.3.2. Consumer Side

To obtain the file F, an requester runs the Interest packet generation function as

I-Packet(uid, fid) = c-name||selector||nonce

where:

• uid is the user’s ID;
• selector is a set of rules for obtaining the target file;
• nonce is a random nonce for uniquely identifying messages.

Typically, the requester sequentially sends the Interest packet for the first data packet to the n-th data
packet. When the requester receives the data packet (DPi,j for 1 ≤ j ≤ n) corresponding to the Interest
packet, he/she runs the verification function for the publisher Pubi by testing the following condition

Veri(vi, σi,j) = TRUE.

If all data packets are verified to be valid, the user accepts the received data packets and reconstructs
the file F.

Sustainability 2020, 12, 8746 11 of 23

3.3.3. Forwarding Engine

In our technique, forwarding engines perform two types of operation: the verification of publisher’s
data packet and the generation of authenticating information for higher-layer. Specific operations for the
two types will be described in the following:

Data Publisher→ Forwarding Engine

When a forwarding engine receives a data packet DPi,j = c-namej||σi,j||auth-infoi||mj from a data
publisher Pubi, the forwarding engine verifies the packet by testing the following condition

Veri(vi, σi,j) = TRUE.

If the data packet is verified as valid one, the forwarding engine who firstly receives and verifies
the packet generates a new authenticating message as

σi,j,k = SIG(skk, DPi,j).

Then, the forwarding engine constructs a new data packet as

DPi,j,k = c-namej||{σi,j, σi,j,k}||{auth-infoi, vkk}||mj.

Forwarding Engine→ Forwarding Engine

When a forwarding engine receives a data packet DPi,j,k from another forwarding engine,
the forwarding engine checks if the public key used for generating the packet belongs to ListR, i.e., verifies
whether the packet is re-signed by a valid forwarding engine or not. If so, the forwarding engine verifies
the given packet by testing the following condition

VER(vkk, σi,j,k) = TRUE.

If the verification holds, the forwarding engine sends the data packet to the next forwarding engine.
Recall that the main merit of our construction is the use of the same signature scheme between forwarding
engines. Since data publishers’ data packets are encapsulated by forwarding engines who receive
the packets the first time, we can see that all data packets can be verified under the same verification
equation regardless of the signature scheme used by data publishers.

Forwarding Engine→ Data Requester

When a forwarding engine sends a data packet to a requester, the forwarding engine recovers
the original data packet DPi,j from the modified data packet DPi,j,k, and gives DPi,j to the requester.
We still can successfully finish the delivery of data without recovering the original data packet. However,
we need this step to protect the location privacy of the data publisher. If the forwarding engine gives
the modified packet instead of the original packet, the requester can guess the physical location of
the publisher by searching the location of the forwarding engine, whose public verification key is vkk.

4. Security Analysis

The proposed architecture is secure if an adversary cannot generate and inject a forged data packet
into CCN, and the security feature can be proved by showing that the proposed architecture is robust
against forgery attacks. Here, the security of the proposed architecture will be proved as follows.

Sustainability 2020, 12, 8746 12 of 23

Theorem 1. Let A be an adversary who tries to break the security of the proposed TAuth architecture with qPC
publisher corruption queries and qRC forwarding engine corruption queries. It is assumed that the adversary is
permitted to, at most, nR/2 forwarding engine corruption queries and nP/2 publisher corruption queries. Then,
the security of the proposed TAuth architecture against the adversary A who tries to break the authentication
architecture in terms of forgery attacks is guaranteed by the unforgeability of underlying signature schemes.

Proof. To prove the security of the proposed architecture, we will show that a successful attack induces
the insecurity of an underlying signature scheme. Let ATAuth be an adversarial algorithm which breaks
the security of TAuth by generating invalid data packets. Our strategy is to construct an algorithm
ASig which breaks the security of an underlying signature scheme by using ATAuth as a sub-algorithm.
Let {Sig(·, ·), Ver(·, ·)}, vk be a set of algorithms and public key given toASig as a challenge. Note thatASig
can access to the signing oracleOS(·), which returns a signature σ for a message m such that Sig(sk, m) = σ

where sk is the private key for vk.
Recall that the goal of ATAuth is to inject the manipulated data packet which can pass the pre-defined

verification procedure in ICN. Hence, the adversary may return one of the following valid data packets as
a result of its attack:

• Type-0 forgery DPi,j: Original data packet generated by publisher Pubi;
• Type-1 forgery DPi,j,k: Data packet for higher layer, which is re-generated by forwarding engine Rouk.

For each type, a different strategy is required to use ATAuth, since we have to resolve the given
challenge to the attack environment for ATAuth so that the output of the algorithm is useful for the given
problem. To guess the type, before beginning the game,ASig chooses a bit b ∈R {0, 1}. According to the bit,
ASig simulates an attack environment and oracle queries for ATAuth as follows.

Simulation for Type-0 Forgery: Since we assume that the forgery may belong to Type-0, we use
the adversarial algorithm to break the security of a signature scheme {Sig(·, ·), Ver(·, ·)} of which the
public verification key is v. Note that we can access OS(·), the signing oracle for the target signature
scheme, which returns a signature for given a message. Note that in ICN, the adversary A can ask data
packet generation query. However, we describe it as a signing query, since the core procedure of data
packet generation is the signature generation. Hence, we will describe signing query instead of data packet
generation query. To respond to all queries given by A, we do the following:

• Signing Queries. In the beginning of the simulation, ASig guesses a publisher Pub∗ who will
be attacked by the adversary A. For a publisher Pubi(6= Pub∗), ASig chooses a signature
scheme {Sigi(·, ·), Veri(·, ·)} and sets {si, vi} as the signing/verification key pair for the scheme.
ASig maintains ListPub the list of i, {Sigi(·, ·), Veri(·, ·)}, and {si, vi}). When A asks a signature of
Pubi(6= Pub∗) on M, ASig responses to the query by generating a valid signature as σi,M = Sigi(si, M).
If the query is made for the target publisher Pub∗ on M, ASig uses the signing oracle to obtain
σ∗,M = OS(M) and gives it to A.

