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Abstract: Agrochemicals are overused in China. One strategy to reduce agrochemical use is to
increase farm size because of the potential effect of economy of scale. Existing studies at a micro scale
present mixed and often conflicting results on the relationship between agrochemical use and farm
size. This study aimed to assess that relationship from a macro perspective using an aggregated panel
dataset in 30 provinces in China from 2009 to 2016. The empirical results confirm the existence of both
economy and diseconomy of scale effects on agrochemical use in China. The agrochemical application
rates decreased as the proportion of farms between 0.667 and 2 ha increased. The diseconomy of
scale existed when significantly larger farms, such as the farms larger than 3.34 ha, continued to
emerge. Given the fact that 78.6% of farms are under 0.667 ha in China, our results suggest that
the reduction strategy based on only expanding farm size might achieve some initial success in
reducing agrochemical use, but the effect would fade away and be reversed as significantly large
farms continue to emerge. These results have significant policy implications as China is proactively
developing and implementing various policies and strategies to modernize its agriculture toward
achieving its sustainability goals.
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1. Introduction

China is the largest agrochemical user in the world. In 2018, China used 26.1%, 19.4%, and 27.8%
of the global nitrogen, phosphate, and potassium fertilizers, respectively, and 43% of the total global
pesticides (http://www.fao.org/faostat). Although agrochemical use is essential to maintain high grain
productivity and ensure food security in China [1–4], it is generally realized that agrochemicals have
been overused in China [1,4–8]. The Ministry of Ecology Environment of China estimated that the
utilization rate was only 37.8% for fertilizers and 38.8% for pesticides in rice, corn, and wheat production
in 2017 [9]. Previous research reported ◦, 64, and 17% of pesticide overuse for rice, cotton, and maize
production in China, respectively [10]. Agrochemical overuse wastes resources, increases agricultural
production costs, and causes agricultural pollution [11]. Excessive fertilizer degrades soil and causes
land compaction and soil acidification [12]. Fertilizer overuse also causes eutrophication of surface
waters and nitrate pollution of groundwater in China [13]. Pesticide overuse in China has also been
related to environmental pollution [8,14], food safety [15], and human health risk [2,16,17]. There is an
urgent need to develop and implement effective strategies to reduce agrochemical use in China [7,13,18].
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Agrochemical use and use efficiency in China have been subject to extensive research. There are
significant variabilities in agrochemical use and use efficiency across different regions due to great spatial
variations in biophysical conditions such as climate, soil and topography in China and agrochemical
use should adapt to these specific conditions [3,4,19,20]. Agrichemical use is also crop-specific and
a significant amount of research is dedicated to improving agrochemical use efficiency of specific
crops [1,8,10]. Research found that cash crops such as fruits and vegetables generally used more
agrochemicals than grain crops such as maize, wheat, and rice [8,21,22]. With the economy in China
growing, the planting structure is undergoing substantial changes: more farmlands are switched from
grain production to cash crop production, which has contributed to the increase in agrochemical use [23].
Studies have also suggested that fertilizer overuse and fertilizer use efficiency varied significantly
among farmers across China [4,22,24], which implies significant room for improvement in agrochemical
use. Research suggested that farmer education and training on agrochemical use has helped reduce
both fertilizer and pesticide use [7,25,26]. Climate change has significant impacts on crop yields and
farm income [27]. Studies were also dedicated to understanding the root-causes of agrochemical
overuse in China [1,28]. The fertilizer overuse in China was the result of the artificially low fertilizer
prices caused by the agricultural support policies in conjunction with massive subsidy programs to
the fertilizer industry to ensure food security [1]. A recent study found that many direct and indirect
agricultural support policies significantly contributed to the increased use of fertilizers in China with
a few exceptions and called for agricultural support policies using “green box” measures to reduce
agrochemical use and increase agricultural sustainability in China [29].

Agricultural production in China is dominated by smallholder farms because of the Household
Contract Responsibility System (HCRS), which allocates the use rights of collectively owned farmland
to rural households based on long-term contracts between households and local village collectives [30].
According to the China Rural Statistics Yearbook, the per capita arable land area in rural China was
only 0.234 hectares (ha) in 2017. One way to reduce agrochemical use is to increase farm size because
of the potential effect of economy of scale [6,7,31]. A study based on the China Agricultural Census in
2006 observed the economy of scale effect between farm size and fertilizer use in China and suggested
that the fertilizer use reduction and efficiency improvement can be achieved by increasing the farm
size [6]. The same strategy was echoed by a recent study, which argued that increasing large-scale farms
could reduce agrochemical uses for two main reasons. First, it is more cost-effective for large-scale
farms to adopt modern agricultural technology and management. Second, large-scale farm operators
are the self-selected individuals who generally possess better agricultural knowledge and skills [7].
Other empirical studies also suggested a negative correlation between farm size and the level of
agrochemical use in China [22,31,32].