For each forwarding engine, ASig chooses a signature scheme and the corresponding key pairs.
Let {SIGk(·, ·), VERk(·, ·)} and {Sk, Vk} be the signature scheme and key pairs of the forwarding
engine Rouk. ASig also maintains ListRou the list of k, {SIGk(·, ·), VERk(·, ·)}, and {Sk, Vk}). For a
signing query on M, ASig generates a valid signature as σi,M,k = SIGk(Sk, M);

• Publisher Corrupt Queries. In the adversary model, we assumed that a set of publishers can collude to
break the proposed architecture, which implies that A can ask for the private key of a publisher Pubi.
Here, we assume that the queried key exists in ListPub, and the assumption is reasonable since ASig
can generate the publisher’s key information, as in the above, before response to the corrupt query.

Sustainability 2020, 12, 8746 13 of 23

For the corrupt query, ASig retrieves i, {Sigi(·, ·), Veri(·, ·)}, and {si, vi} from ListPub and gives si to A.
If the queried publisher is Pub∗, ASig stops the simulation;

• Forwarding Engine Corrupt Queries. In this case, it is assumed that A can ask for the private key of a
forwarding engine Roui. For Type-0 forgery, ASig retrieves i, {SIGi(·, ·), VERi(·, ·)}, and {Si, Vi} from
ListRou and gives Si to A.

Recall that the adversary A’s goal is to generate a valid data packet without the private information
of the corresponding publisher. Let DP∗,j be the forged data packet with respect to a message M∗. Then,
ASig extracts the authenticating message σ∗,M∗ from the data packet. If σ∗,M∗ is a valid signature of Pub∗,
ASig returns {σ∗,M∗ , M∗}. Otherwise, ASig stops the simulation.

Simulation for Type-1 Forgery: In this case, we use the adversarial algorithm to break the security of a
signature scheme {SIG(·, ·), VER(·, ·)} of which the public verification key is V. Since our goal is to break
the security of the signature scheme, we can access the signing oracle OS(·), which returns a signature
for a given message. Similar to the simulation for type-0 forgery, we respond to all queries given by A as
follows:

• Signing Queries. For each publisher Pubi, ASig chooses a signature scheme and the corresponding key
pairs. Let {Sigi(·, ·), Veri(·, ·)} and {si, vi} be the signature scheme and key pairs of the publisher Pubi.
ASig also maintains ListPub the list of i, {Sigi(·, ·), Veri(·, ·)}, and {si, vi}). For a signing query on M,
ASig generates a valid signature as σi,M = Sigi(sk, M) and gives it to A.

Differently from the simulation for type-1 forgery, ASig guesses a forwarding engine Rou∗ who will
be attacked by the adversary A. For a forwarding engine Rouk(6= Rou∗), ASig chooses a signature
scheme {SIGk(·, ·), VERk(·, ·)} and a sets {Sk, Vk} as the signing/verification key pair for the scheme.
ASig maintains ListRou the list of k, {SIGk(·, ·), VERk(·, ·)}, and {Sk, Vk}). When A asks a signature
of Rouk(6= Rou∗) on M, ASig responses to the query by generating a valid signature as σi,M,k =

SIGk(Sk, M). If the query is made for the target publisher Rou∗ on M, ASig uses the signing oracle to
obtain σ∗,M,k = OS(M) and gives it to A;

• Publisher Corrupt Queries. When A asks the private key of a publisher Pubi, ASig retrieves i,
{Sigi(·, ·), Veri(·, ·)}, and {si, vi} from ListPub and gives si to A;

• Forwarding Engine Corrupt Queries. When A asks the private key of the forwarding engine
Rouk(6= Rou∗), ASig retrieves k, {SIGK(·, ·), VERk(·, ·)}, and {Sk, Vk} from ListRou and gives Sk to
A. If the queried forwarding engine is Rou∗, ASig stops the simulation.

From now, we will measure the success probability of the adversary ASig. Let AdvEUF
ASig

be
the advantage of ASig regarding the existential unforgeability of the given challenge signature scheme.
We say that a signature returned by ATAuth is valid forgery, if and only if, the signature can be verified
under the challenge parameters and is not generated by an oracle call. Then, the advantage of ASig can be
expressed as

AdvEUF
ASig

= Pr[ATAuth returns a valid signature.

Let Eα,β be the event where ATAuth returns a Type-β forgery after the simulation while ASig chooses α

at the beginning of the simulation and successfully simulates attack environment for ATAuth according to
the bit α. Then, AdvEUF

ASig
can be rewritten as

AdvEUF
ASig

= ∑
α,β∈{0,1}

Pr[Eα,β] · Pr[Evalid|Eα,β]

where Evalid is the event that the returned signature is valid in ASig’s viewpoint. In E0,1 and E1,0,
the algorithm ASig fails to obtain a valid forgery using ATAuth since the given challenge is not correctly

Sustainability 2020, 12, 8746 14 of 23

resolved in the simulation, which means that ATAuth’s output is invalid in two events. Then, we can
simplify the advantage of ASig as

AdvEUF
ASig

= Pr[E0,0] · Pr[Evalid|E0,0] + Pr[E1,1] · Pr[Evalid|E1,1].

In E0,0 and E0,0, ASig constructs a valid attack environment for ATAuth, and thus Pr[Evalid|Eb,b] = ε for
all b = 0, 1 where ε is the advantage of ATAuth. For b = 0, 1, the event Eb,b implies two conditions: (1) ASig
correctly guesses the type of ATAuth’s forgery and (2) ASig’s simulation is valid for ATAuth. Since the two
conditions are statistically independent, we have

Pr[Eb,b] = Pr[E1
b,b] · Pr[E2

b,b]

where E1
b,b and E2

b,b are the events that the conditions 1 and 2 hold, respectively. Let p be the probability
that ATAuth returns Type-0 forgery. Then

Pr[E1
0,0] =

p
2

and Pr[E1
1,1] =

1− p
2

.

We then measure the upper-bound of the probability Pr[E2
0,0] and Pr[E2

1,1]. As seen in the simulation for
Type-0 forgery, ASig gives up the simulation when ATAuth made a publisher corrupt query for Pub∗ or ATAuth
does not return a signature of Pub∗. Hence, the probability of success simulation can be interpreted as

Pr[E2
0,0] =

(
1− 1

nP

)(
1− 1

nP-1

)
· · ·

(
1− 1

nP-qPC+1

) 1
nP

≥
(

1− 1
nP-qPC+1

)qPC 1
nP

where nP is the number of publishers and qPC is the number of publisher corruption queries. Similarly,
the probability of success simulation for Type-1 forgery can be expressed as

Pr[E2
1,1] ≥

(
1− 1

nR-qRC+1

)qRC 1
nR

where nR is the number of forwarding engines and qRC is the number of forwarding engine corruption
queries. Note that (1− 1/x)x ≈ 1/e for large x. Hence, we have

Pr[E2
0,0] ≥

(
1− 1

nP-qPC+1

)qPC 1
nP

=

{(
1− 1

nP-qPC+1

)nP-qPC+1
} qPC

nP-qPC+1 1
nP

≈ 1

e
qPC

nP-qPC+1 nP

.

Since we assumed that ATAuth makes, at most, nP/2 publisher corruption queries, we can simplify
the above inequality as

Pr[E2
0,0] ≥

1
enP

.

Similarly, we also have

Pr[E2
1,1] ≥

1
enR

.

Sustainability 2020, 12, 8746 15 of 23

Then, the advantage of ASig can be estimated as

AdvEUF
ASig

= (Pr[E0,0] + Pr[E1,1]) · ε

≥
(p

2enP
+

1− p
2enR

)
· ε

=

{
1

2enR
− p

2e

(1
nR
− 1

nP

)}
· ε

≥ 1
2enR

ε

where ε is the advantage of ATAuth. The last inequality comes from the fact that nR < nP. If ATAuth has
non-negligible advantage ε, we can construct ASig which can break the security of an underlying signature
scheme with non-negligible advantage ε/2enR. Hence, we can conclude that the security of TAuth is
guaranteed by the security of the underlying signature schemes.

5. Instantiation

The proposed TAuth is a very flexible structure which can be implemented using any signature scheme.
Since the underlying signature scheme influences the performance and security features of the architecture,
it is very important to choose a suitable signature scheme to construct a concrete TAuth architecture.
In CCN, a signature resolved in a data packet is verified several times according to the forwarding path.
Therefore, for faster forwarding, the efficiency of verification is more important than the efficiency of
signing. From this perspective, a concrete description for TAuth will be given.

5.1. Data Publisher

Recall that signature schemes used by publishers are not described as in Section 3, since publishers
can use any signature scheme instead of using a fixed scheme. Let {Sigi(·, ·), Veri(·, ·)} be the publisher
Pubi’s signing and verification algorithms and {si, vi} be the publisher’s private signing key and
the corresponding public verification key. A publisher Pubi generates data packets for a file

F = m1||m2|| · · · ||mn

of which file ID is fid as
D-Packet(pidi, F) = {DPi,1, DPi,2, . . . , DPi,n}

where
DPi,j = c-namej||σi,j||auth-infoi||mj,

c-name is the content name of the file F, c-namej = c-name||j, σi,j = Sigi(si, Mj), Mj = c-namej||auth-infoi||mj,
and auth-infoi = {pidi, Veri, vi}. Then, the publisher Pubi transmits data packets into networks. Refer to
Section 3 for detail.

5.2. Data Consumer

Identical to the description in Section 3. Refer to the section for detail.

5.2.1. Forwarding Engine

Since forwarding engines have the RSA signature scheme in common, each forwarding engine Rouk
has his RSA public key (nk, ek) and the corresponding private key dk, such that ek · dk = 1 mod φ(nk).

Sustainability 2020, 12, 8746 16 of 23

Since the RSA signature is a PKI-based scheme, we need a way to verify the freshness of a public key.
Due to the leveled reliability considered in this paper, we can lighten the cost of freshness test for public
key between forwarding engines by maintaining a list ListR which includes {ridk, (nk, ek)}, the list of
legitimate forwarding engines and their public keys. Instead of relying on PKI, forwarding engines can use
other forwarding engines’ public keys by sharing the list and checking whether a public key is included in
the list.

Data Publisher→ Forwarding Engine

When a data publisher Pubi sends a data packet DPi,j a forwarding engine Rouk, the forwarding
engine verifies the given packet by testing Veri(vi, σi,j) = TRUE. If the test holds, the forwarding engine
computes a new signature for the data packet as

σk = H(DPi,j)
dk mod nk.

Then, the forwarding engine constructs a new data packet as

DPi,j,k = c-namej||σi,j,k||auth-infoi,k||mj

where σi,j,k = σi,j||σk and auth-infoi,k = auth-infoi||ridk.

Forwarding Engine→ Forwarding Engine

In this case, the sender simply gives a data packet to the receiver. When a forwarding engine receives
DPi,j,k from another forwarding engine, the receiver searches (nk, ek) from ListR using ridk and verifies the
given packet by testing the equality

H(DPi,j) = σ
ek
k mod nk.

If the condition holds, the receiver sends the packet to the next forwarding engine, and otherwise
drops the packet from the network.

Forwarding Engine→ Data Consumer

After verifying a data packet DPi,j,k, the sender forwarding engine truncates {σi,j,k, auth-infoi,k} to
obtain {σi,j, auth-infoi}, reconstructs the original data packet DPi,j, and sends DPi,j to the data consumer.