However, the economy of scale of farm size on agrochemical use is not universally observed in
China. Some empirical studies dismissed the significant correlation between farm size and agrochemical
use [33]. Other empirical studies even suggested a diseconomy of scale, i.e., a positive relationship
between farm size and agrochemical use [29,34,35]. The diseconomy of scale on agrochemical use was
attributed to the short-term profit motive of farmers, planting structure change, farmers’ willingness to
increase agricultural inputs, capital intensive farming operation, and farmers’ inability to efficiently
use agrochemicals on large farms [34,36–38]. Moreover, most farmers who operate those large farms
were evolved from smallholder farmers, and their knowledge and skills were inadequate to operate
large scale farms, which results in low efficiency in agrochemical use [38]. Furthermore, one study
suggested a U-shaped relationship between the farm size and the intensity of agrochemical use,
i.e., agricultural chemicals use intensity decreased first, became flat, and then increased as the farm
size increased [12].

In general, these empirical assessments present mixed results on the relationship between farm
size and agrochemical use in China. Such mixed results might be attributed to a sample selection bias
as these studies were based on surveys at an individual farm level. The samples being used might be
limited to certain geographic regions and/or certain types of farming operations. Local biophysical
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conditions such as soil and climate, and socioeconomic factors such as availability of agricultural
services and agrochemical prices, could affect farmers’ decision on agrochemical use [2,39]. The average
farm sizes in those empirical studies were generally small and less than 1 ha, and therefore their
findings regarding the economies of scale effect on agrochemical use might not represent the whole
spectrum of farms in China. Particularly, they might not capture the effect on agrochemical use due to
the changes in planting structures experienced by large-scale farms [40,41].

The objective of this study is to assess the relationship between farm size and agrochemical
use using aggregated provincial data at a macro scale. The aggregated panel dataset contained the
annual information on agrochemical uses, farms, and farmers in 30 provinces in China from 2009
to 2016, which was compiled from several national statistical databases, including China Statistical
Yearbooks, China Population and Employment Statistics Yearbooks, China Rural Statistical Yearbooks
compiled and published by the National Bureau of Statistics of China, and the Statistical Database
on Rural Operations and Management distributed by the Ministry of Agriculture of China. The use
of aggregated provincial data that contains all farms in China eliminates the sample selection bias
embedded in other empirical studies as discussed above. There is no other study that has attempted to
study the relationship between farm size and agrochemical use from a macro perspective using the
aggregated provincial data in China.

2. Methods

A linear fixed-effect model was applied to a panel data from 30 provinces in China during the
2009–2016 period. Following Greene (2000) and Wooldridge (2010) [42,43], the model was specified
as follows:

lnyit = αi + βX′it + γZ′it + εit (1)

where the dependent variable yit is the agrochemical use intensity in Province i at Year t, the vector Xit

represents the independent variables on farm size in Province i at Year t, the vector Zit are the control
variables in Province i at Year t, β and γ are the vectors of the regression coefficients, and εit the error
term. The fixed-effect model was estimated by calculating the ordinary least square (OLS) estimate
with cross-time demeaning variables [43–45]. More specifically, the estimation was implemented by
applying the fixed-effect model estimate function PanelOLS in statsmodels.linearmodles package
Version 4.17 under the Python 3.7.6 environment [46].

The robustness of the model was validated using a bootstrap method, a powerful nonparametric
statistical tool [47–49]. The bootstrap method has become increasingly popular in economics [50],
and medical research [51], where observations are noisy, and modeling results might be sensitive
to a few outliers. The bootstrap method uses resampling data and tests the sensitivity of modeling
results without additional assumptions. We took 10,000 iterations in the bootstrap analysis. In each
iteration, we resampled the observations uniformly with replacements. Each bootstrap data set had
the same size as the original data. We fitted the fixed-effect model on the bootstrap data and estimated
the coefficients. The 10,000 estimates of the coefficients from the fitted models were used to form a
“bootstrapped” distribution of the coefficient and assess its significance and robustness.

The dependent variable for this study was specified as agrochemical application rates in kilograms
per hectare (kg/ha) derived from the data on agrochemical uses and sowing area in the China
Statistical Yearbooks between 2009 and 2016. This study considered two categories of agrochemical
uses: chemical fertilizers and pesticides. The chemical fertilizer and pesticide application rates were
calculated by dividing the total amount of annual chemical fertilizer and pesticide use by the sowing
area in each province, respectively.