The security of RSA-TAuth against forgery attacks can be reduced to the unforgeability of the RSA
signature or the publisher’s signature scheme, since adversaries should generate a valid signature of a
forwarding engine or the publisher by Theorem 1.

6. Comparisons

In this section, the proposed mechanism is compared with other existing data packet authentication
mechanisms in CCN with respect to the requirements described in Section 2.2.2 and verification cost.

6.1. Requirement Comparison

In Section 2.2.2, requirements for a secure and efficient data packet authentication mechanism in
CCN are introduced. They are verification independence, on-the-fly data packet generation, non-deniability,
and setup-free construction. Table 1 compares the existing data packet authentication mechanisms,
including the proposed mechanism with respect to the defined requirements. It is assumed that the digital
signature mechanism such as RSA-PSS is used for primitive signing, and every router on the routing path

Sustainability 2020, 12, 8746 17 of 23

verifies the received data packets through PKI. Since the Naive CCN signs every packet belonging to
a requested content, it satisfies all requirements. Lightweight Integrity Verification architecture (LIVE)
provides an efficient data packet integrity mechanism and allows a content publisher to control access to
contents stored in remote CCN network nodes [11]. In LIVE, a content publisher distributes different kinds
of tokens to network nodes according to the access control policy and only nodes that receive the authorized
token can verify the content and store it in their Content Store. Since LIVE requires the distribution of
secure tokens and one-time signature (OTS) for efficiency, it fails to provide on-the-fly data packet generation,
non-deniability, and setup-free construction. CCNx from [1–3] enhances the performance of naive CCN
by adopting an MHT-based signing mechanism, which is a kind of aggregate signing method. In other
words, CCNx divides a content by k segments which is the size of MHT, and applies MHT-based signing
to a group of k segments. For example, CCNx first constructs a binary tree by taking the k segments as
its leaf nodes, and then it signs the root node with typical digital signature primitive such as RSA-PSS.
Since CCNx needs to buffer at least k data segments, they do not provide on-the-fly data packet generation.
Jeff Burke et al. provided an HMAC-based data packet authentication mechanism in CCN to control the
lighting in a building automation system [9,10]. Even though each data packet in their scheme can be
verified independently, it requires system setup and the secure distribution of HMAC keys. Furthermore,
HMAC-based authentication does not guarantee non-deniability. In addition, forwarding engines in
CCN routers do not support HMAC-based packet authentication because HMAC-based methods require
complex key management. TIM combines the concept of Trapdoor Hash Function (THF) and MHT for
efficient signature signing and verification [13]. TIM can efficiently compute a signature of a data packet by
using the feature of THF with a few field multiplications. In addition, data packets can be efficiently verified
in the requester-side by using the property of implicit authentication in MHT. However, since TIM makes
use of MHT, a content publisher needs to buffer at least k data segments for signing them. Thus, TIM does
not provide on-the-fly data packet generation well. TLDA is a two-layered authentication mechanism for
CCN and content in TLDA is encoded with a data part and meta part [14]. The data part conveys the real
data segments and the meta part conveys hash values and a signature for authenticating data segments
in the data part. Since TLDA requires an encoding process before sending content, it is more suitable
for constant data such as installation and VoD files rather than dynamic data such as online streaming.
Furthermore, the transmission of Meta part segments need to precede the data part segments. Therefore,
TLDA lacks on-the-fly data packet generation and verification independence. Differently from the existing data
packet authentication mechanisms, the proposed mechanism satisfies all requirements with the concept of
overlaid signing.

In view of the verification cost, the proposed mechanism can significantly reduce the overhead for
verifying the certificate compared with naive CCN, LIVE, CCNx, and TIM. This is why the CCN routers in
our scheme do not depend on the external trusted authorities (TAs), which reduces the cost of verifying
the certificate of a public key from a linearly increased cost nRCcert to a constant cost Ccert. In the case of
typical PKI-based methods, the request to verify a certificate needs to be routed to TAs. Thus, it depends
on the condition of the routing path and the number of nodes in the path. Note that the proposed scheme
requires the generation of a new signature at the CCN router which first receives the data packet. However,
the cost of generating a signature is much lower than the cost of verifying a certificate.

Sustainability 2020, 12, 8746 18 of 23

Table 1. Features Comparison.

Verification On-the-fly Non Setup Used Verification Cost for
Independence Generation Deniability Freeness Technique Forwarding Engines

Naive CCN O O O O Per-Packet
Signing

nRCcert+nRCver

LIVE [11] O X X X OTS nRCcert+nRCver

[9,10] O O X X HMAC Cannot Support

CCNx [1–3] O X O O MHT nRCcert+nRCsv+nRCver

TIM [13] O X O O THF,
MHT

nRCcert+nRCsv+nRCthf+nRCver

TLDA [14] X X O O MHT Cannot Support

This work O O O O Overlaid
Signing

Ccert+Csig+nRCver

OTS: One-time signature, THF: Trapdoor hash function, MHT: Merkle hash tree; nR: average number of forwarding
engines from a publisher to a requester, Ccert: cost of certificate; validation, Cs: cost of signing, Cv: cost of signature
verification, Csv: cost of verifying a sibling path; for a MHT, Cthf: cost of trapdoor hash function.

6.2. Performance Analysis

In this section, the computational overhead of the proposed method is analyzed and compared with
the method currently used in CCNx, which is the reference implementation of CCN. Even though there
exists simulation tool on NDN such as ndnSIM [17], we implement the proposed mechanism on the
actual CCNx reference implementation. The prototype of the proposed method is implemented by using
FIPS-OpenSSL v2.0.16 on a Laptop with Intel(R) Xeon CPU E3-1535M v5 running 2.90 GHz. It is assumed
that Online Certificate Status Protocol (OCSP) is used to verify the validity of publisher’s certificate,
which is embedded in the content packets. According to the data from several OCSP providers [18], it is
known that a certificate verification usually requires 100 ms (0.1 s) through the OCSP protocol (s and ms
mean second and millisecond, respectively).

Table 2 compares the performance of the proposed method with the method currently used in CCN.
For the comparison, we make use of three digital signature algorithms such as RSA-PSS, DSA, and ECDSA.
When RSA-PSS with a 2048-bit key is used as an underlying digital signature algorithm, signing a
packet and verifying it requires 0.004902 and 0.000146 s, respectively. Thus, RE1, the first routing entity
receiving content packets, consumes 0.105048 s to verify the certificate (0.1 s) and a received content packet
(0.000146 s), and resigning it (0.004902 s). Other routing entities in the routing path consume 0.000146 s,
since they only need to verify the received content packet. When DSA using a 2048-bit (|p| = 2048,
|q| = 224) key is used as the digital signature algorithm, signing a packet and verifying it consume 0.00197
and 0.00242 s, respectively. Signing a packet and verifying it with ECDSA (P-224 curve) require 0.000353
and 0.000741 s, respectively. Thus, RE1 with DSA 2048 (resp. ECDSA 224), the first routing entity receiving
content packets, consumes 0.104390 s (resp. 0.101094 s) to verify the certificate (0.1 s) and a received content
packet in 0.00242 s (resp. 0.000741 s), and resigning it in 0.00197 s (resp. 0.000353 s). Other REi (i 6= 1)
routing entities in the routing path require 0.00242 s (resp. 0.000741 s) to verify each received packet.

The performances of the original CCN with the use of RSA-PSS 2048, DSA 2048, ECDSA 224 or
RSA-PSS (|n| = 2048) are also measured. Since every routing entity in the routing path executes a
PKI-based content verification, they require the cost of verifying the embedded certificate and the received
content packet. DSA, ECDSA, and RSA-PSS each require 0.002420, 0.000741, and 0.000146 s for their
signature verification. Thus, the original CCN using DSA, ECDSA, and RSA-PSS requires 0.102420,
0.100741, and 0.100146 s, respectively, to verify a content packet. Even though RE1 requires a slightly
larger overhead than the original CCN (about 4.9%, 1.9%, and 0.4% slower than the original CCN for

Sustainability 2020, 12, 8746 19 of 23

RSA-PSS, DSA, and ECDSA, respectively), the cost of content packer verification in other routing entities
in the routing path is reduced by hundreds of factors. Our experimental results support the theoretical
analysis described in Section 6.

Table 2. Performance Comparison of Data Packet Verification in Routing Entities (In the proposed method,
the first routing entity(RE1) receiving the content packet from the publisher conducts signature verification
and signature generation, while other routing entities(REi for i 6= 1) require signature verification.
The timing cost is the average of 100 executions). In experiments, RSA-PSS, DSA, and ECDSA use security
parameter of |n| = 2048, P-224 curve, and (|p| = 2048, |q| = 224), respectively.

Methods Time (S) Operations

Naive CCN with RSA-PSS 0.100146 s Verify Certificate and RSA-PSS

Naive CCN with DSA 0.102420 s Verify Certificate and DSA

Naive CCN with ECDSA 0.100741 s Verify Certificate and ECDSA

RE1 with RSA-PSS (This work) 0.105048 s Verify Certificate and Generate RSA-PSS

RE1 with DSA (This work) 0.104390 s Verify Certificate and Generate RSA-PSS

RE1 with ECDSA (This work) 0.101094 s Verify Certificate and Generate RSA-PSS

REi with RSA-PSS (This work) 0.000146 s Verify RSA-PSS

REi with DSA (This work) 0.002420 s Verify RSA-PSS

REi with ECDSA (This work) 0.000741 s Verify RSA-PSS

When a user requests a data packet, several routing entities participate in the forwarding procedure.
In Table 2, the number of routing entities is not considered when measuring the cost of computation.
Therefore, we present a comparative analysis that takes into account the number of routing entities
involved. In Figure A1 in Appendix A, the total cost for data packet authentication in CCN architecture
is measured by taking the number of routing entities into account. The proposed mechanism requires
a much lower total timing cost compared with the original CCN packet verification mechanism when
RSA-PSS, DSA, and ECDSA are used for the underlying digital signature algorithm. Note that for up
to four routing entities, the proposed mechanism using ECDSA 224 digital signature provides the best
performance. However, as the number of routing entities increases, using RSA-PSS results in a better
performance. This is because the verification cost of RSA-PSS is much lower than that of DSA and ECDSA.
(Using ECDSA can reduce packet overhead because the key size and signature size of ECDSA is much
lower than RSA-PSS.)

In Figure A2 in Appendix A, the average cost for data-packet-processing in each routing entity is
also presented. In each case, it is assumed that publishers use the same signature scheme. For example,
in Figure A2, “Naive-CCN with DSA” means the scenario where all publishers use DSA for data packet
authentication. Since the cost of communication overhead cannot be accurately measured, we focus
only on the time for verification. As seen in the figure, our architecture outperforms other approaches,
and the difference increases according to the number of routing entities. From Figure A2, the average cost
for data packet processing in each routing can be obtained. In Figure A2, to evaluate the average cost,
the total cost is divided by the number of routing entities. Similar to the result of Figure A1, the average cost
of the proposed mechanism is much lower than that of the original CCN mechanism and the performance
improvement increases as the number of the related routing entities increase. With respect to average

Sustainability 2020, 12, 8746 20 of 23

timing cost, using RSA-PSS contributes the best performance because the signature verification of RSA-PSS
is much faster than that of DSA and ECDSA.