Most micro-scale studies used per capita farmland to represent farm size [7,38]. This study
included two types of independent variables on fam size at a macro scale. The first one was the farm
size measured by average arable land per rural household in each province each year. While the
data on the total number of rural households was extracted from the Statistical Database on Rural
Operations and Management, the data on the total arable lands were from the China Statistical
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Yearbooks. The second one was the farm composition with different farm sizes in each province
extracted from the Statistical Database on Rural Operations and Management. The database contained
the total number of rural households and the number of households in five different categories of
farm size, namely, below 10, 10–30, 30–50, 50–100, and over 100 mu in each province each year from
2009 to 2016. The unit, mu, is the unit for measuring the land area in China, and one mu is equivalent
to 0.0667 ha. The Statistical Database on Rural Operations and Management reported the number
of farms with arable land less than 10, 10–30, 30–50, 50–100, 100–200 and above 200 mu. This study
combined the last two categories into one since the numbers of farms with arable land of 100–200 mu
and above 200 mu was small. The farm composition variables were specified as the percentages of
farms in the five farm size categories, i.e., the total number of households in each of the five farm size
categories divided by the total number of farm households in each province each year.

The control variables included rural labor migration, farmers’ education, planting structure, and
farm household income. Under the current Household Registration System called Hukou in China,
the rural residents may migrate to live and work in cities, but still maintain their use rights to farmland
in their rural village collectives. Such labor out-migration from rural China results in an increase in
agrochemical use [7,52]. The Statistical Database on Rural Operations and Management recorded the
total numbers of three types of households with varying degrees of rural labor migration. Type 1
are the households whose primary income comes from farming with supplementary income from
non-farm employment. Type 2 are the households that operate farms but derive income primarily
from non-farm employment. Type 3 are the households that no longer operate farms and are employed
in non-farm-related occupations. The control variables on rural labor migration were the percentages
of these three types of households among the total number of rural households.

Agrochemical overuse is attributed to farmers’ lack of understanding of the detrimental effects
of those chemicals [7,53–55], and of scientific knowledge on appropriate use of agrochemicals [2],
which are closely tied to farmers’ education. Thus, this study also included the control variables
on farmers’ education level. The control variables on education were the percentages of farmers
with primary school, junior high school, senior high school, and some college education in each
province per year, which were derived from the China Population and Employment Statistics Yearbook.
Planting structure influences the use of agrochemicals [40], and was specified as the percentage of
arable land planted with grains, vegetables, or fruits. Studies also show that agrochemical overuse is
related to farmers’ income [7,56]. Therefore, this study included a control variable on farmers’ income,
which was specified as the average disposable per capita income of rural households. The data on
both disposable per capita income and planting structure were all derived from the China Rural
Statistical Yearbook. Consider the significant efforts being taken by the Chinese government to reduce
agrochemical use in recent years, which might have a systematic impact on agrochemical use in China.
This study also included control variables on years using dummy variables.

3. Results

The descriptive statistics for each variable were presented in Table 1. The average fertilizer
application rate in China was 365.12 kg/ha but varied significantly by province across different years,
ranging from 150.99 kg/ha to 637.55 kg/ha. The average pesticide application rate in China was 12.42
kg/ha ranging from 1.96 kg/ha to 56.32 kg/ha. The average farm size in China was 0.43 ha, and 92.49%
of farms were less than 2 ha (30 mu). The farms greater than 6.67 ha (100 mu) accounted for only
2.38% of farms in China. Off-farm employment is widespread in China. Among rural households,
35.11% generated some of their disposable income from non-farm employment. In terms of education,
91.18% of farmers in China had some level of education, which were mostly at primary (35.67%) and
junior high (43.83%) school levels. The majority (65%) of farms in China were on grain production.
The average rural disposable income in China was $1300 (9224 RMB Yuan) per capita.
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Table 1. Descriptive statistics of variables.

Variables Obs. Mean Std. Dev. Min Max

Agrochemical Use (kg/ha) Fertilizer use 240 365.12 114.89 150.99 637.55
Pesticide use 240 12.42 9.57 1.96 56.43

Farm size (ha) 240 0.43 0.37 0.10 1.70

Farm Composition (%)

p_under_10 240 78.62 21.07 17.22 99.27
p_10_30 240 13.87 12.10 0.49 43.68
p_30_50 239 3.80 5.61 0.06 23.17
p_50_100 237 1.39 2.65 0.00 12.59

p_over_100 237 2.38 7.88 0.00 75.35

Disposable Per capita Income (RMB) 240 9224.43 4249.24 2980.10 25520.40

Labor Migration (%)
p_farm_I 240 16.81 5.60 0.81 29.09
p_farm_II 240 8.53 5.12 1.09 23.27
p_farm_III 240 9.78 10.13 0.45 52.63

Education (%)

p_primary 240 35.67 7.10 17.13 56.02
p_junior 240 43.83 7.45 23.25 56.47
p_senior 240 9.03 3.12 3.69 23.92
p_college 240 2.65 1.64 0.67 11.97

Planting Structure (%)
p_grain 240 65.00 12.58 40.90 95.70

p_vegetable 240 15.01 8.29 1.50 36.60
p_fruit 240 1.78 1.37 0.10 6.90

3.1. Effects on Chemical Fertilizer Use

Table 2 presents the effects of farm size on the chemical fertilizer application estimated by
six fixed-effect models. All six models included the dependent variable, i.e., the natural log of
average fertilizer application rate, the independent variable on farm size, and the control variables
including dummy variables on years, natural log of the disposable per capita income, labor migration,
farmers’ education, and planting structure. Models 1–5 included one additional independent variable
on farm composition, which was the percentage of farms under each of five different types of operation
scales among all farms. Model 6 included all these farm composition variables except the percentage
of farms less than 0.667 ha (10 mu) to avoid the collinearity.

The coefficients of farm size were negative in Models 1–5 and positive in Model 6, but were
statistically insignificant, which implies no clearly observable scale effect on fertilizer use from a macro
perspective. However, there were some interesting observations on the coefficients of farm composition
variables. The coefficient of p_under_10 in Model 1 was small and negative, but insignificant.
The coefficient of p_10–30 in Model 2 was negative and significant with p < 0.01. The average chemical
fertilizer application rate would decrease by 1.29% as the percentage of farms with a farm size of
0.667–2 ha (10–30 mu) increased by 1%. That result signifies a potential effect of economy of scale on
chemical fertilizer application.

However, the economy of scale effect on fertilizer application did not last as larger farms
emerged. The coefficient of p_30–50 in Model 3 was small, positive, and also statistically insignificant,
which indicates that the average fertilizer application rate might not be affected as the percentage
of farms of 2–3.34 ha (i.e., 30–50 mu) increases. The positive and statistically significant coefficient
of p_50–100 in Model 4 indicates a diseconomy of scale effect on fertilizer application. The fertilizer
application rate would increase by 4.84% for an 1% increase in the percentage of farms of 3.34–6.67 ha
(i.e., 50–100 mu). Similarly, the diseconomy of scale effect did not last as larger farms continued to
emerge. As demonstrated by the results from Model 5, the effect was positive but small and statistically
insignificant as the percentage of farms greater than 6.67 ha (100 mu) increased.
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Table 2. The fixed-effect modeling results between fertilizer use and farm size.

Variables Model_1 Model_2 Model_3 Model_4 Model_5 Model_6

Farm Size
−0.1578 0.0734 −0.1534 −0.1814 −0.1454 0.0502
(0.1932) (0.1945) (0.1945) (0.1668) (0.1951) (0.1852)

p_under_10 −0.0003
(0.0006)

p_10–30 −0.0129 *** −0.0126 ***
(0.0029) (0.0031)

p_30–50 0.0010 −0.0168 **
(0.0103) (0.0067)

p_50–100 0.0484 ** 0.0575 **
(0.0210) (0.0223)

p_over–100 0.0008 0.0006
(0.0007) (0.0006)

Years X X X X X X

Ln (income) X X X X X X

p_farm_I X X X X X X

p_farm_II 0.0159 ** 0.0157 ** 0.0162 ** 0.0140 ** 0.0133 * 0.0121 *
(0.0078) (0.0070) (0.0076) (0.0067) (0.0080) (0.0072)

p_farm_III −0.0192 *** −0.0178 *** −0.0195 *** −0.0183 *** −0.0182 *** −0.0161 ***
(0.0062) (0.0053) (0.0063) (0.0063) (0.0068) (0.0056)

p_primary X 0.0057 * X X X 0.0063 *
(0.0033) (0.0034)

p_junior X X X X X X

p_senior X X X X X X

p_college 0.0121 * X 0.0123 * X 0.0123 * 0.0107 *
(0.0070) (0.0071) (0.0073) (0.0062)

p_grain −0.0110 *** −0.0094 *** −0.0110 *** −0.0109 *** −0.0112 *** −0.0078 **
(0.0035) (0.0035) (0.0036) (0.0036) (0.0037) (0.0031)

p_vegetable X X X X X X

p_fruit X 0.0283 * 0.0323 ** 0.0294 * X X
(0.0146) (0.0162) (0.0160)

intercept 7.0583 *** 6.8117 *** 6.9459 *** 6.8501 *** 7.1282 *** 6.2723 ***
(1.2992) (1.1089) (1.3737) (1.2669) (1.3432) (1.0965)

N 240 240 239 237 237 237

R-square 0.4647 0.5328 0.4645 0.4957 0.4646 0.5733

F-stat 8.2467 10.832 8.1956 9.1897 8.1124 10.747

P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Standard errors in parentheses. * p < 0.10, ** p < 0.05, and *** p < 0.01. X—The variables included as a control but
with statistically insignificant coefficients.