7. Conclusions

In this paper, the necessity of data packet verification in forwarding engines is first identified, and a
new authentication method supporting a faster data packet verification is proposed by designing a
two-layered authentication architecture. The proposed method provides efficient data packet verification
while maintaining the advantages of the original CCN compared to the existing technologies. Note that
only the proposed method supports all useful features of the naive CCN and its performance is highly
improved compared to the naive CCN. In existing techniques, it was not easy to perform data verification
in all forwarding engines due to the cost of verification. In this work, a new mothod is proposed which
dramatically reduces the cost of verification in forwarding engines, and so it can prevent many attacks that
cannot be prevented when forwarding engines do not verify all data packets. As further research topics,
we plan to extend the proposed technique to the mobile environment by considering mobile-specific
threats [19] and to apply the AI-based approach to enhance performance and security [20].

Author Contributions: Conceptualization and methodology, T.-Y.Y.; validation, S.C.S.; formal analysis, T.-Y.Y.;
investigation, J.K. and D.M.; writing—original draft preparation, T.-Y.Y. and S.C.S.; writing—review and editing,
T.-Y.Y., J.K., D.M. and S.C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MHW (Ministry of Health and Welfare), Korea (Grant number:
HI19C0842) supervised by the KHIDI (Korea Health Industry Development Institute) and the project title is DisTIL
(Development of Privacy-Reinforcing Distributed Transfer-Iterative Learning Algorithm).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

RSA 라우터

Sign 0.004902 1 2 4 8 16 32 64 128 256 512

Verify 0.000146 Naïve-CCN with RSA-PSS 0.105048 0.210096 0.420192 0.840384 1.680768 3.361536 6.723072 13.44614 26.89229 53.78458

Certificate 0.1 Proposed with RSA-PSS 0.105048 0.105194 0.105486 0.10607 0.107238 0.109574 0.114246 0.12359 0.142278 0.179654

total 0.105048

DSA

Sign 0.00197

Verify 0.00242 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with DSA 0.10439 0.20878 0.41756 0.83512 1.67024 3.34048 6.68096 13.36192 26.72384 53.44768

total 0.10439 Proposed with DSA 0.10439 0.10681 0.11165 0.12133 0.14069 0.17941 0.25685 0.41173 0.72149 1.34101

ECDSA

Sign 0.000353

Verify 0.000741 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with ECDSA 0.101094 0.202188 0.404376 0.808752 1.617504 3.235008 6.470016 12.94003 25.88006 51.76013

total 0.101094 Proposed with ECDSA 0.101094 0.101835 0.103317 0.106281 0.112209 0.124065 0.147777 0.195201 0.290049 0.479745

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

0.105048 0.105194 0.105486 0.10607 0.107238 0.109574 0.114246 0.12359 0.142278 0.179654
0.105048 0.210096 0.420192 0.840384 1.680768 3.361536

6.723072
13.446144

26.892288

53.784576

To
ta

l T
im

e

Total Number of Routing Entities (who participate in Data Forwarding)

Total Cost for Data Packet Verification
(when RSA-PSS 2048 is used)

Proposed with RSA-PSS Naïve-CCN with RSA-PSS

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

0.10439 0.10681 0.11165 0.12133 0.14069 0.17941 0.25685 0.41173 0.72149 1.34101
0.10439 0.20878 0.41756 0.83512 1.67024 3.34048

6.68096
13.36192

26.72384

53.44768

To
ta

l T
im

e

Total Number of Routing Entities (who participate in Data Forwarding)

Total Cost for Data Packet Verification
(when DSA 2048 is used)

Proposed with DSA Naïve-CCN with DSA

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

0.101094 0.101835 0.103317 0.106281 0.112209 0.124065 0.147777 0.195201 0.290049 0.479745
0.101094 0.202188 0.404376 0.808752 1.617504 3.235008

6.470016
12.940032

25.880064

51.760128

To
ta

l T
im

e

Total Number of Routing Entities (who participate in Data Forwarding)

Total Cost for Data Packet Verification
(when ECDSA 224 is used)

Proposed with ECDSA Naïve-CCN with ECDSA

Figure A1. Cont.

Sustainability 2020, 12, 8746 21 of 23

RSA 라우터

Sign 0.004902 1 2 4 8 16 32 64 128 256 512

Verify 0.000146 Naïve-CCN with RSA-PSS 0.105048 0.210096 0.420192 0.840384 1.680768 3.361536 6.723072 13.44614 26.89229 53.78458

Certificate 0.1 Proposed with RSA-PSS 0.105048 0.105194 0.105486 0.10607 0.107238 0.109574 0.114246 0.12359 0.142278 0.179654

total 0.105048

DSA

Sign 0.00197

Verify 0.00242 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with DSA 0.10439 0.20878 0.41756 0.83512 1.67024 3.34048 6.68096 13.36192 26.72384 53.44768

total 0.10439 Proposed with DSA 0.10439 0.10681 0.11165 0.12133 0.14069 0.17941 0.25685 0.41173 0.72149 1.34101

ECDSA

Sign 0.000353

Verify 0.000741 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with ECDSA 0.101094 0.202188 0.404376 0.808752 1.617504 3.235008 6.470016 12.94003 25.88006 51.76013

total 0.101094 Proposed with ECDSA 0.101094 0.101835 0.103317 0.106281 0.112209 0.124065 0.147777 0.195201 0.290049 0.479745

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

0.105048 0.105194 0.105486 0.10607 0.107238 0.109574 0.114246 0.12359 0.142278 0.179654
0.105048 0.210096 0.420192 0.840384 1.680768 3.361536

6.723072
13.446144

26.892288

53.784576

To
ta

l T
im

e

Total Number of Routing Entities (who participate in Data Forwarding)

Total Cost for Data Packet Verification
(when RSA-PSS 2048 is used)

Proposed with RSA-PSS Naïve-CCN with RSA-PSS

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

0.10439 0.10681 0.11165 0.12133 0.14069 0.17941 0.25685 0.41173 0.72149 1.34101
0.10439 0.20878 0.41756 0.83512 1.67024 3.34048

6.68096
13.36192

26.72384

53.44768

To
ta

l T
im

e

Total Number of Routing Entities (who participate in Data Forwarding)

Total Cost for Data Packet Verification
(when DSA 2048 is used)

Proposed with DSA Naïve-CCN with DSA

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

0.101094 0.101835 0.103317 0.106281 0.112209 0.124065 0.147777 0.195201 0.290049 0.479745
0.101094 0.202188 0.404376 0.808752 1.617504 3.235008

6.470016
12.940032

25.880064

51.760128

To
ta

l T
im

e

Total Number of Routing Entities (who participate in Data Forwarding)

Total Cost for Data Packet Verification
(when ECDSA 224 is used)

Proposed with ECDSA Naïve-CCN with ECDSA

Figure A1. Total timing cost comparison for authenticating data packets.

RSA

Sign 0.004902 1 2 4 8 16 32 64 128 256 512

Verify 0.000146 Naïve-CCN with RSA-PSS 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048

Certificate 0.1 Proposed with RSA-PSS 0.105048 0.052597 0.026372 0.013259 0.006702 0.003424 0.001785 0.000966 0.000556 0.000351

total 0.105048

DSA

Sign 0.00197

Verify 0.00242 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with DSA 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439

total 0.10439 Proposed with DSA 0.10439 0.053405 0.027913 0.015166 0.008793 0.005607 0.004013 0.003217 0.002818 0.002619

ECDSA

Sign 0.000353

Verify 0.000741 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with DSA 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094

total 0.101094 Proposed with DSA 0.101094 0.050918 0.025829 0.013285 0.007013 0.003877 0.002309 0.001525 0.001133 0.000937

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16 32 64 128 256 512

0.105048

0.052597

0.0263715
0.013258750.0067023750.0034241880.0017850940.0009655470.0005557730.000350887

0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048

Av
er

ag
e

Ti
m

e

Total Number of Routing Entities (who participate in Data Forwarding)

Average Timing Cost for Data Packet Verification in each routing entity
(when RSA-PSS 2048 is used)

Proposed with RSA-PSS Naïve-CCN with RSA-PSS

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16 32 64 128 256 512

0.10439

0.053405

0.0279125
0.015166250.0087931250.0056065630.0040132810.0032166410.00281832 0.00261916

0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439

Av
er

ag
e

Ti
m

e

Total Number of Routing Entities (who participate in Data Forwarding)

Average Timing Cost for Data Packet Verification in each routing entity
(when DSA 2048 is used)

Proposed with DSA Naïve-CCN with DSA

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16 32 64 128 256 512

0.101094

0.0509175

0.02582925
0.0132851250.0070130630.0038770310.0023090160.0015250080.0011330040.000937002

0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094

Av
er

ag
e

Ti
m

e

Total Number of Routing Entities (who participate in Data Forwarding)

Average Timing Cost for Data Packet Verification in each routing entity
(when ECDSA 224 is used)

Proposed with DSA Naïve-CCN with DSA

Figure A2. Cont.

Sustainability 2020, 12, 8746 22 of 23

RSA

Sign 0.004902 1 2 4 8 16 32 64 128 256 512

Verify 0.000146 Naïve-CCN with RSA-PSS 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048

Certificate 0.1 Proposed with RSA-PSS 0.105048 0.052597 0.026372 0.013259 0.006702 0.003424 0.001785 0.000966 0.000556 0.000351

total 0.105048

DSA

Sign 0.00197

Verify 0.00242 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with DSA 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439

total 0.10439 Proposed with DSA 0.10439 0.053405 0.027913 0.015166 0.008793 0.005607 0.004013 0.003217 0.002818 0.002619

ECDSA

Sign 0.000353

Verify 0.000741 1 2 4 8 16 32 64 128 256 512

Certificate 0.1 Naïve-CCN with DSA 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094

total 0.101094 Proposed with DSA 0.101094 0.050918 0.025829 0.013285 0.007013 0.003877 0.002309 0.001525 0.001133 0.000937

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16 32 64 128 256 512

0.105048

0.052597

0.0263715
0.013258750.0067023750.0034241880.0017850940.0009655470.0005557730.000350887

0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048 0.105048

Av
er

ag
e

Ti
m

e

Total Number of Routing Entities (who participate in Data Forwarding)

Average Timing Cost for Data Packet Verification in each routing entity
(when RSA-PSS 2048 is used)

Proposed with RSA-PSS Naïve-CCN with RSA-PSS

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16 32 64 128 256 512

0.10439

0.053405

0.0279125
0.015166250.0087931250.0056065630.0040132810.0032166410.00281832 0.00261916

0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439 0.10439
Av

er
ag

e
Ti

m
e

Total Number of Routing Entities (who participate in Data Forwarding)

Average Timing Cost for Data Packet Verification in each routing entity
(when DSA 2048 is used)

Proposed with DSA Naïve-CCN with DSA

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 4 8 16 32 64 128 256 512

0.101094

0.0509175

0.02582925
0.0132851250.0070130630.0038770310.0023090160.0015250080.0011330040.000937002

0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094 0.101094

Av
er

ag
e

Ti
m

e

Total Number of Routing Entities (who participate in Data Forwarding)

Average Timing Cost for Data Packet Verification in each routing entity
(when ECDSA 224 is used)

Proposed with DSA Naïve-CCN with DSA

Figure A2. Average timing cost comparison in each router for authenticating data packets.

References

1. Jacobson, V.; Smetters, D.; Thornton, J.; Plass, M.; Briggs, N.; Braynard, R. Networking Named
Content. In Proceedings of the 5th international conference on Emerging networking experiments and
technologies(CoNEXT’09), Rome, Italy, 1–4 December 2009.