Model 6 confirmed all of the findings based on Models 1–5 discussed above with a few twists.
First, the coefficient of p_30–50 became negative and statistically significant at p-value < 0.05. A 1%
increase in the percentage of farms of 2–3.4 ha (30–50 mu) could result in an 1.68% reduction in
fertilizer application rate. This result indicates that the economy of scale effect of farm size on fertilizer
application could continue at that specific scale of farm size. Second, although the coefficients p_50–100
in both Models 5 and 6 were positive and significant at p-value < 0.05, the co-efficient in Model 6 was
larger than in Model 5. This further confirms the diseconomy of scale effect on fertilizer application
when the percentage of these large farms increased. Third, Model 6 had the highest R2 value among
the six models, which indicates that Model 6 was the best fit model.
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Figure 1 compares the histogram of the bootstrap coefficients of those farm composition variables
with the derived normal distribution of the coefficients via central limitation theory and resulting
p-values for testing the statistical significance of the coefficients in Models 1–6. The bootstrap analysis
confirmed that the results presented above are robust. First, the histogram of the bootstrap coefficients
followed a normal distribution pattern around the coefficients of the farm composition variables
discussed above. Second, the p-values for significance testing whether the bootstrap coefficients were
different from zero were consistent with the p-values reported in Table 2.

Figure 1. The bootstrap distribution of the estimated coefficient of the farm structure variables in
Models 1–6 for fertilizer use.
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3.2. Effects on Pesticide Use

Table 3 presented the effects of farm size on pesticide application using Models 7–12.
The specifications for Models 7–12 were similar to Models 1–6, except the dependent variable
for Models 7–12 was the natural log of the pesticide application rate. The coefficients of farm size were
negative but also statistically insignificant for Models 7–12, which indicates the economy of scale effect
on pesticide use was not observable based on the aggregated data at the provincial level.

Table 3. The fixed-effect modeling results between pesticide use and farm size.

Variables Model_7 Model_8 Model_9 Model_10 Model_11 Model_12

Farm Size
−0.5701 −0.1833 −0.5592 −0.5934 −0.5503 −0.1908
(0.4244) (0.4287) (0.4210) (0.3852) (0.4179) (0.4038)

p_under_10 −0.0005
(0.0010)

p_10–30 −0.0215 *** −0.0217 ***
(0.0047) (0.0053)

p_30–50 0.0031 −0.0189
(0.0171) (0.0158)

p_50–100 0.0575 * 0.0563 *
(0.0308) (0.0335)

p_over_100 0.0012 0.0010
(0.0009) (0.0009)

Years X X X X X X

Ln (income) X X X X X X

p_farm_I X X X X X X

p_farm_II X X X X X X

p_farm_III −0.0324 *** −0.0301 *** −0.0334 *** −0.0333 *** −0.0328 *** −0.0297 ***
(0.0067) (0.0068) (0.0072) (0.0073) (0.0070) (0.0069)

p_primary 0.0192 ** 0.0201 ** 0.0204 ** 0.0209 ** 0.0200 ** 0.0214 **
(0.0084) (0.0090) (0.0088) (0.0091) (0.0085) (0.0091)

p_junior 0.0181 *** 0.0185 *** 0.0190 *** 0.0185 ** 0.0190 *** 0.0197 ***
(0.0069) (0.0069) (0.0070) (0.0073) (0.0068) (0.0069)

p_senior X X X X X X

p_college 0.0342 ** 0.0299 ** 0.0352 ** 0.0335 ** 0.0349 ** 0.0319 **
(0.0149) (0.0146) (0.0150) (0.0154) (0.0154) (0.0146)

p_grain −0.0128 ** −0.0102 * −0.0131 ** −0.0129 ** −0.0133 ** X
(0.0062) (0.0060) (0.0064) (0.0061) (0.0062)

p_vegetable X X X X X X

p_fruit 0.0836 * 0.0819 * 0.0891 ** 0.0858 ** 0.0759 * X
(0.0452) (0.0419) (0.0419) (0.0426) (0.0453)

intercept 4.1909 * X X X 4.2080 * X
(2.4437) (2.5393)

N 240 240 239 237 237 237

R-square 0.2811 0.353 0.282 0.2995 0.2852 0.3759

F-stat 3.7152 5.1832 3.7115 3.9981 3.7315 4.7993

P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Standard errors in parentheses. * p < 0.10, ** p < 0.05, and *** p < 0.01. X—The variables included as a control but
with statistically insignificant coefficients.
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The coefficient of p_under_10 in Model 7 was small, negative, but statistically insignificant.
The coefficient of p_10–30 in Model 8 was negative and statistically significant at p-value < 0.01,
which indicates an economy of scale effect on pesticide use. More specifically, an 1% increase in
the proportion of farms of 0.67–2 ha (10–30 mu) would decrease the pesticide application rate by
2.15%. This result was similar to the result of Model 2 for chemical fertilizer application. However,
such an economy of scale effect on pesticide use would disappear when larger farms continued to
emerge. The coefficient of p_30–50 in Model 9 was small but positive and statistically insignificant.
The coefficient of p_50–100 in Model 10 was positive and statistically significant at p-value < 0.10,
which indicates a diseconomy of scale of farm size on pesticide application. An 1% increase in the
percentage of farms of 3.34–6.67 ha (i.e., 50–100 mu) could result in a 5.75% increase in the pesticide
application rate. However, the diseconomy of scale effect was not observed for farms greater than
6.67 ha as the coefficient of the p_over_100 in Model 11 was small and positive, but statistically
insignificant. The results of Model 12 confirmed all observations made in Model 7–11. Similar to Model
6, Model 12 was the best fit model for assessing the impacts on pesticide use with the highest R2 value.