2. Smetters, D.; Jacobson, V. Securing Network Content; PARC Technical Report; PARC: Palo Alto, CA, USA, 2009.
3. Named Data Networking (NDN) Project. Available online: https://named-data.net (accessed on 20 October

2020).
4. CCNx Project. Available online: http://github.com/ProjectCCNx/ccnx (accessed on 20 October 2020).
5. Merkle, R. A Digital Signature Based on a Conventional Encryption Function. In Proceedings of the Advances in

cryptology (CRYPTO’87), LNCS 293, Barbara, CA, USA, 11–15 August 1987; pp. 369–378.
6. Merkle, R. A Certified Digital Signature. In Proceedings of the Advances in cryptology (CRYPTO’89), LNCS 435,

Barbara, CA, USA, 23–27 August 1989; pp. 218–238.
7. Baugher, M.; Davie, B.; Narayanan, A.; Oran, D. Self-Verifying Names for Read-Only Named Data. In Proceedings

of the IEEE INFOCOM 2012 Workshop on Emerging Design Choices in Named-Oriented Networking, Newark,
NJ, USA, 30 March 2012; pp. 274–279.

8. Moiseenko, I. Fetching Content in Named Data Networking with Embedded Manifests; NDN Technical Report
NDN-0025; 2014. Available online: https://named-data.net/wp-content/uploads/2014/09/ndn-tr-25-manifest-
embedding.pdf (accessed on 20 October 2020).

https://named-data.net
http://github.com/ProjectCCNx/ccnx
https://named-data.net/wp-content/uploads/2014/09/ndn-tr-25-manifest-embedding.pdf
https://named-data.net/wp-content/uploads/2014/09/ndn-tr-25-manifest-embedding.pdf

Sustainability 2020, 12, 8746 23 of 23

9. Burke, J.; Horn, A.; Marianantoni, A. Authenticated Lighting Control Using Named Data Networking;
NDN Technical Report NDN-011 Rev.1; 2012. Available online: https://named-data.net/wp-content/uploads/
TRlighting.pdf (accessed on 20 October 2020).

10. Burke, J.; Gasti, P.; Nathan, N.; Tsudik, G. Securing Instrumented Environments over Content-Centric
Networking: the Case of Lighting Control and NDN. In Proceedings of the IEEE INFOCOM 2013 Workshop on
Emerging Design Choices in Named-Oriented Networking, Turin, Italy, 14–19 April 2013; pp. 393–398.

11. Li, Q.; Zhang, X.; Zheng, Q.; Sandhu, R.; Fu, X. LIVE: Lightweight integrity verification and content access
control for named data networking. IEEE Trans. Inf. Forensics Secur. 2015, 10, 308–320. [CrossRef]

12. Refaei, T.; Horvath, M.; Schumaker, M.; Hager, C. Data Authentication for NDN using Hash Chains. In
Proceedings of the IEEE Symposium on Computers and Communication (ISCC), Messina, Italy, 27–30 June 2016;
pp. 982–987.

13. Seo, S.C.; Youn, T. TIM: A Trapdoor Hash Function-based Authentication Mechanism for Streaming
Authentication. KSII Trans. Internet Inf. Syst. 2018, 12, 2922–2945. [CrossRef]

14. Seo, S.C.; Youn, T. TLDA: An Efficient Two-Layered Data Authentication Mechanism for Content-Centric
Networking. Hindawi Secur. Commun. Netw. 2018, 2018, 5429798. [CrossRef]

15. Zhang, Z.; Yu, Y.; Zhang, H.; Newberry, E.; Mastorakis, S.; Li, Y.; Afanasyev, A.; Zhang, L. An Overview of
Security Support in Named Data Networking; Technical Report NDN-0057. Available online: http://named-
data.net/techreports.html (accessed on 20 October 2020).

16. Gasti, P.; Tsudik, G.; Uzun, E.; Zhang, L. Dos and DDoS in Named Data Networking. In Proceedings of
the 22nd International Conference on Computer Communications and Networks (ICCCN), Nassau, Bahamas,
30 July–2 August 2013; pp. 1–7.

17. Mastorakis, S.; Afanasyev, A.; Zhang, L. On the Evolution of ndnSIM: An Open-Source Simulator for NDN
Experimentation. ACM Comput. Commun. Rev. 2017, 47, 19–33. [CrossRef]

18. OCSP Response Time. Available online: https://www.digicert.com/blog/ocsp-times-and-what-they-mean-for-
you/ (accessed on 20 October 2020).

19. Qamar, A.; Karim, A.; Chang, V. Mobile malware attacks: Review, taxonomy & future directions. Future Gener.
Comput. Syst. 2019, 97, 887–909.

20. Sun, J.; Zhang, Y.; Liao, D.; Sun, G.; Chang, V. AI-based survivable design for hybrid virtual networks for single
regional failures in cloud data centers. Clust. Comput. 2019, 22, 12009–12019. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://named-data.net/wp-content/uploads/TRlighting.pdf
https://named-data.net/wp-content/uploads/TRlighting.pdf
http://dx.doi.org/10.1109/TIFS.2014.2365742
http://dx.doi.org/10.3837/tiis.2018.06.026
http://dx.doi.org/10.1155/2018/5429798
http://named-data.net/techreports.html
http://named-data.net/techreports.html
http://dx.doi.org/10.1145/3138808.3138812
https://www.digicert.com/blog/ocsp-times-and-what-they-mean-for-you/
https://www.digicert.com/blog/ocsp-times-and-what-they-mean-for-you/
http://dx.doi.org/10.1007/s10586-017-1540-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contribution and Organization of the Paper

	Preliminaries
	Basic Structure of CCN
	Packet Structures
	CCN Forwarding Engine
	Data Packet Authentication in (Naive) CCN

	Requirements
	Security Model
	Functional Requirements

	Proposed Overlaid Authentication Mechanism
	Basic Idea
	Components
	Signature Scheme for Content Publishers
	Signature Scheme for Forwarding Engine
	Public Key Verification

	Authenticated Data Generation and Verification
	Publisher Side
	Consumer Side
	Forwarding Engine

	Security Analysis
	Instantiation
	Data Publisher
	Data Consumer
	Forwarding Engine

	Comparisons
	Requirement Comparison
	Performance Analysis

	Conclusions
	
	References