The results from the bootstrap analysis presented in Figure 2 confirm that these coefficients in
Models 7–12 discussed above were robust. Furthermore, the t-test from the bootstrap analysis indicated
the coefficients of p_30–50 and p_50–100 in Model 12 could be statistically significant at p < 10 and
p < 5, respectively.

3.3. Effects of Control Variables

The modeling results showed that rural labor migration had multi-layered effects on agrochemical
application. The percentage of Household Type I had insignificant impacts on both fertilizer and
pesticide application rates. This result is expected as these households derive their income primarily
from agriculture, and their impacts on agrochemical use were already captured by the modeling
results discussed above. The percentage of Household Type II had positive and significant impacts on
fertilizer application, but insignificant impacts on pesticide application. The positive and significant
impacts on fertilizer use are consistent with others’ observations at the micro scale in the literature since
Type II households derive their income primarily from non-agricultural employment and substitute
labor shortages by increasing chemical fertilizer use [7,52]. The percentage of Household Type III had
negative but significant impacts on both fertilizer and pesticide applications. Recall Type III households
derive their income entirely from non-agricultural employment. A higher percentage of Type III
households implies more large-scale farms as those households would transfer their lands to other
farmers. As demonstrated above, there were economy of scale effects on both fertilizer and pesticide
applications as the percentage of middle-sized farms, specifically farms of 0.67–2 ha (10–30 mu) and
even of 2–3.34 ha (30–50 mu), increased.

The modeling results showed that farmers’ education levels had limited impacts on fertilizer
application in China while other studies reported mixed results [12,57,58]. Most coefficients of the
percentages of farmers with different education levels across Models 1–6 were statistically insignificant
except the coefficients for the percentage of farmers with some college in Models 1, 3, 5, and 6; and for
the percentages of farmers with primary school in Models 2 and 6, which were positive, but only
significant at p < 0.1 (Table 2). These results imply that the impacts of fertilizer use on agricultural
production might have been well understood by farmers across different education levels. Therefore,
the education levels have less impact on farmers’ decisions on fertilizer. The positive and significant
impacts of farmers with some college might be due to the fact that those farmers might simply operate
the over-sized large farms, which were experiencing diseconomy of scale on fertilizer application as
observed above. The farmers with some college might also choose to grow cash crops that generate
higher returns but require higher agrochemical usage. However, the impacts on pesticide application
rate seemed to be positive across different education levels. The significant impacts for farmers with
primary and junior high school education just confirm the findings by other studies: the lack of
knowledge on the impacts of agrochemical use contributes to the increase in chemical use [54,55], as the
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knowledge on pesticide use is more sophisticated than on fertilizer use. Similar to the positive impacts
observed on fertilizer application rate, the positive and significant coefficients for the percentage of
farmers with some college education might be due to the fact those highly educated farmers tended
to operate large-scale farms of cash crops such as fruits and vegetables, which require higher usage
of pesticides.

Figure 2. The bootstrap distribution of the estimated coefficient of the farm structure variables in
Models 7–12 for pesticide use.
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The impacts of planting structure on agrochemical use are consistent with the existing findings [40,58].
The increase in the proportion of arable lands in grain production tended to lower both chemical fertilizer
and pesticide application rates as indicated by the negative coefficients of p_grain with a significance
at p < 0.01 or 0.05 for Models 1–11. On the other hand, the large proportion of arable lands in fruit
production would increase both chemical fertilizer and pesticide application rates, which was indicated by
the positive coefficients of p_fruit with a significance at p < 0.1 for Models 2–4 and 7–11. The impacts of the
proportion of arable lands in vegetable production on agrochemical uses were not statistically significant.

There were a few other interesting observations. First, the coefficients for all dummy variables on
years were statistically insignificant across all models, although the coefficient value was increasing
yearly from 2010 to 2015, reached its peak in 2015, and then became lower in 2016. These results indicate
that the tremendous efforts from the central government are helpful but not effective in reducing
agrochemical uses. Second, the disposable per capita income among rural households seemed to have
no impact on agrochemical use as the relevant coefficients were negative but statistically insignificant
across all models.

4. Discussions

Farm size has profound impacts on farm performance and farmers’ behaviors toward the adoption
of various innovative farming practices and technologies [59–62]. The knowledge of the relationship
between agrochemical use and farm size is critical to the development and implementation of the
agrochemical use reduction strategies and policies in China. However, the findings from the existing
literature are mixed and often conflicting. While most empirical studies observed the economy of
scale effect on agrochemical use, some found diseconomy of scale effect on agrochemical use and even
dismissed the relationship between farm size and agrochemical use altogether. Our results using the
provincial data at a macro scale confirmed the complexity of such relationships. Therefore, the results
from empirical assessments based on specific sample farm survey data at a micro scale cannot be
simply extrapolated to describe the relationship in other regions and/or at a macro scale.

The economy of scale effect on agrochemical use would be ideal. The decreases in agrochemical
application rates in many developed countries such as the U.S. and western European countries
could be partially attributed to the increase in farm size in those countries due to the economy of
scale [63–65]. The HCRS and Hukou systems have distorted the allocation of rural labor across
the different sectors and farmland across rural households in China [7]. By eliminating these two
distortions, the average farm size in China would increase to 4.1 ha, and fertilizer and pesticide use
and fertilizer loss would fall by 28%, 45%, and 50%, respectively [7]. However, our assessment found
the existence of the diseconomy of scale effect on agrochemical use in China. The diseconomy of
scale occurred only when larger farms such as the farms larger than 3.34 ha (50 mu) continued to
emerge. Furthermore, other researchers also observed a similar relationship between farm size and
agrochemical use in China [29,36–38]. Such findings are inconveniently contrary to the economy of
scale effect, as observed by other notable studies [6,7]. The differences might be due to the different
data being used. Ju et al. [6] used the aggregated macro data from the Second China Agricultural
Census in 2006 and compared fertilizer use between traditional smaller farms and collective farms.
However, the nature and structure of large farms have changed substantially since then. Moreover, Ju
et al. [6] only analyzed the agrochemical use of wheat, rice and corn. They did not analyze the farms
which produce cash crops (e.g., sugar, vegetables and fruits) which have relatively large agrochemical
consumption. Wu et al. [7] used the 2015 China Rural Household Panel Survey, which included 20,000
rural households. Despite being nationally representative, the households in that survey primarily
produced staple crops such as wheat, rice, corn, soybean, and peanut. That survey did not include
farms that primarily produced sugar, vegetables, and fruits and therefore tended to apply more
fertilizer. Xin et al. [23] have shown that large-scale farms are more likely to product cash crops than
small-scale farms. Our macro analyses were based on the aggregated provincial data from 2009 to 2016
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that included all farms that conducted all kinds of farm operations and therefore our results were more
balanced without the explicit biases mentioned above.

The positive correlation between an increase in agrochemical application rate and an increase in
farm size is not unique in China. Similar relationships were observed in other developing countries
such as Thailand [66], Ethiopia [67], Kenya [68], and Bangladesh [69]. Despite the similarity in terms
of the diseconomy of scale effect on agrochemical uses in both China and other developing countries,
the underlying rationales may be different. First, the farm size in China is smaller than in many
developing countries such as Ethiopia, Ghana, Niger, Cambodia, and Nicaragua, according to the
Smallholders Data Portrait database maintained by FAO. Second, China is the largest agrochemical
producer in the world. According to FAO, China produced 26.55% of the total fertilizer in the
world in 2019. While more intensive agrochemical use by large farms in these developing countries
was attributed to farmers’ ability to acquire and use agricultural chemicals and willingness to take
risks [66–69], the underlying reasons for more intensive agrochemical use by large farms in China
might be very different as agrochemicals are readily available to all farmers. Previous studies suggested
various plausible reasons including the short-term profit motive of farmers [35], planting structure
change [41], and farmers’ willingness and ability to use more agricultural inputs [70]. Third and
most importantly, the diseconomy of scale on agrochemical use among large farms might be related
to the distortions in labor and farmland allocation by the HCRC and Hukou systems, two powerful
institutional policies unique to China [7]. Because of the Hukou system, rural residents are reluctant
to give up the use right to their allocated farmlands even after they have migrated to cities in China.
As such, most large farms formed through the transfer of the use right are based on short-term
land contracts between the large farms and the migrated residents [38]. A rural land survey from
17 provinces in China showed that only 52.6% of farmers negotiated the lease duration in a lease
contract for receiving the use right of farmland, and only 15.9% of farmers received the use right of land
with a lease duration greater than ten years [71]. Short-term land lease contracts discourage long-term
farmland investments and encourage short-term farm operation behaviors that result in a significant
reduction in organic fertilizer application and an increase in agrochemical use in China [38,72]. As such,
many large farms formed under the current institutional structure tended to be fruit, vegetable,
and other cash crop farms [73], whose agrochemical application rates were higher than most grain
crop farms.

The existence of the diseconomy of scale effect on agrochemical use among the larger farms is
extremely troubling to the agricultural policy-makers. In the past decade, China has been implementing
various programs and policies such as farmland consolidation programs to form larger farms to improve
agricultural productivity and to reduce agrochemical use. Our results suggest those programs might
have had some initial success but have entered into the bottleneck where the diseconomy of scale
effect occurs and therefore do not provide a straight path to achieve the ideal outcomes related to the
reduction in agrochemical uses. The institutional restrictions under the current HCRC and Hukou
systems cause instability in the land rental markets, through which large farms obtain land use rights.
The unstable land market leads to widespread short-term land lease contracts, making it difficult to
achieve the economy of scale effect in reducing agrochemical use [38]. Therefore, the future rural policy
reform on the HCRC and Hukou systems themselves are needed to facilitate the flows of rural resources
and labor to break down the bottleneck and achieve the economy of scale effect on agrochemical uses
as envisioned by others [6,7].

The public agricultural extension and education programs had been successful in supporting
farmers in their farm operations [74,75]. One alternative way in China is to establish and strengthen the
agricultural extension and education services available to farmers to improve agricultural productivity
while reducing agrochemical uses. The specific training of farmers through agricultural extension and
education programs is proven to be very effective in reducing agrochemical use without decreasing crop
yield [76,77]. The examples include the Science and Technology Backyard platform [5], the Integrated
Soil-crop System Management program [25], and the Soil Testing and Fertilizer Recommendation
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Project [26]. While China has been active in encouraging the formation of large farms, little guidance
was provided to support the operation of large farms. As such, many large farms are left alone
in dealing with many operational and technical issues in their operations, which prompt them to
maximize their short-term profits by over-applying agrochemicals. Our results indicate that there is
an urgent need to implement such programs to support the growth and development of large farms
in China, including reducing agrochemical use and improving efficiency. Another alternative is to
nurture the development of the agricultural service industry in agrochemical use in China [78]. As a
service entity, an agricultural service firm can achieve the economy of scale and reduce agrochemical
use by serving a large number of farms [79,80].

5. Conclusions

Agrochemical overuse in China has been generally recognized. One potential mitigating strategy
is to increase farm size in order to achieve a reduction in agrochemical use. This study examined the
relationship between farm size and agrochemical use from a macro perspective using a panel dataset
aggregated for 30 provinces in China from 2009 to 2016 and found no universal economy of scale on
agrochemical use in China. Given the fact that 78.6% of farms are under 0.667 ha in China, any increase
in slightly larger farms such as the farms that are greater than 0.667 but less than 2 ha would reduce
agrochemical use. However, the potential economy of scale effect would not last when larger farms
continued to emerge. The study found that the agrochemical application rates would increase when
the percentage of large farms, especially the farms greater than 3.34 ha but less than 6.67 ha, increased,
implying a diseconomy of scale.

Many empirical studies aimed to understand the relationship between farm size and agrochemical
use in China using sample farm surveys at a micro scale and reported mixed and often conflicting
results that were most likely dictated by the samples being used. Our empirical assessment using the
aggregated data at a macro scale provided an additional perspective to understand this complicated
relationship. Our results confirmed the existence of both economy and diseconomy of scale effects on
agrochemical use in China. We further identified where those effects would take place.

Our results suggest that the strategy based on increasing farm size alone might achieve some initial
success in reducing agrochemical use, but the effect could fade away and be reversed as significantly
large farms continue to emerge. A plausible explanation for such a bottleneck situation is that HCRC
and Hukou systems define the fabric of rural society in China, and large farms formed under those
two institutional policies tend to focus on short-term profit maximization, which leads to an increase
in agrochemical use. These results have significant policy implications as China is developing and
implementing various policies and strategies to modernize its agriculture. In the long-term, reforms on
HCRC and Hukou systems should be carried out to eliminate their negative impacts on agricultural
development. In the short term, some alternative measures can be implemented to overcome the
bottleneck and achieve a reduction in agrochemical use. These alternative measures may include (1)
developing technical assistance programs and agricultural extension programs that train and educate
farmers, especially farmers who operate large scale farms, to properly use the agrochemicals and guide
them to adopt the production methods that use less agrochemicals with minimal impacts on net profits,
(2) nurturing the development of agricultural service industry, in which the professionally trained
individuals would conduct agrochemical applications for farmers through business contracts, and (3)
strengthening the legal procedure of the farmland use right transfer and protecting the use rights of
farmlands to encourage large farms to make long-term investments and reduce agrochemical use.

Despite these interesting results, the study has its limitations especially related to the data being
used and leaves room for improvement. The study used a panel dataset in 30 provinces in China during
the 2009–2016 period, which resulted in limited observations. Research can be further developed by
expanding the observations to include data from recent years and/or collect data at a county level to
test the robustness of the results. Research can also be conducted by combining the data at both micro
and macro scales to test the robustness of the results. Future research can explore these ideas.
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